icm®

Choosing γ so that $e\gamma^{n+1} \leqslant \frac{1}{2}$, letting $N \to \infty$ and $\varepsilon \to 0$ completes the proof of Theorem III.

By standard arguments Theorem III implies the following important corollary.

(4.21) COROLLARY. For
$$(a,f) \in L^{(p,p_0)}$$
, $\sum_{j=0}^{n} (1/p_j) = 1/q < n+1$, $1 < 1$

 $p_0 < \infty$, $1 < p_j \leq \infty$, and $T_s^m(a, f)$ and $T_*^m(a, f)$ the operators defined in Theorem III, the following properties are satisfied:

- $(1) ||T_*^m(a,f)||_q \leqslant c ||(a,f)||_{(p,p_0)}.$
- (2) $\lim_{\epsilon \to 0} T_{\epsilon}^{m}(a, f)(x)$ exists almost everywhere.

References

- [1] B. M. Baishansky and R. Coifman, On singular integrals, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R. I. (1967), pp. 1-17.
- [2] A. P. Calderón, Commutators of singular integrals, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), pp. 1092-1099.
- [3] On algebras of singular integral operators, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R. I. (1967), pp. 18-55.
- [4] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), pp. 241-250.
- [5] R. Coifman and Y. Moyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), pp. 315-331.
- [6] -, Commutateurs d'integrales singulières, Seminaire d'Analyse Harmonique, Orsay, France 1976.
- [7] -, Commutateurs d'integrales singulières et opérateurs multilineaires, Λnn. Inst. Fourier, Grenoble 1977.
- [8] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), pp. 611-635.
- [9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton 1970.

Received January 17, 1978 (1395)

An analog of the Marcinkiewicz integral in ergodic theory

by

ROGER L. JONES (Chicago, III.)

Abstract. Let T be an invertible measure preserving point transformation from a space X onto itself. Define $\tau_H(x) = \inf\{n>0 \mid T^nx \in B\}$. The analog of the classical Marcinkiewicz integral I(f)(x), is defined by

$$I(f)(x) = \sum_{k=1}^{\infty} \frac{\tau_B(T^k x) f(T^k x)}{k^2}.$$

If f is the characteristic function of a set B, then this integral, like its classical analog, gives a measure of the distance from a point x to the set B. Intuitively it is the average amount of time the point spends outside the set B during its orbit. It is used to give a direct proof that the ergodic Hilbert transform is weak type (1,1).

Theorems. Let (X, Σ, m) denote a complete nonatomic probability space, and T an ergodic measure preserving invertible point transformation from X onto itself. For $B \in \Sigma$, with 0 < m(B) < 1 and a point x, consider the orbit, x, Tx, T^2x, \ldots Following this orbit we will enter and leave the set B infinitely often. In the following we will be interested in various measures of the distance from the point x to the set B.

A natural measure is the recurrence time, defined by

$$u_B(x) = \begin{cases} \inf \left\{ n > 0 \mid T^n x \in B \right\}, & x \in B, \\ 0, & x \notin B. \end{cases}$$

This function has been previously studied by Kae [6] and Blum and Rosenblatt [1]. Kae has shown that $||r_B||_1 = 1/m(B)$, and Blum and Rosenblatt have studied the higher moments.

A second measure, related to the recurrence time, is defined by

$$\tau(x) := \inf\{n \geq 0 \mid T^{-n}x \in B\}.$$

It is not hard to see that $\tau(x)$ may fail to be in $L^1(X)$. In fact $\tau(x) \in L^1(X)$ if and only if $\nu_R(x)$ has a finite second moment.

Both of the above measurements are local in the sense that after a return to B, they fail to observe the remainder of the orbit. However,

to study certain operators, such as the ergodic Hilbert transform [see Section 3], a measure of distance which looks at the entire orbit must be used. With this in mind we define a distance function $I\left(x\right)$ by

$$I(x) = \sum_{k=1}^{\infty} \frac{\tau(T^k x)}{k^2}.$$

Note that if τ is bounded, then I(x) is bounded, and if τ grows large early in the orbit, then I(x) is large. The function I(x) also has the property that it looks at the entire (positive) orbit. A very long excersion from the set B late in the orbit would be detected by a large I(x). Intuitively I(x) is a measure of the average length of time spent outside the set B.

This function can be studied by replacing I(x) by the operator I(f)(x) defined by

$$I(f)(x) = \sum_{k=1}^{\infty} \frac{\tau(T^k x) f(T^k x)}{k^2}.$$

The original problem is then the study of $I(\chi_{B^c})(x)$ since $\chi_{B^c}(T^k x) = 0$ if and only if $\tau(T^k x) = 0$, where $\chi_A(x)$ is the characteristic function of A, taking the value 1 for $x \in A$ and 0 for $x \notin A$.

We can also consider

$$I_{\lambda}(f)(x) = \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^k x) f(T^k x)}{k^{1+\lambda}}.$$

This operator should be compared with the classical Marcinkiewicz Integral defined by

$$J_{\lambda}(f)(x) = \int_{-\infty}^{\infty} \frac{\delta^{\lambda}(y)f(y)}{|x-y|^{1+\lambda}} dy$$

where $\delta(y)$ is the distance from y to a fixed set B.

Following the idea used by Zygmund [8], we modify $I_{\lambda}(f)$ and consider

$$I_{\lambda}^{*}(f)(x) = \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^{k}x)f(T^{k}x)}{k^{1+\lambda} + \tau^{1+\lambda}(x)},$$

which coincides with $I_{\lambda}(f)(x)$ for all $x \in B$. The advantage of $I_{\lambda}^{*}(f)$ over $I_{\lambda}(f)$ is that $I_{\lambda}^{*}(f)$ will be in $L^{1}(X)$ for $f \in L^{1}(X)$ while $I_{\lambda}(f)$ may fail to be in $L^{1}(X)$ even for $f \in L^{\infty}(X)$. In fact we can prove the following theorem:

THEOREM 1.1. If $f \in L^p(X)$, $1 \leq p < \infty$, then $I_{\lambda}^*(f) \in L^p$ and $||I_{\lambda}^*(f)||_p \leq o_{\lambda,p} ||f||_p$.

In reference to the original problem, this says that

$$\int\limits_X \bigg| \sum_{k=1}^\infty \frac{\tau^{\lambda}(T^{lk}x) \chi_{B^c}(T^{lk}x)}{k^{1+\lambda} + \tau(x)} \bigg|^p dx \leqslant c_{\lambda,p} \int\limits_X |\chi_{B^c}(x)|^p dx$$

or if we integrate only over the set B, then we have

$$\int\limits_{R} \Big| \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^{le} w)}{k^{1+\lambda}} \Big|^{p} dw \leqslant c_{p} m(B^{c}).$$

This estimate is good if B is large, and in which case it says that most of the points in the large set B are close to it with the distance function I(x).

However, if B has small measure, the estimate (*) seems rather large, since we are integrating only over a small set. We can improve the situation with the following result.

THEOREM 1.2. For all $\lambda > 0$, there exists a constant c_{λ} such that

$$\int\limits_{B} \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^{k}w)}{k^{1+\lambda}} dx \leqslant o_{\lambda}m(B) \left(1 - \log m(B)\right).$$

This result is the best possible in the sense that as a function of B, the term $1 - \log m(B)$ cannot be replaced by a more slowly growing function.

Proofs. To prove the above theorems we begin with two simple but important lemmas. In this section, o and o_{λ} denote constants, not necessarily the same from line to line.

LIMMA 1.3. For any positive integer δ , we have

$$\sum_{k=1}^{\infty} \frac{\delta^{\lambda} f(T^{k} x)}{k^{1+\lambda} + \delta^{1+\lambda}} \leqslant c f^{*}(x),$$

where

$$f^*(w) = \sup_{n>0} \frac{1}{n} \sum_{k=0}^{\infty} |f(T^k w)|.$$

Proof. We split the sum into two pieces, getting separate estimates for each piece. For the first piece we have

$$\sum_{k=1}^{\delta} \frac{\delta^{\lambda} f(T^{k} x)}{k^{1+\lambda} + \delta^{1+\lambda}} \leqslant \sum_{k=1}^{\delta} \frac{f(T^{k} x)}{\delta} \leqslant f^{*}(x).$$

For the second piece we sum by parts, yielding

$$\begin{split} \sum_{k=\delta}^{\infty} \frac{\delta^{\lambda} f(T^k x)}{k^{1+\lambda} + \delta^{1+\lambda}} &\leqslant \sum_{k=\delta}^{\infty} \frac{\delta^{\lambda} f(T^k x)}{k^{1+\lambda}} \leqslant \sum_{k=\delta}^{\infty} \delta^{\lambda} f(T^k x) \sum_{n=k}^{\infty} \left(\frac{1}{n^{1+\lambda}} - \frac{1}{(n+1)^{1+\lambda}}\right) \\ &\leqslant (1+\lambda) \sum_{n=\delta}^{\infty} \frac{\delta^{\lambda}}{n^{2+\lambda}} \sum_{k=\delta}^{n} f(T^k x) \\ &\leqslant c_{\lambda} f^*(x) \sum_{n=\delta}^{\infty} \frac{n \delta^{\lambda}}{n^{2+\lambda}} \leqslant c_{\lambda} f^*(x) \,. \end{split}$$

LEMMA 1.4. Let $f \in L^p(x)$ and $g \in L^q(x)$, with 1/p + 1/q = 1, and $1 \le p < \infty$, then

$$\int\limits_{\mathbb{R}} \left(\sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^k x) f(T^k x)}{k^{1+\lambda} + \tau^{1+\lambda}(T^k x)} \right) g(x) dx \leqslant c_{\lambda} ||f||_{p} ||g||_{q}.$$

Proof. For f and g as above, and using Lemma 1.4, we have

$$\int_{X} \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^{k}x)f(T^{k}x)}{k^{1+\lambda} + \tau^{1+\lambda}(T^{k}x)} g(x) dx \leqslant \sum_{k=1}^{\infty} \int_{X} \frac{\tau^{\lambda}(T^{k}x)f(T^{k}x)}{k^{1+\lambda} + \tau^{1+\lambda}(T^{k}x)} g(x) dx$$

$$\leqslant \sum_{k=1}^{\infty} \int_{X} \frac{\tau^{\lambda}(x)f(x)}{k^{1+\lambda} + \tau^{1+\lambda}(x)} g(T^{-k}x) dx$$

$$\leqslant \int_{X} f(x) \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(x)g(T^{-k}x)}{k^{1+\lambda} + \tau^{1+\lambda}(x)} dx$$

$$\leqslant \int_{Y} f(x)g^{*}(x) dx \leqslant ||f||_{p} ||g^{*}||_{q} \leqslant c ||f||_{p} ||g||_{q}.$$

The last step can be made because the maximal function (**) is a bounded operation from $L^q(X)$ to $L^q(X)$, $1 < q \le \infty$.

Proof of Theorem 1.1. By the above lemma, it follows that the operator

$$H_{\lambda}(f)(x) = \sum_{k=1}^{\infty} \frac{\tau^{\lambda}(T^k x) f(T^k x)}{k^{1+\lambda} + \tau^{1+\lambda}(T^k x)}$$

is bounded on L^p , $1 \leq p < \infty$. Since $\tau(T^k x) \leq k + \tau(x)$ and consequently $\tau^{1+\lambda}(T^k x) \leq c_{\lambda} [k^{1+\lambda} + \tau^{1+\lambda}(x)]$, there exist constants c_1 and c_2 such that $c_1 I_{\lambda}^*(f)(x) \leq H_{\lambda}(f)(x) \leq c_2 I_{\lambda}^*(f)(x)$. The fact that H_{λ} is L^p bounded, and the above inequality implies I_{λ}^* is L^p bounded, $1 \leq p < \infty$.

Proof of Theorem 1.2. Proceeding as in the proof of Lemma 1.4, we have:

$$\begin{split} \int\limits_B I_\lambda(x)\,dx &= \int\limits_X \chi_B(x)I_\lambda(x)dx = \int\limits_X \chi_B(x) \sum_{k=1}^\infty \frac{\tau^\lambda(T^kx)}{k^{1+\lambda}}\,dx \\ &= \sum_{k=1}^\infty \int\limits_X \chi_B(x)\frac{\tau^\lambda(T^kx)}{k^{1+\lambda}}\,dx = \sum_{k=1}^\infty \int\limits_X \frac{\chi_B(T^{-k}x)\,\tau^\lambda(x)}{k^{1+\lambda}}\,dx \\ &= \int\limits_X \sum_{k=1}^\infty \frac{\chi_B(T^{-k}x)\,\tau^\lambda(x)}{k^{1+\lambda}}\,dx. \end{split}$$

However, the sum does not start until $\chi_B(T^{-k}x) \neq 0$; i.e., until $T^{-k}x \in B$. The first k for which this is true is $\tau(x)$. Consequently the integrand becomes

$$\sum_{k=x(x)}^{\infty}rac{\chi_B(T^{-k}x)\, au^{\lambda}(x)}{k^{1+\lambda}}\,,$$

but by the proof of Lemma 1.4 this is less than $\chi_B^*(x)$, the maximal function of $\chi_B(x)$. We now have

$$\int_{B} I(x) dx \leq c \int_{X} \chi_{B}^{*}(x) dx \leq c \int_{0}^{\infty} m \{x \mid \chi_{B}^{*}(x) > \lambda\} d\lambda$$

$$\leq c \int_{0}^{m(B)} m \{x \mid \chi_{B}^{*}(x) > \lambda\} d\lambda + c \int_{m(B)}^{1} m \{x \mid \chi_{B}^{*}(x) > \lambda\} d\lambda$$

$$\leq c m(B) + c \int_{m(B)}^{1} \frac{1}{\lambda} ||\chi_{B}||_{1} d\lambda$$

 $\leq cm(B) + cm(B) [\log 1 - \log m(B)] \leq cm(B) [1 - \log m(B)].$

To see that the estimate in Theorem 1.2 cannot be improved, consider a very tall Rokhlin tower of height N. Let B be the base of the tower, then for $x \in B$, $I(x) > \sum_{k=1}^{N} \frac{k}{(k+1)^2}$. Thus $I(x) \le \log m(B)$ for $x \in B$. Integrating over B, we get $\int_{B} I(x) \, dx \ge -m(B) \log m(B)$ since N = 1/m(B). A similar argument also shows that if the function

$$I(x) = \sum_{k=1}^{\infty} \frac{\tau(T^{k}x)}{k^2}$$

is replaced by

$$\sum_{k=1}^{\infty} \frac{\tau(T^k x)}{k^{2-s}},$$

this function fails to satisfy any inequality of the above type; in fact, the integral of this function over the set B, can be $+\infty$, for any $\varepsilon > 0$.

Higher dimensional results. Theorem 1.1 can be extended to higher dimensions. In particular, let S and T be two non-commuting, measure preserving, point transformations mapping the space X onto itself. For a given set B, define

$$\tau(x) = \inf \{ (m^2 + n^2)^{1/2} | T^m S^n x \in B \}.$$

The analog of the operator $I_{2}^{*}(f)(x)$ is the operator

$$H^*_{\lambda}(f)(x) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{ \tau^{\lambda}(T^k S^j x) f(T^k S^j x)}{(k^2 + j^2)^{3/2} + au^{2+\lambda}(T^k S^j x)} \, .$$

THEOREM 2.1. For $f \in L^p(X)$, $1 \leq p < \infty$; the operator $H^*_{\lambda}(f) \in L^p$ and $\|H^*(f)\|_p \leq c_p \|f\|_p$.

Proof. The proof is essentially the same as the proof of Theorem 1.1. The required maximal function is defined by

$$f^*(x) = \sup_{m>0, n>0} \frac{1}{mn} \sum_{k=0}^m \sum_{j=0}^n |f(S^j T^k x)|.$$

This maximal function has been shown (by Zygmund [7]) to be bounded on $L^p(X)$, $1 . Integrating with respect to <math>g \in L^q(X)$, we have

$$\int H_{\lambda}^{*}(f)(x)g(x)dx \leqslant c_{\lambda} \int f(x)g^{*}(x)dx \leqslant c_{\lambda}||f||_{p}||g^{*}||_{q} \leqslant c_{\lambda,p}||f||_{p}||g||_{q}.$$

Taking the sup over all $g \in L^p(X)$ with $||g||_q = 1$ completes the proof.

The ergodic Hilbert transform. As an application of this distance function, consider the ergodic Hilbert transform defined by

$$\tilde{f}(x) = \sum_{\substack{k = -\infty \\ k \neq 0}}^{\infty} \frac{f(T^k x)}{k}.$$

This transform was introduced by Cotlar [4] in 1955, and has since been studied by Calderón [2], Coifman and Weiss [3], and others. The first question is, does f(x) exist for $\tilde{f} \in L^p(X)$? The usual proofs use the fact

that the classical Hilbert transform, defined by

$$f(x) = \lim_{s \to 0} \int_{-\infty}^{-s} + \int_{s}^{\infty} \frac{f(x-y)}{y} dy,$$

is weak type (1,1) and strong type (p,p). The classical results and a transference argument imply the same results in the ergodic theory setting. However, the results of Theorem 1.1 can be used to give a direct proof that the ergodic Hilbert transform is weak type (1,1).

As usual, the first step is a decomposition of $f \in L^1(X)$ into a sum:

$$f(x) = g(x) + b(x)$$

where g is in $L^2(X)$ and b is supported on a small set. This is just the ergodic analog of the Calderón–Zygmund decomposition. This analog is discussed in [5]. In this section we need to use a two-sided maximal function defined by

$$f^*(x) = \sup_{n} \frac{1}{|n|+1} \sum_{k=0}^{n} |f(T^k x)|.$$

Using the notation of [5], we let $\{x \mid f^*(x) \leq \lambda\}$ be the base of the Kakutani construction. The function b_j is supported on the column C_j and is obtained from f by subtracting off the mean value. More precisely we define

$$b_j(x) = egin{cases} f(x) - rac{1}{j} \sum_{k=1}^{j-1} f(T^k x^*), & x \in C_j, \\ 0, & ext{elsewhere} \end{cases}$$

where x^* is the first point in the sequence $T^{-1}x$, $T^{-2}x$, ... which lies in the base. The function b is defined by

$$b(x) = \sum_{j} b_{j}(x)$$

and g is defined by

$$g(x) = f(x) - b(x).$$

As in the classical case g(x) is in $L^2(X)$ and $L^\infty(X)$, with $\|g\|_{\infty} \leq \mathcal{O}\lambda$. For this piece we need to know that \tilde{f} is strong type (2,2). This is Cotlar's result [4] using his theory of quasiorthogonal operators. The proof is exactly the same in the ergodic theory setting as in the classical setting.

For the functions b_j we need to work harder. In the classical case the function b_i is supported on an interval I_i . Estimates are needed for

the expression

$$\int_{-\infty}^{\infty} \frac{b_j(y)}{x-y} \, dy.$$

As y varies from $-\infty$ to ∞ , we pass through I_i exactly once. In our case we study

$$\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \frac{b_j(T^k x)}{k}.$$

As k varies from $-\infty$ to ∞ we pass through the support of b_4 not once but infinitely often. As usual, we need an estimate of $m\{x|\ \tilde{b}(x)>\lambda\}$. Denote by C_j^* the column C_j expanded 3 times; i.e., $C_j^* = T^{-(j-1)}C_j \cup C_j \cup T^{j-1}C_j$. Since $m\{\bigcup_{i} C_{j}^{*}\} \leqslant \frac{C}{\lambda} \|f\|_{1}$, it is enough to study $m\{x \in (\bigcup_{i} C_{j}^{*})^{c} | \tilde{b}(x) > \lambda\}$. By Chebyshev we have

$$(3.1) \quad m\left\{x\in (\bigcup_{j}C_{j}^{*})^{c}|\ \tilde{b}\left(x\right)>\lambda\right\}\leqslant \frac{1}{\lambda}\int_{(\cup C_{j}^{*})^{c}}|\tilde{b}\left(x\right)|dx$$

$$\leqslant \frac{1}{\lambda}\int_{(\cup C_{j}^{*})^{c}}\left|\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty}\frac{b\left(T^{k}x\right)}{k}\right|dx\leqslant \sum_{j}\frac{1}{\lambda}\int_{(\cup C_{j}^{*})^{c}}\left|\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty}\frac{\chi_{C_{j}}(T^{k}x)b\left(T^{k}x\right)}{k}\right|dx.$$

Using the mean value property of b_i we can subtract off an appropriate constant each time the sequence $\{T^k x\}$ passes through the column C_i . Messy but straightforward arguments show that

$$\left| \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \frac{\chi_{\mathcal{O}_j}(T^k x) b(T^k x)}{k} \right| \leqslant \lambda \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \frac{\tau_j(T^k x) \chi_{\mathcal{O}_j}(T^k x)}{k^2} ,$$

where $\tau_j(x)$ is the distance from x to the set $(C_j^*)^c$. If we split the sum into 2 pieces, a sum with k > 0 and a sum with k < 0, then we can use the estimates obtained in Theorem 1.1 on each piece. Consequently

$$\int\limits_{(C_{i}^{*})^{c}} \sum_{\substack{k=-\infty \\ k\neq 0}}^{\infty} \frac{\tau_{j}(T^{k}x)\chi_{C_{j}}(T^{k}x)}{k^{2}} dx \leqslant 2cm(C_{j}).$$

From the above we get that

$$m\left\{x\in (\bigcup_{j}C_{j}^{*})^{c}|\ \tilde{b}>\lambda\right\}\leqslant \sum_{j}2cm(C_{j})\leqslant cm(\bigcup_{j}C_{j})\leqslant \frac{c}{\lambda}\|f\|_{1}.$$

The last step follows from Theorem (2.1) of [5]. Combining the results on g+b we get that \tilde{f} is weak type (1,1).

References

J. R. Blum and J. I. Rosenblatt, On the moments of recurrence time, J. Math. Sci. (Delhi) 2 (1967), pp. 1-6.

A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), pp. 349-353.

R. R. Coifman and G. Weiss, Maximal functions and Hp spaces defined by ergodic transformations, ibid. 10 (1973), pp. 1761-1763.

M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Math. (Cuyana) 1 (1955), pp. 105-167.

[5] R. L. Jones, Inequalities for the ergodic maximal function, Studia Math. 60 (1977), pp. 111-129.

M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), pp. 1002-1010,

[7] A. Zygmund, An individual ergodic theorem for non-commutative transformations. Acta. Sci. Math. (Szeged) 14 (1951), pp. 103-110.

- On certain lemmas of Marcinkiewicz and Carleson, J. Approximation Theory 2 (1969), pp. 249-257.

DePAUL UNIVERSITY CHICAGO, ILLINOIS

> Received August 1, 1977 Revised version March 26, 1978 (1335)