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Choosing y so that ey™™* < ¥, letting N—oc0 and e-»0 completes the proof
of Theorem IIL o
By standard arguments Theorem TIT implies the following important

corollary.
n

(4.21) CoroLLARY. For (a,f) e Lin2o), IZ(‘ (Lip) =1Ljg<n+l, 1<
=
Po< 00, 1< P o, and T™a,f) and Te(a, f) the operators defined
in Theorem I, the following propertics are saiisfied :
@) T (s Dl < €y Hllp,ng)-
(2) YmT™(a, ) (@) exists almost everywhere,
80

References

[11° B. M. Baishansky and R. Coifman, On singular integrals, Proc. Sympos,
Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I. (19067), pp. 1-17,

[2] A.P.Calderén, ommutators of singular integrals, Proc. Nat. Acad. Sei. U.8.A,
53 (1966), pp. 1092-1099.

{31 — On algebras of singular integral operators, Proe. Sympos. Pure Math,, vol.
10, Amer. Math. Soc., Providenee, R.T. (1967), pp. 18 -55.

[4] R.CoifmanandC.Feiferman, Weighted norm inequalities for maximal functions
and singular integrals, Studia Math. 51 (1974), pp. 241-250.

[5] R. Coifman and Y. Meyer, On commutalors of singular integrals and bilinear
singular integrals, Trans. Amer. Math. Soo. 212 (1975), pp.-315-381,

[6] —, — Commutateurs d'integrales singulidres, Seminaire d’Analyse larmonique,
Orsay, France 1976.
(71 —, — Commutateurs d'integrales singulidres et opérateurs mullilineatres, Anm.

Inst. Fourier, Grenoble 1977.

(8] R. Coitman, R. Rochberg, and G. Weiss, Factorizaiion theorems for Hardy
spaces in several variables, Ann. of Math. 103 (1976), pp. 611--635.

[91 E. M. Stein, Singular integrals and differentiabilily propertics of fumations,
Princeton 1970.

Received January 17, 1978 (1306)

icm°

STUDIA MATHEMATICA, T. LXVI. (1980)

An analog of the Marcinkiowicz integeal in ergodic theory

by
ROGER T, JONIKS (Chieago, I1L)

Abstract. ot 7' ho an invertible moeasure proserving point transformation from
a space X onto ilsell, Deline 7y (w) =int{n 2 0] T e B} The analog of the classieal
Marcinkiowiez intogral I (f) (@), is dofinod by

Ty S )

fpsal 4

It s the elneaeterislio funetion of a sot B3, then this integral, like its classical analog,
given o moeasure of the distanee Tron w point 2 to the set B, Intuitively it is the average
amount of Gimo the point spends ouwbsido the seb B during its orbit. It is wsed to give
a direet prool that the ergodie Hilhort transforin is woal type (1, 1).

Theorems. Lot (X, X, m) denoto & complete nonatomic probability
gpace, and 7 an ergodic measure preserving invertible point transformation
from X onto itsell, For B e X, with 0 <2 m(B) << 1 and a point », ¢onsider
the orbit, w, Tw, T, ... Following this orbit wo will enter and leave
the set B infinitely often, In the following we will be interested in various
measures of the distance from the point » to the set B.

A natural measure is the recurrence time, defined by

~fint {n:> 0] "0 e B}, w@eb,

(@) =y o¢B.

This function has hoen previously studied by Kae [67] and Blum and
Rosenblabt |1 Xae has shown dhat [wglly == L (B), and Blun and
Rosenblntiti have studied the highor moments,

A gecond measure, reladod to the reeuvrence time, s defined by

w(®) -+ ind{n = 0] T""w e B}.

Tt i not hard o see that = (@) may fail to be in LX), In fact v () e L'(X)
if and ouly it »,(w) has a finite second moment,

Both of the ubove measuroments are local in the sense that after
a return to B, thoy fail to observe the remainder of the orbit. However,
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to study certain operators, such as the ergodic Hilbert transform [see
Section 37, a meagure of distance which looks at the entire orbit mmst
be uged. With this in mind we define a distance function I (%) by

e (T
Iw) = ) '(7?2"2
Ie=1

Note that if ¢ is bounded, then I(x) is bounded, and if = growy large
carly in the orbit, then I (w) is laxge, The function I'(z) also has the prop-
orby that it looks at the entire (positive) orbit. A very long excersion
from the set B late in the orbit would be detected by o large I (%), Infui-
tively I(z) is a measure of the average length of time spent outside the
set B.

Thig funetion can be studied Dy veplaeing I(z) by the operator
I(f)(z) defined by

o g £
I( f) ((b‘) = E _T..(_-, ,l:‘i)aé_'( 3" )_
Tows1

The original problem is then the study of I(x,.)(#) since xm(l”‘“m) w ()
if and only if 7(T%x) = 0, where yx () is the characteristic function of 4,
taking the valne 1 for @ e 4 and 0 for x ¢ 4.

We can also consider

hiad ATk ) £ T
L = Y S
=1

This operator should be compared with the classical Marcinkicwicz Integral

defined by

S W)
[ e

Ja{f)(w) =

where &(y) is the distance from y to a fixed st B.

Following the idea used by Zygmund [8], we modify T, (f) and consider

> T (TEm) {1
L) = ) S
which coincideés with I,(f)(x) for all & e B. The advantage of Ij(f) over
I,(f) is that I3 (f) will be in LYX) for fe LY(X) while 1,(f) may fail to
be in L' (X) even for f e L (X). In fact we can prove the following theorem :
TaBoREN 1.1 If fe L*(X), 1< p < oo, then I3(f) e L? and [I5(),
< Oap 1

icm°®
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In refercnee o the original broblem, this says that

[ NP 1, (2R 1y
i e < [ e
X

or it wo integrate only over the set

(%) [

it

B, then we have

)
\T (W) o
T e < a6,m(B°).

ed
o),

This estimato 18 good if B iy large, and in which case it sa that

of the points in the large set B ave elogo o it with the distan'ce gliot'& KIHO%
IMowaover, it B has sinall ) neasure, the estimate (%) )

gince we are integrating only over a small

ation with the following resuls.

Trmorwm 1.2, 1

. seems rather large,
set. We can improve the gitu-

or all 4> 0, there emists a constant 0, such that

. \m’ TA(TII:',») .
)2 “yiEr 0 < 0,m(B) (L —logm (B)).

This vesult .iﬁ the best possible in the sense that as 2 function of B, the
berm 1 ~logm (B) cannot be replaced by a more slowly growing func’tion.
Proofs. Lo prove the above theorems we begin with two simple

but important lemmas. In this section, ¢ and ¢, denote constants, not
necessarily the samo from line to line. ’

Lawma 1.3, For any positive wnteger O, we hawe

1 OMf(Tha)
oy g S (),
Jew

where
L\
(%) F*() == sup .;T; IF ()]
weh ferar L

) Prood. Wo split the sum into two Pleces, getting separate estimatoes
for each pioco. For the Livst picce we have

4 Ap ok 2 £k,
VST N ()
,:,;1 ot . i = ,“:1 3 - f*(w).
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‘“For the second piece we sum by parts, yielding

ST X FIT0) _ N iy S L
< > e < 3 60

i =5 =6 Nk
_7'_1
<4n Dy D5
fomd
31 né*
<oﬂf*(w)z < ()
n=04

TEmMA 1.4. Lot feL?(n) and gelf(e), with Lip-+1g =1, and
1< p < oo, then '

© 2q ik Tk
f( 3 %%) g(@) @ < o Ifl, gl
X k=1

Proof. For f and g as above, and using Lemma 1.4, we have

w A ke % ) 70 7::
(T m) f(Tw) HTa)f(Ta)
Xf i~ m g! k1+i.+1‘1.1/1 TFu ) g(m)dm
S P@fe)
h g;xf B 1+z( a) g(I™"x)dw
2)g(T*a)
f f(m kl+l+11+z(m) dx

f Fla)g* @)@ < Il lg"l, < o [, gl

The last step can be made because the maximal function (xx) is & bounded
operation from LY(X) to L#(X), 1< g < oo.
Proot of Theorem 1.1. By tho above lemma, it follows that the
operator
Tk )
Hy(f)(w) = 701" |~1“’1 Tlr,,)

is bounded on I?, 1 < p < oo. Sinee 7(T"2) < k4 v(v) and consequently

l+’*(T" < 0,1[701""‘4—‘:1"'}“(00] there exist constants o, and ¢, such that
e I3 () (m ) < Hy () (#) < 615 (f) (). The fact that H, is I# bounded, and
the above inequality implies I} 1s I* bounded, 1< p < .
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Proof of Theorem 1.2, Proceeding as in the proof of Lemma 1.4
we have: -

_TI
flx d”—fXB Ia(’fdb=fx \—1771u)‘dw
=1

"% . 3 i ki —%
j A5 (@) 1711—;.;(') (lmmz j (T m)T(

To==l Js.
1 xp(T ™ w) v ()
an 714» ) 2.

However, the sum does not start until g, (T~ *2) 7 0; i.e., until 7% e B.

The first & for which this iy true iy 7(x). OOnsequently the integrand
becomes

- Qi

H[

TR !

A—J
= o{t)

but by the proof of Lemma 1.4 this is less than y%(«), the maximal function
of xp(w). We now have

[1wa<e [B@io<e [ mpimw>sa
B X 0

m(B) 1
<of m {3 (%) > 2} dA-+o Jm{m]x;(m»z}ou
0 m(B)

1

1
< em(B) o f_f sl d

m(B)
<% om () - om (B) ['log'i ~Tlogm (B)] = em(B)[L —logm(B)].

To see that the estimate in Theorem 1.2 eanmot bo impr oved, con-
sider a very tall Rokhlin tower of height N. Let B be the Dhase of the

tower, then for @ e B, I (w) - 4.\,: S 5o« Thos I(w) = logm (B) for w € B.

Integrating ovor B, wo got f I(mydn = —m(B)logm(B) since N = 1/m(B).
i

A similar argument also shows that if the function

56
T (%) == 11@__“;)
T"'ll k2
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is replaced by
3 (T )
"“%2'»73'”7 ’
=1

this function fails to satisfy any inequality of the above type; 111 fact,
the integral of this function over the set B, can be oo, for any’ e > 0.

Higher dimensional results, Theorem 1.1 can bo extonded to
higher dimensions. In particular, let § and T' be two non~commuting,
measure preserving, point trangformations mapping the space X onto
itself. For a given set B, define

() = inf{(m?+n2)"* | 8" » e B}.

The analog of the operator I'(f) () is the operator

0

VI o) (T )

* —
Hl(f)(m) - ;:1755‘14 (kzﬂ-jz)alz —1‘124_;,(-,[,]0}5{:,”) .
TrmoreM 2.1. For f e LP(X), 1 < p < oo; the operator H3(f) € L? and
IE* ()l < eplifllp

Proof. The proof is essentially the same as the proof of Theorem 1.1.
The required maximal function is defined by

s ,,,>0”M Z Z S o).

fH@) = sup
I=0 =m0

This maximal function has been shown (by Zygmund [7]) to be bounded
on L?(X), 1 <p < co. Integrating with respect to g e L?(X), we have

[ B3 (p@g(@)d0 < o, [ £@)g*(@) 8 <alflllg*le < o5 gl

Taking the sup over all- ¢ e I*(X) with |g|, =1 completes the proof.

The ergodic Hilbert transform. Asg an application of thiy distance
funetion, consider the ergodic Hilbert transform defined by

- (1%
fay = > I
ey

Thig transform was introduced by Cotlar [4] in 1955, and hasg since been
gtudied by Calderén [2], Coifman and Weiss [3], and others, The first
question is, does f(x) exist for f e L?(X)? The usual proofs use the fact

icm
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that the classical Hilbert transform, defined by

Jlz) ==lim

im [+ [ Ao

is weak type (1,1) and strong type (p, p). The classical results and
a transference argument imply the same results in the ergodic theory
setting. However, the results of Theoreny 1.1 can be used to give a divect
proof that the ergodic Yilbert franstorm is weak type (1, 1).

As usual, the first step iy & decomposition of f e I*(X) into a sum:

f(@) = g(w)+b(@)

where g is in L#(X) and b is supported on 2 small set. This is just the
crgodic analog of the Calderén—4ygmund deeomposition. This analog is
discussed in [5]. In this section we need to use a. two-sided maximal
funiction detined by

W

\‘ If(m)l.

1
5= GO e

e
J (@) = su CESw=

Using the notation of [5], welet {w] (@) < l} be the base of the Kakutani
construction. The function by is supported on the column C; and is obtained
from f by subtracting off the mean value. More precisely we define

9-1
fo) -3 N ke, weo,
fomm1

0, clsewhere

by(o) =

where o* is the first point in the sequence T-'x, Tz, ..
the bage. The function b is defined by

. which lieg in

b(@) == \ by (@)

and ¢ is definoed by
g(@) == f(@) b (a).

As in the clagsicnl ewse g(w) iy in LA(X) and L°(X), with |glle, < OA. For
this picee wo need to know that [ is strong type (2, 2). This ig Cotlar’s
rogult [4] using his thoory of quasiorthogonal operators. The proof is
exactly the same in the ergodie theory setting as in the classical setting.

Tor the funetions b, we need to work harder. In the classical case
the funetion ¥, iy gapported on an interval I;. Hstimates are nceded for
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the expression

[y,

]

As y varies from —oo to co, we pass through I, exactly once. In our
case we gstudy

1 by (Tw)
.

Je=—00
Te#0

As % varies from —oo to co we pags through the support 01 b; not onco
but infinitely often. As usual, we need an estimate of m {z| bx) > A} De-
note by ¢} the column 0 exp'unded 3 times; i.e., Of = I~U=NQ,u QU I ¢,

Sinee m{(J 0f} < 7 I£1lz, it is enough to study m{w e (U Of)°| b(m) > A
g i
By Chebyshev we have

.

. 1 .
61 mipe (U bo>4<y [ bl
oy
1 3 b(T*s) - xgj T" T"m)
<3 [] S e 3L (| 5,
(UU ) kl:;e_om i W Cj In;;ooo

Using the mean value property of b, we can subtract off an appropriate
constant each time the sequence {T"a,} Dasses through the column C;.
Messy but strmghtforward arguments show that .

51 XOj(.’l”‘w)b(T"w) < = rj(T”m)‘xaj(T"m)
—_-—_.J k 1 Ic=-2°c T o
0 k0
where 7;(») is the distance from z to the set (OF). If we split the sum
into 2 pieces, a sum with % > 0 and a sum with & < 0, then we can use
the estimates obtained in Theorem 1.1 on each piece. Oonﬂequontly
T i
N —~—(—£—l—11)7:iﬁj (—g«~)~ do << 20m (Cy).

*o =00
(0 "5

From the above we get that

m{we(UO}")°|5>z} > 2em (0 A f”l

The last step follows from Theorem (2.1) of [5]. Combining the regults
on g+b we get that f is weak type (1,1).

(U
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