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Abstract. We investigate the continuity of the Schur multiplication on the
matrix algebras I”®,17 and on the tensor algebras I?@.J7®,I".

0. Introduction and notation. The central part of this article is devoted.
to a study of the so-called Schur multiplication of matrices and. tensors.
One of our main tools will be a probabilistic estimate for the norms of
tensors whose coefficients are random d4-1’s. This estimate generalises
work of Bennett, Goodman and Newman [2], Carl, Maurey and Puhl [5]
and Varopoulos [23]. In the final section, we show that the r-absolutely
summing and r-nuclear norms of most random matrices behave like those
of the Littlewood matrices considered by Pietsch [17].

‘We ghall work with many rather recent results on Banach algebras,
and 8o, in-order to make the paper reasonably intelligible, we give a brief
survey of the definitions and theorems needed later.

For us, a normed algebra is a normed space 4 equipped with a conti-
nuous (associative) multiplication. In other words, there is some positive
congtant K such that

(1) eyl < Klielllyl  Veo,yed.

‘We do not necessarily suppose that X is equal to 1. In the sequel, we shall
abusively use the letiter K to denote a constant independent of the dimen-
gion of any normed space with which it is associated. The value of K may
change from line to line.

We shall be especially interested in algebras derived from two im-
portant classes of Banach algebras.

1

(I) A uniform algebra is a closed subalgebra of the usual Banach
algebra ¢/(X) of continuous functions on some compact Hausdorif space X

g

It does not necessarily have an Eﬁtl&g an/ '
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(II) An operator algebra is a Banach algebra multiplicatively homeo-
morphic with a closed subalgebra of L(H), the usual Banach algebra
of bounded linear operators on some complex Hilbert space H. We do not
postulate that it is closed under involution.

A. Banach algebra homeomorphic with a quotient algebra of a uni-
form algebra is called a @-algebra. It is an interesting and non-trivial
fact that Q-algebras are operator algebras [25] and the same method
shows that quotient algebras of operator algebras are operator algebras.
Q-algebras were studied extensively by Davie [7] and Varopoulos [22], [23],
and a useful theorem is

DAVIE'S CRITERION [7]. A commutative Banach algebra is a Q-algebra
if and only if there is some positive K such that

X _a(k)wkl...‘waHQK

J
”a’”zl(N)é L BI)
1<ky, o k<N

for all finite sequences ;..
and later, k = (kyy-..., kj).)

Here, & denotes the (completed) injective tensor product, as deﬁned
in [10], for example. Later, ®, will be used to denote the non-completed
injective tensor product. For 1 < p < oo, we write I?(X) for the space oy
equipped with the norm .

. @y in ball(4d) and for all tensors a. (Here,

. 1
el = [[(2(1), s 2oy = 2 em))”,

with the usual convention when p is infinite. The space of all p-summable
sequences is written 17, and it will be convenient to use the notation b®
(or B*(N)) for the unit ball of I? (or lp(N)). If a is a tensor, we shall often
use the abbreviation

”a'”p,q,._.,r = ”a”lpélq§...élr'

We shall always write p’ = p/(p — 1) for the index conjugate to p.

It follows from Grothendieck’s inequality that all operator algebras
satisfy Davie’s criterion for homogeneous polynomials of degree two.
Banach algebras with this property will be referred to as Hilbertian algebras.

The multiplication on a Banach algebra A may be considered as a
linear mapping M: A QA — A, and inequality (1) amounts to saying
that M is continuous when 4 ® A is given the projective norm = [10].

-It is interesting to consider more restrictive situations.

DzrinrioN. The Banach algebra 4 is said to be an injective algebra
if M is continuouy from 4 ®,4 to A.

. Varopoulos ' [22] proved that commutative.injective algebras are
@-algebras. This result was extended by Charpentier [6], but, to describe
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hig theorem, it is simpler to change our point of view. If ¢ is in 4’, the
dual of 4, then we may define a linear mapping §: 4 - 4’ by

B @), 4> = <o, 5y> Ym,‘y ed.

DerinirIoN. The Banach algebra 4 is said to be a p-summing algebra,
if there is a positive constant K such that, for every ¢ in 4', the mapping P
is p-summing and satisfies #,(§) < K[[(p”

‘We refer to [14] for the deﬁnmon and basic properties of p summing
operators. Using the concepts of [13], one could. define (p, q,r
algebras in. a similar way.

Charpentier’s result is that a commutative l-summing algebra is
a Q-algebra. A related theorem states that a 2- -summing algebra is always
an operator algebra [21].

Many of the positive results in this paper will depend on some little-
known inequalities due to Hardy and Littlewood. The key to the proof
of these inequalities was the following lemma, which is a simple con-
sequence of the definition of |||, , and Khintchin’s inequality.

LevmA 0 (see [11]). If 1< p, ¢

summmg

< oo, then

o[ S St mat Y o) < e,

w
and

s {( 3( 3 tack, m)y(m)ﬁj”’z)”’ﬂ y b7} < Kl

HARDY-LITTLEWOOD INEQUALITIES [11]. Let 1/p+1/g> 1, aml firz a
in PRI Define 1ju = 1/p+1/g—1.
(1) If 1<p,q<2, then

({3 1t ;™)™ < al,

%
and

(Z(Z{ak m)| )m)

m

Kllall

09"

(ii) We have ‘
(> 1ate, mi™ < Knanp "

k,m
then

( 3 1a(ke, m)"™ <

ke, m

and if 1/p+1jg> 32,
Klall,, g

where2 (v = 1/p+1/g—1/2.
Note that the index v is at most 2.
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1. A probabilistic estimate for the norms of random temsors. The
main theorem of this section is a probabilistic estimate for l]thl‘_"_p o
where t(ky, ..., k;) is a random tensor of --1’s. This will enable us to
prove negative results about the Schur multiplication in matrix and tensor
algebras.

TEHEOREM 1.1. Let {8(Fy, ..., ky): 1< &y,
dent family of random variables such that

prob {t(ky, ..., ky) =1} =prob {{(ky,..., k) = —1} = %.
Define

cery by < N} be an indepen-

=12 Jor 1<p
flp) = 0 for 2<p

Then, for all 0 << & < 1 and for all positive integers N, we have
prob {[itl,...p, < EN®Y > 8,

where K is a constant independent of N and

max{1/pyy ooy 1ps} of 2<Dey .0y D << 00,
(2) a(p) = o
12+ D' ;) if mot.
=

-Remark. An inspection of the proof of Theorem 1.1 will show that
an identical result holds for symmetric random tensors.

The technique we use was developed by Varopoulos [23], and resembles
the proof of the Kahane-Salem-Zygmund Theorem [12]. Varopoulos
considered the case J = 3, p; = p, = p; = 2, and he obtained a slightly
weaker result than Theorem 1.1. He used his theorem to show the von
Neumann inequality fails for polynomials in several commuting contrac-
tions on a complex Hilbert space. Theorem 1.1 may be applied to prove
rather more than this in a much simpler way [15].

In the case J = 2, similar estimates have also been proved, inde-
pendently of Varopoulos, by Bennett, Goodman and Newman [2] and by
Carly, Maurey and Puhl [5]. In [2], certain operator ideals are identified
by showing that if ¢ = ({(m,n)} is an M x N matrix whose entries are
mean zero independent random variables satisfying [t(m, n)] < 1 for all m
and n, then

(%) E {tlhpangemt < K-max {7, N} (2<p< o).

Here, E denofes mathematical expectation. Our theorem would also
work under the above hypotheses on the coefficients of the tensor. In [5],
the authors considered matrices ¢ = (t(m , 1)) Whose entries were inde-
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pendent random variables such that
prodb {t(m, n) =1} = prob {t(m, n) = —1} = 1,

and they found a better proof of the estimate (%) in this special case
In [15], Prop. 5, we use the proof of Theorem 1.1 to show that

E{|tly,,....p,} < EN®,
where a(p) is defined by formula (2).
Theorem 1.1 is, in a rather strong sense, best possible.

THEEOREM 1.2. If J is a positive integer, and if a(p) is defined by formula
(2), then
..., = EN®

for all tensors (k) = +£1 A< ky, ..., by < N). Here, K> 0 is a constant
independent of N.

Proof of Theorem 1.1. If 2;eb” (1 <j<J), we define

T (@) oy 87) = ) 8(R)@y(or) - 35(Ky).

k

elements @; of the real unit ball of ZP” (V) (A <j< ). It is clear that
1ty < 2J”]ﬂ“p1,‘..,p1‘
Observe that if ¢ < 1, then for each 1 <{j < J, the real unit ball of
lp} (¥N) may be covered by M < ((2+2)/e)" real balls of radius &, whose

centres ¢, ; (1< m < M) also lie in the real unit ball of £ (N). If we fix a;

in the real unit ball of 1”7 (), we can thus choose ¢, ; such that

ij_cmj,j”< e (A<j<d).
By using the appropriate generalisation of the identity

wy—ab = (g—a)(y—b)+aly—b)+(v—a)b,
we find that :

1T (@1, evy @5) = T (15 v vy Oy, )| < Kellillly, . my0
where K > 1 depends only on J. Now we define
floy,...ny = SUR{T (Cyy1y - e Gy, )1}
where the supremum is taken over all possible choices of Conyg il<m< M,
1<j<J). Setting ¢ = 12K, we find that

(3) HEH gy S 21y, ip e
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Our next objective is to show that if ; is in the real unit ball of 1" (V)
1<j<J), then

(4) prob {{T(@,, ..., z5)| = 2} < 2exp(— 2 N'~2(P)[9)

provided that not all the p; are greater than 2.
To see this, note that, on taking expectations, we have

Elexp (AT (v, ..., %))} = n cosh Az, (ky) ... @5 ()
. . 13

< exp (8 Y (@:(1) ... @, (5,)(2) = exp (s} ... |, [/2)
k

< exp (L2 N2®P)-119),
since

lla; I, << N7 jlmj”p, < N,
f)
Chebyshev’s inequality now yields that

prob {|T(a, ..., 4,)| > 2} < 2exp(—ha-+ PLNS@-1)

for all positive 1. Setting 12 = 2N'~2*®), we have proved (4).
Consequently :

Prob {[tlp,,....p, > 27+ 2} < prob{lifilll,, . .p, = 22}
<prob{ltl,,. =2 (by (3))
L (1 + 4K, 2exp(— 2 N -20®) 2y,

Py

(To obtain the last inequality, replace the probability of the supremum
by the sum of the probabilities, and use (4).) On setting 22 = N?*®) 4.

.Iog((1+4K) 1 — 6)), we find the conclusion of the theorem, except in
the case where 2 << py, ..., 9, < oo.

To consider this final case, it is no loss of generality to suppose that

Py =min(p;, ..., p)). Noting that [fll., . =1, we may use the
complex interpolation method to deduce that

Hence

and the conclusion follows at once.
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Proof of Theorem 1.2. This is obvious if J = 1.
(@) J =2.

Wyyry =500 ]| X 100, ka(ky(a]: Gt y <b”)

ky, ko

>sup | 3, k)alk): o e 1< Iy < N}
1 :

> sup ( 2 &%y, 71;2)11’1)1/”1 = N,
ko Ry . .

Similarly, [[thy,,n, = NUrs, and so the theorem is proved, except in the
case where 1 <2!71 , by < 2. However, under these conditions, the J;esult
is a simple consequence of Lemma 0. Note first that, since by by)” =1
for all %, and %,, we have :

“tg”p py = NYm+1lpg
1702

Then, applying the definition of the norm §. [, 5, and the duality between
I?(N) and (W), it follows that ' . .

sty — sup {| 37 1(y, Bl (b)y ()]s @ € bty ed’)
B

= sup| 3] 3 s, Boalie)f2] |
= kg Ty
< sgp [AZ' ( ; 1108 kg)z\)pzlz . ( %' [t (kyy ko) @ (ky) 12)102”‘]1,1,2

— N .Sflp [Z ( Z ]t(k.l, ka)w(k1)12)10212]1m2

ky o Ky

< KNPty p,

We deduce at once that [t ,, > K NYpatipe—1i2,

(o) J > 2. Here, we work inductively. We suppose that tht? rem'llt
is known for tensors of order less than J and we prove the required in-
equality for a tensor (t(%y, ..., E 7)) of order J. ' ]

(i) We show that if at least one of the indices is > 2, then the esti-
mate is an immediate consequence of the inductive hypothesis. Suppose
without loss of generality that p, > 2 is the largest index. Define tensors
T, (A<k<N)by

(by Lemma 0).

Ty (Foay oy by) =1y oy oy Bg):
Then =

> ENvap)) = K NoPL- 2D

”t”p‘,..,,p‘y > ”t”oo,pg,...,y)‘, = Silp “Tk”pz,...,p., =

by hypothesis.
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(ii) The remaining cage is where 1< plk, ey Py < 2. To deal with
this, it is convenient to establisth a generalisation of Lemma 0. Notice

that, it o; € 57 (1 <j < J), then
D3ty ey Baa(B) - ) < WL,

Ty kg euky

Replacing «;(%;) by wj(lcj)r,zj(s]-), where 7, denotes the kth Racdemacher
function, and integrating with respect to the 8’8, we obtain

2T Y wmek) . oy, (sy) ooty (8) }”ldsz...dst (e
ky

D300y
ko eseskog

Now the multidimensional Khintehin inequality states that the L? norm
of a Rademacher swm is equivalent to the Z* norm. Using the orthonor-
mality of the Rademacher functions, we deduce that

212 wwe ) .o )P < B, -
ky  kgyeoky
From this point, we proceed just as in the case J = 2, and we find that
Nkt lor = gr, oy SERV-DR
which is simply a restatement of the result we wish to prove.

2. The Schur multiplication in matrix and tensor algebras. It is well

known that 1” (1< p< o) is a Banach algebra - under the pointwise
multiplication defined by

[@(n)).(y(m) = [m(n)y(n))

Varopoulos [22] proved the stronger result that 12 (1 < P < o0) is in fact
a @-algebra. The pointwise multiplication on 17 and ¢ 1I<p,q< )
may be used to define the Schur multiplication on I? ®,19. This is generated
by :

Vao,yel?,

(. @Y1) (#: ®Ys) = 2,0, @Y1 Y, le, ®p €l Vf’/u Yys €19,

In terms of matrices, this multiplication is given by

(a(m, n))-(b(m, n)) = (a(m, n)b(m, n))  Va,bel?®,nH.

Schur [20] proved that I* ®,1* is a normed algebra, and this implies, by
continuity, that I’ ©1* is a Banach algebra. Varopoulog [23] went further
to show that I®I is an operator algebra. He also asked whether I I2
is a @-algebra. Although we cannot answer this question, we are able
o prove results on the structure of * ®1%, and, more generally, of 17 § 17
(1< p, g < oo). The starting point is
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ProposITION 2.1, P @12 is a normed algebra for all 1< p, ¢ << oo.

Proof. (a) 1/p+1/¢<<1. This is the elementary case, and we will
show that the multiplication has norm < 1. Take a and b in the unit ball
of 1?®,% Then

(8) sup( dam, mP)*<1 and  sup (Y 1b(m, w)) " <1,
‘We have
labl,, = sup{( X 3 atm, mb(m, myym)P"|*: y b7}

m

<sup[ 3 ( X atm, my )" 3 b, myige]

4 m n

<sup| 3'( 3 la(m, myym)p)ee]
v n m

(using (6) and Minkowski’s inequality (since ¢'<p))
= sup [2 ly (n)I¥ ( Z ia(m,n)|“)q'/p]1la’ <1 (using (5) again).
v n m
(b) 1/p+1/g > 1. Here, we are not able to prove that the multipli-

cation ig a contraction. We may, without loss of generality, suppose that
¢ < 2. Then, if a and b are in ball(I* ® [?), we have

lbll,, = sup {( Y] 3} alm, m)b(m, myy(m)|?): y eb)

<sup[ 3'( X ta(m, myy ) )** . 3 om, m |
9\ /2 1/p , s < 2)
<sup[ Y Yiatm, my )" vy (), since g<

<K (by Lemma 0).

Going on from here, we have the much more precise
THEOREM 2.2, P QW is a Hilbertian algebra for all 1< p, g < oo.

Proof. Take ay, ..., a; in the unit ball of I? ®I% Then we must
show that, for some positive X, we have

| 3¢, e, , < Klithh,s
%,

for all matrices (£(¢,7): 1<4,j<J). Fix 2 €b” and y eb? and define

Ay(m, n) = aylm, mz(mPPym?  1<j<J).
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(The precise meaning of m(m)"“ will be unimportant.) Then

'ZIA m, n) Za, m, m)a;(m, n) o (m )y ()]
m,n
<K||ajl|],,quaj||p,q (by Proposition 2.1)

< K.

Gonsequentlv, A; = (4;(m, n)) may be considered as an element of
P(Z" x Z") of norm bounded by EY¥? (1< j < J). Tt follows from Grothen-
dieck’s inequality that

43, §) ag(m, m)ay(m, w)w(m ﬂ(%) < KKt

DI, n
and, since this is true for all v & 3” and vy e b7, the proof is complete.
Using Blei’s generalisation [3] of Gro’rhendmck’s inequality, and the
Hardy-Littlewood inequalities, the same process allows us to determine
regions where Davie’s criterion is satisfied for homogeneous polynomials
of degree greater than two. As an example, we state without proof
PROPOSITION 2.3. I @1 satisfies Davie's eriterion for polynomials of
degree 3 if 1< p,q<2 and 2/p+1/g=2 or 1p+2/¢>2

This corresponds to the shaded region in the diagram below.

Ly Q=

rof=
T
]

0

NS
-

1
P
One way of showing that a commutative Banach algebra is a @Q-al-
gebra is to prove that it is a 1-summing algebra:

THEOREM 2.4. 1P Q1% is a 1-summing algebm if and only if
(a) 1/p+1/g=3/2
or
M)1<p<2, g=oc0,0rp = 1<g<2 orp =q = o0,
. ? @1¢ is thus a l-summing algebra in the heavily shaded regions of
the following diagram, and only in those regions.
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o Q-

1 1

p

We shall use several lemmas to prove this theorem.

Leva 2.5. Let A be an injective algebra, let R be a commutative Banach
algebra, and suppose that A @R has the induced multiplication.

i) If R is a 1-summing algebra, then sois A @ R.

(ii) If R is o Q-algebra, then so is AQR. -

The extremal case (b) of Theorem 2.4 follows at once from this lemma
if we note that I and I are injective algebras [22] and that I’ (1<p<2)
is a 1-summing algebra [6]. We remark in [16] that I? is not injective for
» F1lor co.

Proof of Lemma 2.5. Varopoulos [24] has shown that 4 SR is
indeed a Banach algebra. We only propose to prove part (i). The inter-
ested reader will have no difficulty in completing part (ii). It is enough to
find some positive K such that, if @, ..., 2y in 4 ® R satisty

sup{ 3 (<@, F3]: F eball (4 @R))} <1

[N

0

and if ¥4, ..., ¥, are in ball(4 ®,R), then || ani'lnﬂ <K

Suppose that 2 @y @7y and Y, = Z’ b, ®8,;. Then

“anq/nﬂ = sup{” 2 <ambn_77 u’)'rm nj
<K sup“fz 2<am, OYSE (Z CBug) ) 8,5) (0, )|

is a probability measure on ball(4') x ba.ll( ) [22])
<Hsup { 3| 3 sy 0>y s Il <1, Il < 1
< N)

[ w & ball (A’ )}

(where 2,

(since R is a 1-summing algebra and jly, |l <
<K
(by the hypothesis on the #,'8).

1(d<sn
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To decide when 17 @1 is not a 1-summing algebra, we shall need to
use the probabilistic estimates of Section 1, and

LeMmA 2.6. 17 (2 < p < o) is not a 1-summing algebra.
in conjunction with

LemMMA 2.7. Let A and B be Banach algebras with a non-trivial mulii-
plication. Suppose that A @B is an r-summing algebra under the induced
multiplication. Then A and B must both be r-summing algebras.

Lemma 2.6 incidentally answers a question in [6]. The proof, as
we pointed out in [16], is a simplo reinterpretation of Garling’s result [8]
that, for 2 < p < .co, the diagonal mapping

P15 (3(n) > (d(n)z(n))
is 1-summing if and only if

D lam) (L +|log (a(m))]) < oo

Proof of Lemma 2.7. It will be enough to show that 4 is an
r-summing algebra. Accordingly, fix b and f of norm 1 in B such that
bf #0, and choose @, =f,®bc A QB and ¥, =g, €ball(4&B).
There iy some b’ eball(B') such that (bf,d'> # 0. Take a' eball(4d’)
and write ¥ = o’ @b’. Since

(X0 @) < Esup {( 3 1<an, 651)": 160uszy <1)
Ksup{(2|<fma><b B el

<Esup{( Y 1<h, ad0)": o<1},

1, Ig1<1}

we must have
(X K B < Ko {3 1ctuard " <2}
Consequently, as <b/3, by %0,

( ; KFagar a7)" < Ksup {3 1K, >} i< 1)

This is true for all f, in A and for all ¢, in ball(4), so we conclude that A
is an r-summing algebra.

We are now in a position to give the
Proof of Theorem 2.4.
(i) Positive results. We have already disposed of case (b), 8o let us
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take 1/p+1/¢ > 3/2. We must show that, for some positive K,

® sup{le by(m, m)a(m

for every finite sequence a,, ...

m)y(n) ': reb”, y eb"'}gK
, 6y in P @V satistying

J
) sup {Z‘IZaj(m,w)m(m)y(n)|: © eb?, yebq'}< 1
i=1 m,n
and for every finite sequence bl, ..., by in ball(?? ).
If we replace #(m) and y(n) in (7) by @(m)r,, (1) and y(n)r, ), Whgre
7, (t) and 7,(¢") are Rademacher functions, then we may integrate in-
equality (7), and then use Khintchin’s inequality to obtain

(8) sup 2(2'“ m, n)w(m

LY j=1 mn

for some constant K. On the other hand, the hypothesis that 1 /p +1/q > 3 /2
allows us to use the Hardy-Littlewood inequalities to deduce

Jy(m)P)" <K

© (> ym,mef*<E @<j<d).

m,n

It follows Arom (8) and (9) that
Sup ZIZa (m, n)b;(m, )z (m)y n)‘

< supZ‘( 2 la (m, )@ (m)y (n)* )112 (2 [b; (m,n)| )1/2 <K.
&Y g m,n

(ii) Negative results. Tf either 2 <p < oo or 2<g< oo then
TLemmas 2.6 and 2.7 yield that 1?®1 is not a l-summing algebra. We
therefore consider the case 1 <9, ¢< 2,1/p+1/g < 3/2. It follows f.r(')m (6)
that for 1® ®1? to be a l-summing a]gebra, there must be a positive K
(independent of ) for which
(10) llab 1, p,g < K llolly, 5, S0P {1B5llp, ¢}

= -K“a'“l,p,q”b“oc,p,q
for all ¥ and for all tensors a = (aj(m, n): 1<j,m,n<N) and b
= (h(m,n): L<j, m,n< N). However, Theorem 1.1 allows us to choose
a;(m,m) = by(m,n) = £1 such that

lall,p,, < KN+ 1Bl p,q <
Using the fact that a;(m, n)b;(m, n) =1, we find that

”ab Hl,p,q — N1+1/p+l/ﬂ .

1<j< N}

and E NYp+la-1)z
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Consequently, (10) can only be satisfied if
Ni+Up+1/g < KN2/o+elg—1)2

for every positive integer N. Since thi :
. § cannot
we have the required result. be true for 1/p+1/g < 3/2,

As?? (1< p< o) is a@-al ii
the following\ < 00) @-algebra, Lemma 2.5 (ii) enables us to deduco

'

COROLLARY T0 THEOREM 2.4, I? Q¢ 4§
o oM. 2.4, $ - ‘o g
or if either p or qis 1 or oco. z a Q-algebra if 1(p+1)q = 3/2,

Since every 2-summing algebra is an
; operato: P g
ted to. try to decide when I” ®1¢ has this prﬁpert; Fgslin, e aze gromp-

PROPOSITION 2.8. (a) ¥ @1 is & 2-summing algebra if 1/p+1)q > 3/2
= F

or &f either p or q is 1 or oo.
(b) ¥ QU is not & 2-summing algebra if 2 < p; q < o, or if

ljp+llg<3lz (1<p<2,1<g<2)
or

Ip—-1lg<12 (1<p<2,2<g< )
or

g—1/p <12 (2<p< 00,1 <g<2).

Diagra.mmabica.lly, we have the si ion below W,
situat i i
. - . 1 . The hite regions

s Q-

ol

o~

P
e e;;)r (;fl.l afla)catshe case 1/p+1/g>3/2 is covered by Theorem 2.4.
B A, o8 es are treated_ by observing that ¥ (1< p<< o) isa
o A;i' mgfhra, Ta,nd by proving the necessary analogue of Lemma 2.5
L s 1 he proof of Theorem 2.4, I 1% can only be a 2-sur ing
algebra if there is some positive K (independent of N ) for which T

by, p,q < K llotlly, p,q 1]l p,q
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for all tensors a = (a(j, m,n): 1<j,m,n<N) and b = (b(j,m,n):
1<j,m,n< N) and for all ¥N. However, by Theorem 1.1, we can take
a(j, m,n) =b(j,m,n) = +1 such that

N1/p+1/tz~llz (1<P<2, 1<q<2),
1<p<2, 2<g< ),
2<p < 0, 1<g<2),
@2<p< o0, 2<g< )

; 1p
||a“2,1],11 < K NI/(Z

Nl/‘l

and .
) K Fimrle-1E (1 <p <2, 1<¢<2),
Wblloo,p.0 < maxtiplia)  glsewhere.

Since we have |abllypq = N Upt1ie+1i2, the conclusion follows . at once.
Weremark that the same method shows thab 1* & 1*is not an r-summing
algebra for any 1<7 < oo .

The Schur multiplication on I @R UQ) (L<p,q,7< 0) is defined by
(alls, 1, 1) . (o, m, m)) = (alk, m; mb(R, My m)) Vo, b P Q,1UR,0.
An important step in Varopoulos’ proof of the existence of a commutative
operator algebrs which is not a Q-algebra was his theorem that P el
is not a normed algebra. We propose to give a much simplified proof of
this interesting fact in the course of an investigation of the general tensor

algebras I? @ ®,0. : :
The next proposition shows the interest of deciding when 1P &1% is
an r-summing algebra for general 7. " )
PrROPOSITION 2.9. P ®.1'Q,l" is o normed algebra if and only if ¥ QW
is an (r, ¥, r)-summing algebra. . )
COROLLARY. If W &W ds an r-summing algebra, then P QI QL s
a normed algebra. ‘ .
Proot of Propoéition 2.9. PS¢ is an (r, 7, r)-summing algebra.
it and only if there is some positive K for which

sup (2 (@), baoT)" < Hsup { PILCE W) sup PRICY o>

for all finite sequences a;, ..., ¢y and by, ..., by in P ®l% The supremsa

are taken over all g, u, 6 € ball (I ®17)'). :
However, this is equivalent to the existence of some positive K for

which
sup { ( 2 { Za,,b(k, m)b, (%, m)as(k)y(m)r)m: zeb?, ye bq'}
v kem

<x.owp| 3| X ek, maymf ] sup | 3] o6 mayy (m
EX% m i

~ n Ie,m

r]l]r
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for all finite rank tensors a = (a, (k, m): 1<k, m, n < N)and b = (b, (%, m):
1<k, m,n< N). This, in turn, is equivalent to

ablp,q,» < K llallg, g,0 10 ]lp, g,

for all finite rank tensors ¢ and b.

If one of the indices p, ¢ or 7 is 1 or oo, it is clear that I’ @1 ®,I"
is a normed algebra. Apart from these trivial cases, our positive results
may be summarised by the next two propositions.

PROPORITION 2.10. If 1/p-+1/q> 3/2, then PR Q1 is a normed
algebra for all 1 < r < oo.

By symmetry, the indices p, ¢ and » may be freely mterchanored in
Proposition 2.10.

ProposITION 2.11. If 1<p,q,7
PRMRI is a normed algebra.

Proof of Proposition 2.10. We suppose that flollp,q,» < 1 and
“b”p ¢r S 1. Since 1/p+1/g> 3/2, the Hardy-Littlewood inequalities
give

<2 and Ljp+1ljg+1jr= 2, then

(11) sup( 3 la(k, m, m)")" < K.
o km

On using Khintchin’s inequality, the hypothesis on b yields that
1 . .
(12) sup{(Z(Z (%, m, n)w(k)y(m)lz)m)”: s, y eb“}sK.

n Eym

It follows from (11) and (12) that

labily, g = sup(Z’Z a(k, m, n)b(k, m, n

r)l/r
n . km

suP[Z(Zlak m q“ﬂ) (Zlb &, m, n)a(k)y(m)| )7/2]1/7‘\K_.

‘We have to work a lititle harder to give the

Yoo (k)y (m)

Proof of Proposition 2.11. Suppose that llally, g, <
< 1. Using Khintchin’s inequality, we have

sup{(‘%_:(m'zn la(k, m, n)y(

1 and B,

1 " ,
m)z('n,)[z)p/z)lp: yeb?, ze b’} <K

and

sup{(%’(z

kyn

@k, my ma(k)a() ) 0 e 82, 2e vl<x.

e ©

icm
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Tix 2z b, and write 4 (k, m)

sup{( 3( 3 1408, mya(r
m k

= (Xla(%, m, n)z(n)P)*". Then

)m)llq: zeb

17'} < K
and

)Ig)p/z)llp D ye bq'} <EK.

sup{(;’( 2 |4 (%, Em)y(m

Setting 1/uy = 1/p+1/g—1, the arguments of Hardy and Littlewood
may be followed verbatim to give
[ 234, m
m k

[ D (3 Atk, mp)*" "<& and
k m

or, in other words,

[2 ( Z la(k, m, ?Z)z(n),z)usﬂ]l/us <x

k mn

2) “3/2]1/"3 <K,

and
[ (D 1k, m, memp) "™ < &.
m kam

A symmetric argument proves that, if y € b7, then
[ (3 1a, m, nyym) "] < &
k m,n
and

[ (2 1a@, m,mym) )" < &,
n kym

where 1/u, =1[p+1/r—1. Consequently, )
= sup{(Zl Za,(k, m, n)b(k, m, n)y(m)z(fn)r)l’p: yedb?, ze b"'}

<su [2( D) la(k, m, n)y (m)] )”/2 (Zlb(k m, n)z(%)lg)pﬂ]l/p

e k m,mn

< sup[ (314, m, myy(m)| )%/2]1/“2[2( D bk, my mz(m))

¥z k. mm mn,n
< K, oprovided that p/u,+p/uy =1
This lagt condition means that 1/p+1/g+1/r > 2.

Our final result in this section is

THEOREM 2.12. Let 1<p,q,r<2. Then PRV is a normed
algebra if and only if 1/p+1/g+1/r = 2.

27
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Proof. After Proposition 2.11, we need only show that, if 1/p+1/¢+
+1/r < 2, then I* ® 1 ®,l" is not a normed algebra. However, this follows
immediately from Theorem 1.1. For there is a tensor ¢ = (i(%,m, n):
1<k, m, n< N} such that

[t g, <
Pl is to be a normed algebra, we must have

.0 < E 1l 00 <

for some K independent of N. This can only be true if 1/p+1/g+1fr=2
The gsame method only yields incomplete results for other values

K NYptlg+lr=1

NUptUerir 182 K Np+2lat2fr—2

of p, ¢ and r. The diagrams below summarise our knowledge.
1 ' 1,
9 ]
1 1
3_1
TF 7 N
pa /' )\
4 7 N,
1 7 1L y e N\,
1) 2 e
z \\ /l S i
O
\\// , yd s
T \\\ //./
’ N, 7
L z 1
1 -1 1 1 1
0 H % r %— 0 T 7 7
l<r< 2 2< r< oo
1
g
1
1
2
0 1
T

P ®.17Q,l" is a normed algebra in the heavily shaded regions; it is
not a normed algebra in the lightly shaded regions; and the white regions
are areas of uncertainty.

icm°®
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It is perhaps interesting to note that the multiplication on 2 2 QM-
i, in a certain sense, badly mon-continuous. Indeed, if we consider the
product of (a(k,m,n): 1<k, m,n<N) and B, myn): 1<k, m,n
< ¥), we have

ladly,q,2 < KN ltlly, 2,2 11D 1l5,2,2 5
and this power of N is best possible.

3. Absolutely summing and nuclear norms of random matrices.
Let ¢ = ( (myn): L m,n< oo) be an infinite matrix, and write
for the NXN subma,tnx (tm, n): 1< m,n< N). We shall interpret iy
as an operator I*(N) — I¢(N) 1 < P,¢< oo), and for 1 <7 < co we shall
denote its r-summing norm by =, (45 p, ¢), its r-nuclear norm by ».(Ix; 2, q)
and it r-factorisable norm by y,(ty; p, q). See [17] and [19] for any
necessary definitions.

Let ¢ denote any one of the norms =,, », or 7. Then the asymptotic
behaviour of ¢(ty; p, ¢) as N tends to infinity may conveniently be de-
seribed by the following two quantities.

(a) The upper limit order A,(p; p, q) of the matrix t is defined to be

inf {u: @(ty; 0, @) < EN*,
and

(b) its Lower limit order 2,(p; p, q) is defined to be
sup {u: ¢(ty; P, q) = EN*}.

In these expressions, it is understood that the inequalities are to hold
for all positive integers ¥, and that & and K should be independent of N.

Clearly, we always have A(p;p,q) < 4{(p;p, ¢). Tt is interesting
to note that in the special case of the identity matrix I = (6(m, n)),
we have the stronger result that A;(¢; 9, ¢) = 4;(9;p, q) When ¢ is =,
orv, (L<p,q,r< oo). This is established implicitly in [9], [17] and [19],
where the value of A;(g; p, ¢) is calculated. For further resnlts, see [1].

The Littlewood matrices 4, are defined inductively on spaces of
dimension 2" by .

A, An)

4= 1 d 4
= an 0 = .
S V.| 4, —4,

Making the obvious modifications needed in the definitions of the upper
and lower limit orders, Pietsch showed implicitly in [17] that A,(p; 2, q)
= A4(p; p, ) when ¢ is , or », (1 < » < o), and he evaluated 4, (m,; p, q)
and A,4(v.; q,p), except in the region 2 < p, g <7< co. The referee
has shown how to use the results of [9] and [19] to fill this gap- ‘We give
an analogue of his proof in Lemma 3.5 below.

n
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The object of this section is to observe that for “most” matrices ¢
with coefficients 4-1, the asymptotic behaviour of =.(ty;p,¢q) and
. (ty3 2, q) follows that of the Littlewood matrices.

Let t = (t(m, n):Lm,n< oo) be afamily of independent random
variables such that

prob {i(m, n) = 1} = prob {i(m,n) = —1} = .
Write ¢ for any one of the norms =, and », (1 < 7 < o0). Then we modify
definitions (a) and (b) above:

(a)" The upper limit order A,(p; p, g) is the infimum of those indices p
with the property that, for all 0 < 8 < 1, there exists a positive constant I,
independent of N, such that

prob{p(ty; p, 9) < KN“} = 4.

(b)’ The lower limit order A, (p; p, q) is the supremum of those indices p
with the property that, for all 0 < 6 < 1, there exists a positive constant k,
independent of N, such that

Prob {p(tx; p, q) = kN*} = 6.

In each of the following propositions, ¢ denotes the random matrix
defined above.

ProrositIoN 3.1. If 1 < p, ¢, ¥ < oo, then
Wi P @) = Al py ) and

Moreover, Ay(m;p,q) =2—4,(%;9,p).
The values are given in the next three propositions.

(732, @) = Ai(252,9)-

ProrosrrioN 3.2. If 1 <r < 2, then Ay(n,; p, q) is
(1) 1/p'+1/2 for 1<p<2, 2K ¢ 005

(i) 1/p'+1lg for 1<p<r, 1<9<2;

(iif) 1/p'+1/q for 2< g<p <1’

(iv) L for 2<p<<g<r’;

(v) L for 2<p << o0, ¥ < g << o0 and

(Vi) 1/g+1/r for ¥’ <p< o0, L<g<r".

ProPOSITION 3.3. If 2 <7 < oo, then Ay(m,; p, q) is
(1) 1p'+1/g for L<p<2, 1<

(i) L/p'+1fr for 1< p <1y r<g< oo;

(i) [/p"+1/r) (L2 ~1/0)+1/g—1/1](1(2—=1/r)"" for 2 < p, g< 7

(iv) 1/2+1]g for 2 <p< o0, 1< g<K2; and

(v) 1 for r<p<< o0, 2<<g< o0,

icm
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PROPORITION 3.4. A;(m.; D, q) is
D) 1/p'+1/g—1/2 for 2<p< o0, LK< 2
(i) /g for 1<p<2, 1<g<p’; and

(i) 1/p" for ¢ < p < o0, 2L g oo0.

Notice that Proposition 3.4 is nothing more than a weakened version
of Theorems 1.1 and 1.2 with J = 2. Greater precision may also be brought
to Propositions 3.2 and 3.3, but at the cost of sometimes introducing
logarithmic factors. (See [1].)

‘We may express Propositions 3.2, 3.3 and 3.4 diagrammatically.
Ineach diagram, we plot 1/p horizontally and 1/¢ vertically. In the dia-
grams on the left, we indicate the level lines of 4,(x,; », g), and in those
on the right, the value of A,(m,;», q).

1 r
3+
q T .
2
b 3+d
1
0 7 1
l<r<?2
443
q . .
: 41
' prq
Z
A
1 +
J I
7T
0 X
2< 1< o0
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Qs
4

Q-

rof=

Qj=

[

=

.

We omit most of the proofs of Propositions 3.1-3.4, as they are
merely straightforward modifications of the arguments in [17]. In [,
Pietsch used the ideal property of r-summing and r-nuclear operators
to exploit his knowledge of the behaviour of the identity operator. He was
able to use the fact that 4, is a multiple of a unitary matrix for his esti-
mation of the norms of 4, and the relation 42 = 2"I , showed his results

to be precise. Our approach is to substitute Theorem 1.1 for the special
properties of A,. We need also to observe that

N = ZtN(my 1)ty (m, n) = trace(tyly) < v.(ty; 4, 2)m(ty; 2,5 9),
m,n : '
and to note that prob {X < 4} > % and prob {Y < B} > » together imply
that pm')b {X <4 and Y < B} >»2p—1. Apart from this, the only
novelty is the following lemma, for which we are endebted to the referce.
LEvMA 3.5. Let 2 <p,q< 7 < oo, Then '
(1) Ag(m5p,9) = [(A/p"+1[r)(1/2—1/g)+(L/g—1/r)](1/2 —Lfr)"
and i . :
(i) Ag(vr; ¢, 0) = [1fp".(1/2—1/g)+1[p".(L/q—1/r)](1/2 —1[r)" +
+1/p. R
Proof. We use the fact ([9], [19]) that, when 2 <P,g<r< oo

(%) Ar(e; 2y @) = (L2 =1/p)(1/g—1/r)(1/2 —1/r)™

(and Ag(s,; 0, q) =1fr+(Lp—1[r)(1/g—1/¥) (1/2—1/r)"Y. Tt will be
enough to show that A,(w,;p,q) and A(».;q, p) are bounded above
by the desired expressions.

(i) We know that 4,(s,; p, 2) = 1 and that (30, 7) = 1[p' +1/r.
The bound for 4,(w.;p, g) (2 < ¢ < r) now follows from an interpolation
theorem of Carl [4].

Schur multiplication in tensor algebras 23

(ii) We have
Ao 50, D) << Ap(vp 5 4,2V + A3 D5 ) = A3 54, 9") +1/p.

However,

Iys €6 0') = v(Lys () > 19 (M) = P'(IV))
<ap(Iy; 4 ¢)veIn; ¢4 2')  (by [17], Lemma 4, p. 298)
=2 (In; ¢ € Vvr (I3 25 Q-

The required inequality now follows from (x), after a little calculation.
Finally, we should like to thank the referee for his helpful comments
and for bringing several related papers to our attention.
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Fredholm Toeplitz operators on strongly pseudoconvex domains

by
NICHOLAS P. JEWELL (Stanford, Cal.)

Abstract. Venugopalkrishna in [15] investigated conditions which ensure that
a Toeplitz operator acting on a Hardy space on a strongly pseudoconvex domain
D s C" (n>1)is Fredholm. In [11] McDonald proved that when D = B?", the open
unit ball in €%, then the Toeplitz operator Ty, for ¢ ¢ H* 4 C, is Fredholm if and only
if p is bounded away from zero in a neighbourhood of 88", We extend this result to
a general strongly pseudoconvex domain, D, with smooth boundary in 0* with n > 2,
and give a similar result for Toeplitz operators acting on a Hardy space on 8D. We
also note that the property of a Toeplitz operator, T, being Fredholm depends
only on the local properties of the symbol ¢ on 8D.

1. Introduction. Let D be a strongly pseudoconvex domain with
smooth boundary in C% ie., D is—a bounded domain in C" and there
exists a real-valued function ¢ such that

(1) D={: o)< 0}

(2) grade % 0 on 9D,

(3) e is strictly plurisubharmonic in a neighbourhood of éD,

(4) o is of class 0% in a neighbourhood of D.

Denote by L* the space of functions f: D — € which are square
integrable with respect to Lebesgue measure, dV, in C". Write L™ for
the essentially bounded measurable functions on D. H*is the space of all fun-
ctions f € I* which are holomorphie in D, with norm [ifll, = ( [ |f(2)[2dV (2))*".

D

C is the space of all continuous functions on D, and A (D) is the space of
all holomorphic functions in D which extend continuously to D. H* is the
space of all bounded holomorphic functions on D.

Let ¢ denote the gurface area measure on 9D. We write L®(0D)
for L®(do), L*(oD) for I*(de). H*(2D) denotes the closure in I* of the
boundary values of holomorphic functions which extend smoothly to D.
Since the boundary of D is smooth, this definition is equivalent to requiring
that sup| [ [f(2)]*do,(2)]"* < co where D, = {zeD: o(2) < —s}, do,

>0 0D,

is surface area measure on dD,, and f(2) is the Poisson integral extension
of finto D. The norm for H?(8D) is given by

Il = ( [1f(@)2do () )"
aD
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