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Approximation by continuous vector vakied functions

by
KA-SING LAU (Manhattan, Kon. and Pittsburgh, Pa.)

Abstract, Lot & bo a topological spyeo, lob B be a uniformly eonvex space
and lot O (4, 2) donotoe the spaco of bounded continuwous funetions from X into F.
Wo show that for any bounded set-valued (or single valued) map @ from X into
2% and for any eloged O(X)-submodule M in ¢ (&, B), there exists a best approxi-
mation from M o &. Wo use this result to study various approximation problems
in C(X, 1. .

§ 1. Introduction. Lot O(X, ) (B(X,H)) be the set of bounded
continuous (respectively bounded) functions f from a topological spuace
X into o Banach wpaco 7 these ave Banach spaces under the supremuni
vorm defined by [f]] == ?ll;\p IF I If @ is & map from X into the family

X

of subsets of H, wo detine the distance of @ to an feB(X, B) by

d(f, P) == supsup [If(t) —ylf.

teX yed(l)

The main regult of this paper is concerned with the existence of
the best approximation to n set-valued map @ by continuous point-valued
functions in C(X, H):

Let X be a topological space and Tet B be a wniformly convex space.
Then for any bounded sct-valued map ®: X—=2" and for any dlosed O (X)-
submodule M in (X, 1), there ewists an fe M such that A(f, ) =
ind {d(g, P): g & M} :

This generadizes o result of Olech [7] where, in order to apply
Michaoel’s woleetion theoreny, it was assumed in addition, that X is pau-
compueh, @ iy upper semicontinuouy, and M = (X, B). Our proof differs
signiticantly from his and iy, in fael, inspired by o construction of ap-
proximation by Wud in [L07. -

‘Weprove the above theorem in § 2 and §3. In § 4, we apply the theorem
to study some approximation problems of bounded functions by econ-
tinuous Funetions (¢f. [4], [67, [7], [10]) and bounded linear operators
by compact oporators (of, [5]).
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§ 2‘. Some lemmas. Let B be a (real) Banach space and let B* be the
dual of . For any >0, zel, we let B (a) = {o: |wl[<},U,(2)
= {: [zl <r} and S,(») = {#: |[z| = r}. For any r > > 0, wo define

& (0) = ]s%pl(diam{w: 2 (@) =7r—8, |kl =7})
l*l=
where diam A4 = sup {p—y|: #,y e A}. It r =1, we simply use £(8) to
denote ¢,(6). It is clear that e,(d) = re(dfr).

LEMwmA 2.1. Let g be a concave function defined on [0, 17 with ¢(0) > 0
and g(1) = 0. Let 0 < a <1 and let b be a function defined on [0, ] by
h(z) = ag(w/a), ® [0, a]. Then g(a) —h(a)= g(@)—h(2) for @ €[0, a].

Proof. Note that the derivative ¢'(z) exists and decreases almost
everywhere. Hence

g' (@) =W (@) = g'(@) —g'(2/a) > 0 a.e. on [0, a]

and g—»h is an increasing function on [0, a]. This completes the proof.

Levma 2.2. Let E be a Banach space. Let v > 6 > 0 be given. Then
Jor any line segment [@:y] in between 8,(0) and §,.,(0) (i.e. zelo:y]
implies ¢ —0 < gl <7), o —yl| < £.(8). In partioular, we have &< g.(0).

Proof. We need only consider the two dimensional space genorated
by 2 and y. We may also assume that  and y are on the sphercs 8,(0)
or 8, 5(0). Let L, be the line paraliel to [#: y] and pass through 0. Let
L Dbe the maximal line segment contained in B,(0), which is parallel to Ly,
on the same side of [# : y] determined by L, and is & tangent to the ball
B,_4(0). Let |L| denote the length of L. If # is in 8,(0) and v is in .8,_,(0),
then simple application of Lemma 2.1 will imply that |z —yll < |-L]. If both
« and g are in §,(0), then we consider the trapezoid determined by @,y
and the two points of I, N 8,(0), say ' and . Note that L is in between
the line segments [#: y] and [2': y'] and |z —y[| < 9r = lle’ —y'll. By the
convexity of the ball, we conclude that |z —y| < |I|. Hence in both easos
we have o —y| <Ll < ¢,(6).

Our main lemma is

LevMA 2.3, Let E be a Banach space. For any r> § > 0 and for any
s,y B with |y —a|| > (), let

&(6)

2 =’“"|“ @'_w”"(?/"w)-

Then
B,(®) NB,_s(y) S B,s(z).

(We remark that the condition [y —a| > £(9) implies that 2 is a
convex combination of # and y.)
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and

Approzimalion by continuous veclor valued funetions 293

Proof. Without loss of generality, we assume that # = 0. For any
w e B (0) NB,_s(y), let a, b (e # b) be the two end points of the line
segment {w--ay: ae R} NB,_(0); write w = Aa-(1—2i)b. Consider the
following cases:

(i) 0= AC L Tt follows that |w| <#—4. By agsumption, [w—y|l
-4 Sinee 2 i o convex eombination of 0 and ¥, we have [l —2]|
:5: - (3.

(ii) 4 2= 1 or 2-20. We only consider 4 > 1, the other ease i3 proved
by interchanging the role of @ and b, Note that

A A e (8) e A (L) (8) 2D
W B Dy (8) B (LR ()
e(8) ) ( ( () ))
A S PR I P | P
[y e o]
‘We will show that 0 = A — “;’(:’;“ 1. This will imply |w—z| <r—3§.

To this end, observe that [lw —y| < r— ¢ and w —y is on the line {w+ay:
a e R}, 80
w1y e at(l—a)b, 0ol

Wy s (W) (Y )
e (L~ a)b-|- fla—0) (B> 0)
s (@ B)a-+(1—(a--B)b.

(That > 0 follows from A = 1.) It follows that

er(9)
fla—bl
On the other hand, sinee 4> 1, the line segment [o:w] is in between
8,(0) and 8,_5(0). By Lemma 2.2, |w ~all < &,(6). This implies that

S e b T 1,

A Banaeh space s callod wniformly oonven if fov any e > 0, there
oxists o &z 0 wueh thad fow any @, ¥ in 8, (0) with {2 —y[l > &, [(@--y)/2]}
< -4,

Lomnta 2.4, Let B be o uniformly convew space, Then lmz s(d) = 0.
' S0t
Proof. Tt follows from Lemma 2.2 that &(8) is increasing on. 4.
Suppose lime(d) - 6, = 0. Lot 8, be the corresponding number for & in
Besl)
Lo \ . ; * * N
the definition of uniform convexity., Thorve exists an * ¢ X*, o™ =1

0= f oo A=

(A=-TY b = [fow a6, (8)  and A
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and %,y € 8,(0) such that
a* (@) = o*(y) =1—35/2 and |-yl = &.

This implies that ||(#--y)/2[ = 1 — 6,/2 > 1— ,, which is a contradiction.
We remark that the converse of the above lemama is algo true. Never-
theless, we do not need that fact here.

§3. The main theorem. Lot X be a topological space and let & be
a Banach space. A C(X)-submodule M in O(X, B) is  linear subspace in
C(X, B) which iy closed under multiplication by scalar valued functions
in 0(X). The reader may refer to [1] for some propertics of O(X)-sub-
modules. Similarly, we ean define B(X)-submodules in B (X, #). We use
24 o denote the family of subsets of A.

THEOREM 3.1. Let X be a topological space amd lel 1 be a uniformly
conven space. Then for any D: X—2" and for any dosed C(X)-submodule
M in O(X, ) with inf{d(g,¢): g€ M} =r < co, there emists an fe M
such that d(f, p) = r. ‘

Proof. Without loss of generality, we may assume that > 1. By
Lemma 2.4, we can choose a strictly decreasing sequence of positive

numbers {8,} converges to 0 such that &) < co. Lot 7, == r4-8,,
then "

2 arn(an) = 2¢n£(5n/7‘n) < Zrna(an) < 0.

n=1 n=1 C =l

We will use induetion to define a sequence of functions {f,} in M: Let
fre M satisfy d(f,, ) <r-+4,. Suppose we have chosen f, e M such
that d(f,; ®)<r+4,, choose g ¢ M with d(g, §) <7+ Oppy - Liet

Aty = lgt) —fu@)ll, teX

’ and define .
Farr ) =F (0 + @) (g —F, (1), teX
where .
1 if &, (On—0p 1) 2= d(¥),
ﬁ(t) == ern(an—‘ 6n+ ) . )
70 e if e,n(é,?w Bppa) < d(1).

It is (':lear that B(¢) is a continuous funetion with 0 < B(t) < 1. We claim
that (1) foyy 3 I M, (1) [fr —full < &, (85— 8,40), () @(fppry B) <7+ s
Indeed, (i), (i) follows from the construction of Jnyr and the definition
of M. For (iii), we note that d(f,, D)< r- Ony d(g, D) <1+ 8,y I
B(3) =1, then f,,(?) = g(t). Hence &(t) = Byysy i (Tain (). IE B(1) < L,

e ©
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by Lemma 2.3, wo have

D) E By, (Fal) OB, (000) € B Fasa0)-

Henee d(fupry P) 56,1 Now, for m > &,

" m
r e N " -\

Hf'm '..’Ic“ T Z 1-3,.“1( B, — ‘Sn»[d) 5 2_4 arn(’sn) .
wale sl

™
. Since }:1: &, (0,)->0 s m, 00, {f,} 18 & Cauchy sequence. Let fe I
Hive I

be the uniform limit of {f,}. For any &> 0, there oxists ¢t e X, y e $(?) ‘
guch. that
a(f, B) = () —yl+ef3
and thoroe exigts n, soeh that ||f—~ Jngll < &3 and 8, < &/3. Hence
r << A(f, P) <) ~yllA6f3 < FE) ~Foy WA 1Fay (1) — 9l 4-2/8 <7 +-e.
This implies d(f, P) == r anil the prool is completed.
CoroLLARY 3.2, The above theorem also holds if we replace X by a set
and M by a olosed B(X)-submodule.
Proof. Give X the discrete topology, then we can apply Theorem 3.1.
In thoe following, wo will consider a sirilar type of theorem concerning
the ossential supremum. norm on functions over a measure space. Let
(X, 1) bo a measure space, let # be a Banach space. For any function
fo X1, define
A1 = esssup [f(B)]| = int sup [[f()Il
taX Ned teXN\A"

where 4 denoties thoe family of null sets in X. We use By (X, B), (By(X))
to denoto the Banach space of cssentially bounded (scalar, respectively)
tunctions fi X-»H and use L (X, ) (L*(X)) to denote the closed subspace
of Bochner (sealar) mensurable functions [2]. For any &: X 2% and
for any f: X+, we lot
di(f; B) = osssupsup |If(8) —yll.
WX yee(l)

Trmowrne 3.3, Lot (X, @) be @ measure space and let T be uniformly
vonven, Suppose M is cither (1) a olosed By (X)-submodule of By (X, 1) or
(i) @ olosed L°(X)-submodhile of L (X, H). Then for any ®: X-2% guoh
thatind {dy (y, B): g ¢ M} == 1 < oo, there ewists an f & M with du(f, D) =r.

Proof. Wo can follow the same proof as Theorem 3.1; the sequence
{f,} will bo detined on X\N for some null set N and tho distance d will
be roplaced by dy.

§ 4. Applications. Lot B bo a Banach space and let I be a subset
in H., A point @ e ] iy said to have a best approzimation from K if there

8 ~ Studia Mathematlca LXVIILS
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exists a y e I such that [w—yl == inf{lz—2|: 2 ¢ K}; K is called DProgi-
minal if every point in # admity a best approximation from K. In [4],
Holmes and Kripke proved that every bounded funetion on a paracom-
Pact space has a best approximation from the set of continuous functions.
Olech [7] showed that the result is also true if the range is an Tueclidean
space. It follows directly from Theorem 3.1 that

TomorEM 4.1. Let X be a topological space, let B be wniformly conven

and let M be a dosed C(X)-submodule in (X, H). Then every bounded
Junction g: X—B admits a best approximation from M.

CoroLLARY 4.2. With X, H given as above, every elosed O (X)-submodule
w8 proximinal in C(X, B). .

Let X, ¥ be two sets, let g1 ¥Y>X Dbe a surjection and let B be
aDBfuna,eh space. For any bounded function f: X-»#, wo define ¢°f - fop;
@ is then an isometry of B(X, ) into B(Y, ). If X, ¥ are tiopological
spaces and ¢ is continuous, then 0(X, #) ean be identified with " 0(X, B)
n 0(Y, B). In [8], Pelezyrski asked, for g e C(¥, B), does there oxist
a best approximation from ¢°C(X, B)? Olech [7 1 showed that the con-
jecture is true if X, ¥ are both compact Hausdorff and J is uniformly
convex. By using Theorem 3.1, we obtain a more general result with & sim-
plier proof. ‘

TemoREM 4.3. Let X be a topological space, let ) be a uniformly conves
space and let M be a closed O(X)-submodule of C(X, ). Suppose ¢ is o sur-
jection from o set X onto X. Then every bounded Sunction g: Y1 has
a best appromimation from o° M.

Prood. Define a topology on Y as follows: 4 (< Y) is open if and.
onlyif 4 = ¢~ }(B) with B open in X. It is clear that O (X, B) is isometrically
isomorphic to (Y, E) under ¢ and M is a cloged C(Y)-submodule in
0(Y, B). Hence, by Theorem 4.1, every bounded function g: Y->F has
a best approximation from ¢°If. _

Let B be a Banach space, let K be a bounded set and lot 7 be a sot
in H. A point » e F is called a restricted center of K with respect to IM if

d(z, E) =int{d(y, K): y c F}.
It F = B, then s is called a Chebyshev center of K. Kudet and Zamyatin

[6] proved that every bounded set I in ¢ [0,1] admits a Chebyshev

center. This fact was improved by Ward to. ¢ (X, ) where B is a Hilbert
space [10].

THROREM 4.4. Let X be & topological space and let I be umiformly .

conves. Then every bounded set in C(X, B) admits a restricted ;
center
respect to closed C(X)-submodules. ’ o itk

In partioular, every bounded set in ¢ (X, B) admits a Ohebyshev center.

Proof. For any bounded set K in ¢ (X, B) we need only define the

i

/

©
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N

gsot-valued map @ X-»2" hy
@y == {fl): fek}, teX
and apply Theorem 3.1, .

Lot #, I be Banach spaces and let L(H, M) (K (B, I)) be the space
of bounded (compact) Bnear operators from # into F. In [6], Holmes
and Kripke considered the question of proximity of K (B, F) in L(H, I).
MThey showed that it H, 1" are both IIilbert xpaces, then K (7, M) is a proxi-
minal subspace of L, ). Little is known in general. Here, we add
in two more Kpecial cages.,

Trmowsm 4.5, Let By B be Banach spaces such that either

() 40 INX, p) where (X, ) 48 & o-finite measure space and I s
undformly sonvea or ‘

(i) B is wniformly conven and B = ((Y) for some topological space Y.

Then overy 1 & L (1, 1) has o best approvimation from K (B, .

Proof. In (i), note that ¥ has the Radon-Nikodym property, it
follows that L(H, 1) is isometrically isomorphic to L®(X, I, the set
of bounded Bochner measurable functions from X into F (ef. [2]). The
got of cornpact operators K (1, F) can be identitied as the set of fe L°(X, I)
with FCXNN), N a null set, contained in a compact subset in F. We use
IO(X, 1) to denote thiy seb. It is easy to gshow that L:"gX, F) is an
I®(X)-submodule in L* (X, F). By Theorem 3.3, we conclude that every
feLe(X, ') has o bost approximation from L2(X, F). .

Tor (i), we observe that C(Y) is an AM-space and has an order unit,
hence it is isometrically isomorphie to (%) for some compact Hmwélto'rf'f
space Z (et [9], p. 101). It ix also well known that K (E, F) cjm pe identified
as O(%, B and L(H, F) as 0(Z, (B, w*)) where (B w ) is the dual
space B* with the w* topology (ef. [3], b 490). Assertion (ii) now follows
immediately from these remarks and Theorem 4.1.

COROLLARY 4.6, Hovery bounded linear operator T It (u)—~>L? or
T: L7 ((X), where p 48 o o-finite measure, X is a topological space and
1< p< oo, has a best approvimation from the set of compact operators.

§ 5. Some remarks, et X and Y be topological spaces ?vith~.Y‘
compact Fanusdortfy we can identify an JJ;,E (7(1&?’,7(1 (1\4[32 2])(?“; f‘u;}ﬁgw;;le{) ;11
7Y whaere (@, y) = f@)(y), @ eX,ye Y. Morecover, lenti-
ﬁfﬁlzn)i)lulnn}::; (m'\/ (im’n{)o;bri({ (Iﬂl)(nﬁ)(;rjphimn of C(X, 0 (Y)) onto C(X % ]f)-
[11. Foruany set-valued map & from X into O(Y), we define P:
X x ¥Y-»9" by ‘ :
B, y) = @) fed@), e X,y T}

Analogous to Theorem 3.1, we have

L . w o0(Y) B
Tumomaiy 5.1, Lot X and Y be topological spaces. Lot ®: X->2 ¥ pe
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a set-valued map such that O(w), ® ¢ X is contained in a bounded set of
C(X). Then @ admils a best approzimation from ox, o (1)),

Proof. Note that O(¥) is isometric isomorphic to ¢ (Z) for some
compact Hausdorff space Z ([9], p. 101). By Theorem 3.1, we can find
a best approximation f from the O(X x Z)-submodule 0(X xZ) to the
set-valued function & on X x Z. Hence the corresponding f in 0 (X, ¢ (X))
(= 0(X, 0(2) is a best approximation to ®. :

‘We do not know whether the uniformly convex spaco # in Theoremn
3.1 can be replaced by L'(u) or M(K) where M (K) denotes the set of
regular Borel measures on a compact Hausdortt gpace ST In particular
it would be interesting to know whether the gpace of compact operators
K(0(X), 0(X)) is proximinal in the space of bounded linear operators
Z(C(X), C(X)). We also do not know whebher the condition of uniform .
convexity on E can be weakened.
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