cm[©]

i.e.

$$h = -D^2 J^* h$$

for all such $h \in H$. Taking into account (11) we see that A is an extension of $-D^2$. Finally observe that in this case

(17)
$$Eh = J^*h = t \int_0^1 \int_0^s h(\tau) d\tau ds - \int_0^t \int_0^s h(\tau) d\tau ds.$$

EXAMPLE 3. Take $X=C^1([0,1]),\ Y=X',\ H=C([0,1]),$ and $E\colon H\to V$ defined by

$$Eh(t) = \varphi(h) + \int_{0}^{t} h(s) ds,$$

where $\varphi \in H'$ is an arbitrary, fixed functional.

If we put a(x, f) = f(x) for any $x \in X$, $f \in X' = Y$, then a'(f, z) = z(f) for any $f \in X' = Y$ and $z \in X''$, and both forms a and a' are bounded and coercive; hence Theorems 1 and 2 apply.

Observe that $DE = I_H$, where $D: \overrightarrow{V} \rightarrow H$ is the bounded derivative operator; hence R(E') = H', and Theorem 4 applies as well. This means that A is the extension of E^{-1} over $U \subset X''$.

We have $E^{-1} = D|R(E)$.

It is easy to see that $R(E) \subset V$ is the set of all $v \in V$ such that the following boundary condition is satisfied:

$$(18) v(0) = \varphi(Dv)$$

Indeed, if $v \in R(E)$, then $v(t) = \varphi(h) + \int_0^t h(s) ds$ and $v(0) = \varphi(h)$, and since $D^0v = h$, (18) holds.

If, on the other hand, (18) holds for some $v \in V$, then $h = Dv, v \in V$ and

$$v(t) = v(0) + \int_0^t h(s) ds = \varphi(h) + \int_0^1 h(s) ds = Eh.$$

We can consider E^{-1} as the operator D over $R(E) \subset V$ with the boundary condition (18).

References

- [1] S. Goldberg, Unbounded linear operators, McGraw-Hill, 1966.
- J. L. Lions, Equations différentielles operationelles et problèmes aux limites, Springer-Verlag, 1961.
- [3] K. Yosida, Functional analysis, Springer-Verlag, 1966.

Received October 25, 1977 (1357) Revised version January 3, 1978

Maximal operators defined by Fourier multipliers

by

CARLOS E. KENIG and PETERA. TOMAS* (Chicago, Ill.)

Abstract. The authors develop a linearization for maximal operators defined through Fourier multipliers, and establish for such operators transplantation and restriction theorems. Applications are discussed.

Introduction. Let λ be an $L^{\infty}(\mathbf{R}^n)$ function; define for each real number R>0 an operator T_R on $L^2(\mathbf{R}^n)$ by $\widehat{T}_R f(\xi)=\lambda(\xi/R)\widehat{f}(\xi)$ and \widehat{T}_R on $L^2(\mathbf{T}^n)$ by $\widehat{T}_R f(n)=\lambda(n/R)\widehat{f}(n)$. We say λ is p-maximal on \mathbf{R}^n (or weak p-maximal on \mathbf{R}^n) if the operator T^* defined by $T^*f(x)=\sup_{R>0}|T_R f(x)|$ is bounded (or weakly bounded) on $L^p(\mathbf{R}^n)$; similarly for \widehat{T}^* on $L^p(\mathbf{T}^n)$. The purpose of this note is to establish for p-maximal operators results on transplantation between T^* on \mathbf{R}^n and \widehat{T}^* on T^m , and restriction of T^* and \widehat{T}^* to subspaces. These results are similar to those of de Leeuw [3] for Fourier multipliers. The study of such transplantations was initiated by Λ . P. Calderon [1] and by Coifman and Weiss [2].

The authors wish to express their gratitude to Antonio Cordoba, whose work has inspired us. We also thank R. Latter for his helpful comments.

1. A linearization.

LEMMA. Fix p, $1 . The function <math>\lambda$ is p-maximal if and only if

$$\left\|\sum_{k}T_{R_{k}}f_{k}\right\|_{p'}\leqslant e\left\|\sum_{k}\left|f_{k}\right|\right\|_{p'}$$

uniformly in all sequences of positive reals $\{R_k\}$.

Proof. Define the Banach space $L^p(G, l^\infty(\mathbf{Z}^+))$ for $G = \mathbf{R}^n$ or $G = \mathbf{T}^n$, as the collection of all suquences of $L^p(G)$ functions $\{f_k\}$ such that the norm $\|\sup |f_k|\|_p$ is finite. It is clear that λ is p-maximal if and only if the linear

^{*} The first named author is a Victor J. Andrew Fellow at the University of Chicago: the second named author was supported by the National Science Foundation.

operator $\Gamma\colon L^p(G)\to L^p(G,l^\infty(\mathbf{Z}^+))$, defined for each sequence $\{R_k\}$ by $\Gamma(f)=\{T_{R_k}f\}$, are operators uniformly bounded for all sequences $\{R_k\}$. The operator Γ is bounded if and only if $\Gamma^*\colon L^{p'}(G,l'(\mathbf{Z}^+))\to L^{p'}(G)$ defined by $\Gamma^*(\{f_k\})=\sum_{i}T_{R_k}f_k(x)$ is bounded, that is,

$$\left\|\sum T_{R_k}f_k
ight\|_{p'}\leqslant c\left\|\sum |f_k|
ight\|_{p'}.$$

Remark. Similar results hold for \tilde{I}^* , and also for λ weak p-maximal, and also in the case that I^* is bounded from H'(G) to $L\log^+L$. In the latter cases, the linearization takes the form

$$\left\|\sum T_{R_k}f_k\right\|_{(p',p')}\leqslant c_p\left\|\sum|f_k|\right\|_{(p',1)}$$

or

$$\left\|\sum T_{R_k} f_k\right\|_{\mathrm{BMO}} \leqslant c \left\|\exp\left(\sum_{l} |f_k|\right)\right\|_1$$
.

2. Transplantation. A function λ is regulated if every point of \mathbb{R}^n is a Lebesgue point of λ [3]. For regulated λ , the multiplier properties of λ may be deduced from the multiplier properties of continuous approximations to λ . It is clear that the techniques of [3] for treating regulated multipliers extend to p-maximal or weak p-maximal λ ; in the proofs which follow, we may therefore assume λ is continuous if it is regulated.

THEOREM 1. Let λ be a regulated $L^{\infty}(\mathbf{R}^n)$ function. Fix p with $1 . Then <math>\lambda$ is p-maximal or weak p-maximal on \mathbf{R}^n if and only if λ is p-maximal or weak p-maximal on \mathbf{T}^n .

Proof. We establish the result only for the weak p-maximal case, as the proof in the p-maximal case is similar. From the linearization of Section 1, it suffices to show that the inequality

$$\left\| \sum T_{R_k} f_k \right\|_{(p'p')} \leqslant c \left\| \sum |f_k| \right\|_{(p',1)}$$

uniformly in all sequences $\{R_k\}$ is equivalent to

(2)
$$\left\| \sum \tilde{T}_{R_k} f_k \right\|_{(p',p')} \leqslant c \left\| \sum |f_k| \right\|_{(p',1)}$$

uniformly in all $\{R_k\}$. Assume (2) is valid for all $\{g_k\}$ in $L^{(p',1)}(\mathbf{T}^n, l'(\mathbf{Z}^+))$. To prove (1) it suffices to consider finite sequences $\{f_k\}$, where each f_k is in $C_0^{\infty}(\mathbf{R}^n)$. Let $f_{k,s}(x) = \varepsilon^{-n} f_k(\varepsilon^{-1}x)$ and $\tilde{f}_{k,s}(x) = \sum f_{k,s}(x+m)$, where the sum extends over the lattice \mathbf{Z}^n . For each \mathbf{z} in \mathbf{R}^n .

$$\lim_{\varepsilon \to 0} \varepsilon^n \sum_k \tilde{T}_{R_k / \varepsilon} \tilde{f}_{k,s}(\varepsilon x) = \sum_k T_{R_k} f_k(x)$$

(see [7], p. 266). Choose h in $C_0^{\infty}(\mathbb{R}^n)$ with $||h||_{(p,p)}=1$; define $h^s(x)=h(\varepsilon^{-1}x)$ and construct \tilde{h}^s . Then

$$\int\limits_{\mathbf{R}^n} \varepsilon^n \sum_k \tilde{T}_{R_k/\varepsilon} \tilde{f}_{k,\varepsilon}(\varepsilon x) h(x) dx = \int\limits_{\mathbf{T}^n} \Big(\sum_k \tilde{T}_{R_k/\varepsilon} \tilde{f}_{k,\varepsilon} \Big)(x) \tilde{h}^{\varepsilon}(x) dx,$$

and employing (2),

$$\begin{split} \Big\| \sum_{k} T_{R_{k}} f_{k} \Big\|_{(p',p')} &\leqslant \liminf_{\epsilon \to 0} \Big\| \, \epsilon^{n} \sum_{k} \tilde{T}_{R_{k} / \epsilon} \tilde{f}_{k,\,\epsilon} (\epsilon x) \, \Big\|_{(p',p')} \\ &\leqslant \liminf_{\epsilon \to 0} \sup_{||h||(p,p)^{-1}} \Big\| \sum_{k} |\tilde{f}_{k,\,\epsilon}| \, \Big\|_{(p',1)} \, \|\tilde{h}^{\,\epsilon}\|_{(p,p)} = \Big\| \sum_{k} |f_{k}| \, \Big\|_{(p',1)}. \end{split}$$

We now assume (1) holds for all $\{f_k\}$ in $L^{(p',1)}(\mathbf{R}^n, l'(\mathbf{Z}^+))$. To establish (2), it suffices to consider finite sequences $\{g_k\}$ where each g_k is a trigonometric polynomial. In the one-dimensional case, we proceed as follows. Let $\omega_\delta(y) = e^{-\pi \delta |y|^2}$ for $\delta > 0$ and y in \mathbf{R}^n . If Q is a trigonometric polynomial and $\alpha = 1/p'$, $\beta = 1/p$, then

$$(3) \quad \lim_{\epsilon \to 0} \varepsilon^{1/2} \int\limits_{\mathbf{R}} \int\limits_{\mathbf{k}} T_k(g_k \, \omega_{\epsilon\alpha})(x) \overline{Q}(x) \, \omega_{\epsilon\beta}(x) \, dx = \int\limits_{\mathbf{T}} \int\limits_{\mathbf{k}} \widetilde{T}_{R_k} g_k(x) \overline{Q}(x) \, dx,$$

as in Stein and Weiss [7], p. 261. Equation (1) shows that (3) is majorized by

$$c\left\|(\varepsilon^{a/2}\,\omega_{ea})\sum_{k}|g_{k}|\right\|_{(p',p')}\|(\varepsilon^{\beta/2}\,\omega_{e\beta})\overline{Q}\|_{(p,1)}.$$

As ε tends to zero, the first factor tends to $\|\sum |g_k\|\|_{(v',p')}$. To complete the proof it suffices to show that the second factor is majorized by $c_p\|Q\|_{(p,1)}$. This follows by reducing the problem to the case where Q is the characteristic function of a finite union of intervals. Then the non-increasing rearrangement of $(\varepsilon^{\rho/2} \omega_{\epsilon\rho}) Q$ may be computed explicitly. In higher dimensions these computations are cumbersome, and we employ the results of Coifman and Weiss [2]. They establish the result in the case that each $[\lambda(\xi/R_k)]$ has compact support. To reduce the problem to this case, choose a sequence of functions φ_{ε} as in Lemma 3.4 of [2], so that $\varphi_{\varepsilon} \geqslant 0$, $\|\varphi_{\varepsilon}\|_{1} = 1$ and define

operators $S_{k,s}$ by $\widehat{S}_{k,s}\widehat{f}(\xi) = \varphi_s * (\lambda(y/R_k))(\xi)\widehat{f}(\xi)$. The $S_{k,s}$ are then given by convolution with compactly supported kernels, and it is elementary to establish the following

LEMMA. Let λ be a regulated $L^{\infty}(\mathbb{R}^n)$ function. λ is weak p-maximal if and only if

$$\left\|\sum S_{k,s}f_k\right\|_{(p',p')}\leqslant c\left\|\sum |f_k|\right\|_{(p',1)},$$

where c is independent of φ .

The result now follows from the work of Coifman and Weiss [2]. Remark. These methods also show that $\|\tilde{T}^*f\|_{L\log^+L} \leq c \|f\|_{H^1}$ on T^n implies the corresponding inequality on R^n .

THEOREM 2. Let λ be a regulated function in $L^{\infty}(\mathbf{R}^n)$; fix 1 . For each <math>y in \mathbf{R}^m , define λ_y in $L^{\infty}(\mathbf{R}^{n-m})$ by $\lambda_y(x) = \lambda(x,y)$. If λ is p-maximal or weak p-maximal on \mathbf{R}^n , then for each y in \mathbf{R}^m . λ_y is p-maximal or weak p-maximal on \mathbf{R}^{n-m} .

Proof. By Theorem 1, it suffices to show λ_y is p-maximal or weak p-maximal for T^{m-m} . We linearize the problem as above; for the p-maximal case the techniques of de Leeuw [3] apply to the linearized problem. In the weak case, it suffices to show that a function $g(\theta)$ on T^{m-m} , extended to $g(\theta,\varphi)$ on T^m by $\tilde{g}(\theta,\varphi)=g(\theta)$, enjoys the property $\|\tilde{g}(\theta,\varphi)\|_{(p,q)}$, which is a triviality as T^m is compact. We remark that the proof establishes an analogue of Theorem 2 for T^m .

3. Applications.

- (1) On T^n , the finiteness almost everywhere of \tilde{T}^*f for all f in L^p $1 \leq p \leq 2$ implies that λ is weak p-maximal; see Stein [6]. If we let $\lambda(x) = 1$ when |x| < 1 and zero otherwise, the pointwise summability of Fourier series on $L^p(T^n)$ by spherical means is equivalent to the weak p-maximality of λ on T^n , which by Theorem 1 is equivalent to the weak p-maximality of λ on R^n . If n = 1, that λ is p-maximal on T is a deep result of Carleson and Hunt [5]; it is folk result that their methods apply to R^1 , while the results of this paper show the transplantation is trivial. But in higher dimensions, no methods have been developed even to compute $\hat{\lambda}$ on T^n , whereas on R^n it is relatively simple to show $\hat{\lambda}(x) = J_{n/2}(2\pi|x|)/|x|^{n/2}$. Thus the almost everywhere summability of spherical means for $L^2(T^n)$ is equivalent to the weak 2-maximality of λ on R^n .
- (2) Results similar to the above may be established for suprema of operators T_k defined by $\widehat{T_k f}(\xi) = \lambda(\xi/2^k) \widehat{f}(\xi)$. If λ is as in the preceding remark, the inequality

$$\|\sup_k |T_k f(x)|\|_{L\log^+ L} \leqslant c \|f\|_{H'}$$

is valid for T (see [8]). The methods of this paper allow the transplantation of this inequality to R. In higher dimensions, these methods show λ is weak p-maximal on T^n if and only if p=2, as C. Fefferman [4] has shown λ is not p-maximal on R^n .

References

- A. P. Calderòn, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), pp. 349-353.
- [2] R. Coifman and G. Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers, Studia Math. 48 (1973), pp. 285-303.
- [3] K. de Leeuw, On Lp multipliers, Ann. of Math. 91 (1965), pp. 364-379.
- [4] C. Fefferman, The multiplier problem for the ball, ibid. 94 (1971), pp. 330-336.
- [5] R. Hunt, On the convergence of Fourier series, D.T. Haimo, ed., Orthogonal expansions and their continuous analogues, Southern Illinois University Press, Carbondale 1968, pp. 235-255.

- [6] E. M. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), pp. 140-170.
- [7] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N. J. 1971.
- [8] A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, New York 1959.

Received November 7, 1977

(1362)