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On functions satisfying a local Lipschitz condition of order o
by
TELIPE %0 (Chacabuco y Pedernera, San Luis)

Abstract. It is proved a decomposition theorem for local Lipschitz functions
with respect to a finite measure. This result is nsed to obtain a characterization of
local Lipschitz functions of order «, when o is not an integer.

§ 1. Introduction. There is a classical theorem of Marcinkiewicz and
Zygmund which states that if a function is ¥ Riemann-bounded on 2 set,
then at almost every point of that set it has a kth Peano derivative [3].
In [1], Ash introduced the concept of gemeralized-bounded function of
order %, and he recaptured again the kth Peano derivative. Althongh this
was essentially a one-dimensional result, the difficulties in extending it
to higher dimensions can be easily overcome using the methods of Stein
and Zygmund [10]. We refer the reader to [11], where a further interesting
characterization of the n-dimensional Peano derivative is given.

It was pointed out by Ste]'.n and Zygmund [10], that the conditional

continuity of a function, i.e. ZAif (#—a;t) -0 ag t — 0, implies almost

everywhere the continuity of f at @, see also [4], [B].
The purpose of this note is to consider the analogous problem in the
intermediate case between differentiability and continuity, the Lipschitz

functions of order . Thus for the expression > A,f(w — a,2) it is generalized
i=1

the following cladsical result for the second symmetric differences: if the
function f, for every z in a measurable set X, satisfies f(w+1t)+f(w —1) —
—2f(x) = O([t]%), then f(o+t)—f(v) =0(t|") for 0<a<l, and
1
fle+1) —f(@) = O(]t]log—lﬂ) for ¢ =1, almost everywhere # e H, [12].
The proof of our result relies in the conjunction of a localized version
of a Tauberian theorem in [8] with some of the ideas used by Stein in his
gplitting theorem for harmonic derivatives [9].
The author wishes to thank Professor Nestor Riviére for a number
of helpful conversations associated with the subject matter of this paper.
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§ 2. Notations and main results. We consider only Lebesgue measurable
function defined on R", throughout this note B will denote a measurable
subset of R™ and |B| its Lebesgue measure. Recall that a bounded function
fis said to be Peano bounded of order a at 2y, where a is a positive number,
if there exists a polynomial P of degree strictly less than a with the prop-
erty that f(w,+1)—P (@) = O([t|*), for every ¢ eR" The class of these
functions is denoted by T'(x,). We say that f e T (a,) if the function [2]°
is replaced by [£*log[t|”", for small values of [f.

Let A = {4;,4,,...,4,,0,,0,,...,a,} be a set of real numbers,
such that a; # a; if ¢ % j and each 4, is non zero. Then we write
fedmy), a>0, 5, R" if fis a bounded function and

m
D) Aif(wo—ta,) = O([f*)  for all teR™
i=1

Now we state our main regult.

TaeOREM 1. Suppose fe A, (x) for every e B; then fe T x) ae.
@ € B if a is not an integer, and f e T ,(z) ae. w € B for o inleger.

The natural concept of uniformly Lipschitz function of order a,
0 < a< 1, is generalized for higher values of o as follows. Let & be a non-
negative integer and assume % < a<Ck-+1. A function f defined on a
closed set F of R™ belongs to Lip (a, F) if there exist bounded functions
Joo 8= (t, % 58y), 8] =di+ip + ... +4, <k, defined on F, with
fo =7 such that '

@)= Y i) @—yy|<elw—y*H;

li+il<k

z,yel.

If the function |#—y|*" is replaced by |o—y|* "log for |&—y)

_ @ —y|
small, we write f e Lip (a, F'). We will use the following version of the
Whitney extension theorem, [9]. Given a funchion in Lip (a, F) (or
fii)(a, F)) it has an extension to Lip (a, R") (or I—fiﬁ(a, R™)).

Following the notation in [87, we say that a finite measure ¢ on R®
is Tauberian if its Fourier transform is a Tauberian function, i.e. for any
@ 70 there exists 1> 0 such that & (lz) s 0. For example, any real
non-zero meagure o on the real line is Tauberian.

We introduce the following notation. A function f is Lipschitz of
order a, a > 0, with respect to a finite measure o at a point 2y, and we write
fed o, m,), if the following conditions hold

(1) f e L*(B™;
@) J@+a))dlol(@) < oo;
R
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(Here » is the smallest integer greater or equal than a, ¢ is & Tauberian
measure and |o] stands for its total variation.) )

(8) ayxf(mo+h) = [flwy+h—ty)doly) = O(t“+1h|%), for all £> 0 and
h eR" -~ R

The following decomposition theorem for Lipschitz functions will
be an essential tool in the proof of Theorem 1.

THEOREM 2. Suppose f € A (o, %) for every & in o set of finite measure E.
Then given &> 0 there ewist a compact set F and a Junction g such that

(1) F< B, |B~TF| <

@) f—g=0o0n F;

(3) g € Lip(a, R™) for o not integer;

(4) ¢ e]?if)(a,R“) for a integer.

§ 3. Auxiliary lemmas. The first lemma has its origin in [8] and _
it is a slight extension of Lemma 2 in [1]. The unpleasant presence of non
necessarily Lebesgue measurable sets in the lemma inclined us to include
its proof. '

m
Set wxf(x) = Y A,f(x—at), where f is a bounded function defined
i=1
in a neighborhood of a set ¥ = R*. We assume that the condition
on the set A is in force. The boundedness of the function f is assumed
for simplicity, since our conditions on f will imply that f is- bounded
in the neighborhood of almost every point of the set F.

Leymra 1. “Desymmetrization Lemma”. Suppose usf(x) = O(]i|),
a>0, for oll weB. Then uxf(w+h) = O(lt|*+|h|%) for almost every
z € B, and every small h, t.

Proof. We may assume # to be contained in the unit cube I of
R" a; #a;ifi - jand A; #0, a; # 0. Let F, < Fy,, ..., be a sequence -
of closed sets such that f restricted to F; is continuous and [I| = |H [y
H=JT,

{e=1

Define for every positive integer & the following sets,

By ={w e BnH: |uxf(o)| <klt°, [t <1/k},
B, = {2 e DnH: |upf(a)] < kjg® if
<1/ and 2 —ateH,i=1,...,m}.

It is not difficult to see that the set X, is measurable, for example
the argument given in [4], Lemma 1 applies. Since

D Aggrf(atah) = D' A; D Aflo—afap—n) = ¥ A, #f(@),
fu=l =1 1=1 =1
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we have for every x e H, and A,# small

| 3 Aot @+ ah)| < e(lef°+1R1%,
=1

¢ is a constant depending on & and the numbers 4,, ..., 4,,.

Set w; =a-+ah, i =1,...,m. Then the above inequality can De
restated as

| D) At (1) | < o181+ iy — g,
=1 '

whenever (u,a, — %, [(as—a,) € By, [t| and |y —uy| small,

Fix k and ¢, t small, and let u, e Ivea point of external density of 17,
which is also a point of density of By, as k tends to infinity these points u,
cover I almost everywhere. Thus the lemma will follow if we prove:
for every w, there exists ¢ > 0 such that for |u, —g| < & and ¢ small there
existy u, with the following properties

Uylhy — by 2y

ek
@y —ay ke

;€ By,  w—outcH, i=2,..,m, j =1,...,m,
[y~ thg] < by — 0y .

In fact, for h = 4, —u, we would have

+ 3 1A g f ()]

=2

Mgt #f oo+ W) <| ) Aqgng (ot
=1

m
SOt +luy — ) + D A Bl "1t1° < o ([t +[hI).
) i=2
The constant ¢ is not necessarily the same on each occurrence.
The existence of u, is provided by the following argument. Let F
be a measurable set such that the measure of F is equal to the exterior
measure of By, and u, & point of density of F. Then for small  and Uy —> Uy

we have
hid m m
Wy ly — Uglhy .
xF( g — )!J ZEE(W)” nxﬂ(u‘—aﬂjt) dug

[y~ gl g —~24g) j=1 {m=m2

- Uyl ~Uglly | T ) v
S “aas | [ [t = oo —ur,

ly— gl —2y) i

where ¢, is a constant depending only on the dimension, and o(1) tends
to zero as u; -> u,. )
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Remarks. (1) Suppose the function f is zero on E and uxf(»)
= 0([¢|*); @ € B. Then f(z+h) = O(|h|%) a.e. z € B. Actually 0(|h|%) can
be replaced by o(|h|®),  — 0, see pp. 251-252 [9].

(2) It the function [|* is replaced by [¢|%log|¢|| in the hypothesis of

1 1
Lemma 1, then the same conclusion holds with [t|*log ~——-+]h|%log —

It [R]
ingtead of [f|*--|h|%.
Leyma 2. Let g be a Tauberiam continuous complew valued function

of one real variable, and K be o compact set in R", 0 ¢ K. Then there exist
A, > 0, complex numbers a; ; and smooth functions ¢;,4 =1, ..., %,§ =1, ...

8 n
-ee3 8 Such that Z{’ iZ; %95 (Y) 9 (A591) # O for every y = (yy, ..., y,) e K.
i=1 =

The number s depends on the compact set K and the function g.

Proof. For a given o = (2y,...,2,) e X with x, #0, choose
2y = A=, ¢), 6; = o(w, 3) such that 4, > 0, |¢;] = 1 and Re[e,g(4x;)]> 0.
If #; = 0, take 4; = 1 and 6; = 0. Now for each # € K there exists #(z) > 0

- :
such that Re[j cig(liyi)] > 0 whenever |y —a| < r(z). We cover K with
=1

a finite number of balls Bw, r(2;)/2) centered at @, € K and radius
(@) 2, k =1,...,8 - .

To-complete the proof of the lemma choose a nonnegative function ¢
in CP(R), infinitely differentiable with bounded support, which is one
on [2/<1/2 and zero on |z|> 1, and set g y) =<p(|m,c——y|/r(mk)), (7%
= ¢(my, 1) and A, = Az, ©).

For a function f defined on R” let fi(x) = t~"f(=/t) and Jo(@) = f(tz).
We will use the fact that fy(») = f(i»), where f stands for the Fourier
transform of f, whenever iy defined. We denote by v a function such that
p e O°(R"), the support of ¢ is contained in {: 1< 2]z|< 4} and

D Peiy(@) =1 for @ 5 0. It is well known that such a function exists.

fm—o0

Recall that if f is a Lipschitz function -of order « with respect to
at a point #, € R", we have the following condition

L) poxf(wo+h) = 0(°+|h]%),

Condition (L) allows us to prove the following pointwise version of
Theorem (2.1) in [6], see also [8].

Luvma 3. Let ¢ € O (R™) and let P be an homogeneous polynomial
of degree r, set k= Py, and assume (L) is in force. Then

(i) Epef(we+h) = O@*+[h|*), t>0, heR™ 0 <a<r;

t>0, heR".

1
(i) Kpxf(zo+h) =0 (t“log7 —th"), t small, h e R" and o =r.
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Proof. Let @ eCF(R™) be one on [z <1/2 and zero on @] =1,
and set b = P®P. If we assume that the funetion ¢ in the lemma is zero
on [o|>1/2, then K = Pp = hp. Now the OF(R" function ¢ defined
by ¢() = h(z) —27"h(2x) vanishes for either |l = 1 or |»| < 1/4. Therefore
¢ = (¥+ @)+ 9o, recall that Yan(@) =1 for @ # 0.

J=-00

o0

Since h = kg’ﬂ 27¥54k, we have the following representation of &

A

K p . T(w(zk) + ‘/’(27.:+ 1L + @(zk-l-z))é(zln) *

g
[\43

1
=)

For f e L*(R") the next equality holds true for every € R"
Epf(a) = kZ 27+ Py, Vged) * 0y 2 F ().

If 0 < a<r a straightforward calculation shows that I f(ay+h)
= O(?“+ [B{%). In order to obtain the logarithmic estimate use lpgx f (@44 R)|
< emin(1, t"+4|A]"), and the lemma follows.

Set u(o.o,'y) = @,*f(x) where ¢ stands for any function in &, the
smooth rapidly decreasing functions, and assume ?(0) # 0, fe L™ ).
For a> 0, k< a<k+1 we define ’

Lo(z, ) = max |y*'~(z, )],
lil=k+1

Lu(@,y) = max ju,(o, y)log™'yl,
[il=k+1

Uzy & = (Tg, 4y, ....,in) denotes the partial derivatives of w with respect
to the n-1 Va.rla,.bles Y5 @1y @y ..., 4,. We assume familiarity with the
concept of a function being nontangentially bounded on a set, see p. 201

[91.

Leva 4. :Sjuppose L, is nontangentially bounded on o set B of finite
measure. Then given ¢ > 0 there ewist a compact set I and a function
ge :E;lp(a, R") such that |E —F| < ¢ and f —g vanishes on F. If L, is replaced
by L, in the hypothesis, the conclusion also holds with iy R™) 4
o Tt m ) ‘ ip(a, R™) in place

Proof. We consider the case I, nontangentially bounded on H.

A parallel a,rgu}nent gives the desiredresult if I, is nontangentially bounded.
~ By an uniformization procedure, given &> 0 there exist a set F' = B
[E—F| <& and a constant ¢ such that [ty (@, Y| < ey %1 if 3] = k+1,
and (#,y) € I'(x,), %, € F, where I'(@y) is the cone {(@, y) e B™: | —p|
< ¥ <1} This uniformization ean be founded in p. 201 [9]. N ow-%he integrz:I
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form of the mean value theorem yields u; € Lip (a —k, I'(s,)} for |i] = &,
with a Lipschitz constant independent of x, € F.
We denote by %, 7, Z variables in R**! and set

N
Z Uiy 3 (B) ==

R 3® J:

then we have the following formulae for Taylor’s expansion

1

z7—17)! .
W RED= D [RfrreE-n,79 T g o,
li+il=tk ' J:
[i <& —1;
o o N _ _g—% .
(2) R,(7, ) —RB;(7, ®) = B8, 2) ———, lil< k.
li-+3l<k J:

Formula (1) is a reformulation of the elementary identity

a1t
1

r T .
flat)= D Mo = o=gyr | 00— @ ti—era,
k=0 ) i

and a proof of (2) can be founded in p. 177 [9].
An iterated use of (1) shows that u e Lip (a, I'(%,)) with a Lipschitz

bound independent of @, e F. In order to see that u e Lip(a, | I’(wo)),
xR

apply (2) to the triple 7, 7, 2 where Z e I'(w,) n.I'(v,) i Z € I'(w,) and ggj e I'(%y),
Doy iy € F.

If we call U an extension of « to Lip(a, R*™"), the lemma follows
with g(z) = U(», 0) and a possible smaller set F. In fact, since ¢ € &,
@ (0) 5= 0, the function f(#) can be recaptured as the limit of u(z, y)
= gxf(®), ¥y =0 for almost every . N

We use the following result from Harmonic Analysis. Let M (R")
be the image under the Fourier transform of M (R"), i.e. the finite meagures
on R". )

WmNER's LEMMA. Lot o anad » belong to M (R") and assume

(i) & has support in a compact set K;

(i) |7 (#)] > 0 in K.

Then j3~* e JI(BR™) (in fact, i»~" e L*(R™).

‘We refer the reader to [7], or for a less abstract setting to [12].
Although a formulation for the periodic case is given in [12], the arguments
can be easily adapted to M (R"), as is done in [6].
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§ 4. Proof of Theorem 1 and Theorem 2. First we show how Theorem 2
can be uged to prove Theorem 1. .

Let fed,(2), scH, and 4 = {4, ooy Ay @gy 0y @) be the set
of numbers used in the definition of the clags A (z).

m m
Set pl(w) = ZAida‘[a],(m) and g(w) = 3] A;67"™%°, where {o,,...,0,}
i=1 . f =1

i=
is the standard orthonormal basis for R Then (@) = g(w;). Since the
measure x4’ is not identically zero, the function ¢ is Tauberian on the
real line. .

Next apply Lemma 3 to g and the compact set, say, K = {z: 1 < |»|
< 2}. Thus there exists a Tauberian measure o e M (R*) defined by &(y)

r n

N
='21'¢Z; %395 (9) 9 (Aigys). X we write @/ for &' = ¢, we have
75145

op+f(x) = Z 2“1,1@*#%7*“9”)'

F=1 4=1
Now, Lemma 1 implies

Frui(@+h) = O(h*+t%), heR", t> 0,

ae. 28, and j=1,...,n Thus apkf(@+h) = O(*+|h|"), a.e. » B,
and we have proved fe.d, (o, ) ae xeB. Note that the smoothness
condition of ¢ required in the definition of A.(o, @), it is clearly satistied
for any value of a.

Finally for Theorem 2, we can write f =g-+b, where g ¢ Lip(a, R")
or g eLip(a, R") for a not integer or « integer, respectively, and b =0
on a set F' of measure close to E. Theorem 1 follows applying Remark
of Lemma 1 to the function .

‘We now proceed to prove Theorem 2.
Assume o not integer, k < a < %--1. The case a integer iy treated
in a similar way. Since ¢ is a Tauberian finite measure, there exist

]

- @€ O (R"yand 4; > 0 such that Y ¢, () (X ) does not vanish on a given
=1

compact set K < R*, 0 ¢ K, see Lemma 2. Tf we take as K the support

of the function ¢ in Lemma 3, then, by Wiener's Lemma, there exists
1

h e L*(R") such that () = h(z) 3 #;0(A@). Furthermore it is not difficult
1

J=
to see that [ (1+[z)* dlo|(s)< oo implies @+ j@))e (@) de < oo
Indeed, the function & has derivatives up to the %k +1 order and o does h.
Thus, Wiener’s Lemma agsures that each of these derivatives of f belongs

N .
to L*(R™), i.e. k has finite momenta up to the order %41.
For a fixed 2, € B, we have by hypothesis opxf(m,+h) = O (4 -+ 1h|%),
thexi taking in account that @; € O (R™) and the smoothness condition
on h, a basic calculation shows Vexf (@ +h) = Ot +|h|%).
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Now take any ¢ € &, ¢ € 02 (R™, ¢(0) £ 0, and set as before u(x, y)
= gyef(@). Then $0r & = (igy iy, ..y i)y [i] = dgtiy + ... + 6y = b-+1,

2N
we have y**'u;(w,y) = Kj«f(s), where K' = P,g;, P, an homogeneous

polynomial of degree k-1 and ¢; € O (R™. Thus a use of Lemma 3 for
these K* shows, Kpef(wy+h) = O(t*+[h|%), in parbicular

I (ot hy 1) < M, B <1,
where the constant M depends on x, e B. Therefore the function L, in -
Lemma 4 is nontangentially bounded, and a use of this lemma completes
the proof of Theorem 2 if a is not integer.

§5. Remarks. Theorem 1 gives the non-trivial implication in a
characterization of the spaces T,(») when o is not integer.

(6.1) Suppose k< a < k-+1, and assume for the set of numbers

m

defining A,(») the conditions 3 afd; = 0,4 = 0, ..., &. Then the following
two conditions are equivalerjlz 1

(1) fel,(x), ae. zeF;

(2) fed, (), ae vel.

We also observe that in the case f e A, (), k integer, Theorem 1 can
be notably improved if a single condition is required on the set of numbers
defining A, (x). We recall the definition of the kth Peano derivative at
a point @y, and we write as it is customary f e £, (w,), if there exists a poly-
nomial P of degree at most & such that f(w,+-1) —P () = o(|t|¥) as t — 0.

nm
(5.2) Suppose fe 4, (z), »ekH, and 21‘ Al # 0, then f et (z) a.e.
# € B. Oompare with [1]. )
‘We sketch the proof of this remark.
For ¢(z) = 6", say, set w(w,y) = p,*f(s), then it can be seen
that :
m
G) D) Ayafu(@+ agh, ay) = 0,(1)
Fe=1
for every we B, || <y and [§| = fg4+4y + ... +4, =F. .
Note that in proving (j), we can assume a;,0 < ;<1 and still
with the required condition in (5.2), apply Lemma 1.

e
Since w;(»,y) is analytic in y > 0, condition (j) and iﬁ\; Aaf #£0
imply

(i) U(@,y) = 0,(1), weB,y>0and [i| =F.
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But (j) and (jj) are the required conditions of the desymmetrization
lemma in [9], thus u, |¢| = % ave nontangentially bounded a.c. on I.
Now Lemma 4 applies, and we can write f = g-+b, g e Lip(k, R*) and
b vanishes on a set F of measure close to Z. That ¢ et,(v) a.e, z e R®
can be seen in [2]. For the bad part b, we have bz+1) = O([t*) a.e.
» € F, which again can be improved to b(z-+1¢) = o(|¢|*) a.e. » e F, this
time a basic argument on density points applies [9].

(6.3) The L? counterpart in (5.2) is also true. The proof uses Theorem 2
(9], p. 248 in all its depth, i.e. the equivalences for non tangentially boun-
dedness for conjugate harmonic functions. Could be of some interest
to prove this result outside the framework of harmonic analysis as in (5.2).
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Basic sequences in a stable finite type power series space

by
ED DUBINSKY* (Potsdam, N.Y.)

Abstract. A characterization is given of when a nuclear Fréchet space with
basis is isomorphic to the subspace generated by a basic sequence in a stable finite
type power series space. The characterization is in terms of an inequality very similar
to the one obtained for basic sequences in (s) and a nuclearity condition. Several
structural facts are obtained as applications of the main result.

In [7] and [8] we chdracterized, respectively, subspaces and quotient
spaces (with bagis) of the infinite type power series space (s). An interesting
feature of this characterization iy that it is done in terms of inequalities
(type (dy), (d,) below) and the only difference between subspaces and
quotient spaces is the sense of the inequality. Recently, Alpseymen [1]
congidered the case of a stable infinite type power series space A.(a)
and determined, for the characterization of subspaces, that the same
inequality works with the additional requirement that the space be Ax{a)-
nuclear in the sense of Ramanujan and Terzioglu [13].

In this paper we turn to finite type power series spaces. It turns
out that subspaces with bases can again be characterized in terms of two
kinds of conditions: an inequality and a stronger type of nuclearity.
The inequality (type (d;) below) is only slightly different from the one
obtained for basic sequences in (s) [7] and the nueclearity condition is
A,(a)-nuclearity ag studied by Robinson [15].

Our regults on subspaces and quotient spaces have been extended
by Vogt and Wagner [16], [17] to eliminate the requirement of a basis.
So far, this has only been done for subspaces and guotient spaces of (s).

We apply our main theorem to obtain several results about the
structure of nuclear Koéthe spaces. We are able to completely describe
all power series subspaces of any stable power series space. We describe
all L,(b, r) subspaces of a stable finite type power series space and obtain
some new information in the absence of the stability assumption. Finally
we obtain the interesting fact that the only type (d;) subspace of a finite
type power series space is a (finite type) power series space.
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