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Pointlike immersions of 2-manifolds

by R. E. Goobrick (Hayward, Calif.)

Abstract. In [2] Vacarro gives an example of an immersion of §? in 8% whose
complement is an open 3-cell. The following will generalize this result to all compact

2-manifolds.

We will denote a compact 2-manifold (orientable or not) by M3
By an immersion we will mean a local homeomorphism from M? into §°.
An immersion f will be called pointlike if 8°—f(M?) is an open 3-cell.

THEOREM. If M* i3 a 2-manifold, then there exists a pointlike immersion
of M* into S

Proof. We will first consider the case when M is a 2-sphere. The
immersion will essentially be Bing’s “house with two rooms” [1]. Let
X=X,UX,UX,UX, be the 2-dimensional complex (Fig. 1) consisting of

Fig. 1
X, = {boundary of the 3-cube {(z, y,2)| 2| <1, |y <1, 2| <1}} —
—{(m,?hz)l z =1, (m+%)2+y2<1_]5‘}u{(w7?/’z)| 2 = —1,
(@ —3)2+92 < 55},
X, = {(=, 9,9 (@+1+92 =3, 0<2< PV {l=, y,2)|
(@—3P+y" = 15 -1 <2< 0},
Xy, ={(z,9,2) &I <1, yI<1, 2 =0} —{(&,9,2) (z+})*+¥* < 3,
2 =0u{@,y,) (—3)’+y" < i 2 = 0},
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X, = {(mryyz)l z2=0,—-3{>y> —1,0<z<1}u{(m,y,z)l x =0,
1<y<1,0>2> —1}.

Let &% be the unit 2-sphere broken into 5 regions Y,, where Y,
= {(e,0,9)l e =1, 0602, (i—1)in<p<iin}, Fig. 2. Define
f: 8-> X by the following four local homeomorphisms:

fir Y3—X,,
for Y,uY, > X,,
fs: Y;—>“lower room” of X,

fi: Y= “upper room” of X.

It should be clear that the complement of X is just on open 3-cel

(a point).
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IFig. 2 Fig. 3

To show the result for a torus, let T be an unknotted torus in §°
with an attached 3-cell, D®*x I, such that Tn (D?xI) = (boundary
D) x I and the intersection is homotopic to a longitude (Fig. 3). Next,
build a copy of X in D*x I so that (boundary D?)x I corresponds to
{(,y,2) wl<1, lyl<1,z2 = +1,orz = £1, [y| <1, 2| <1} in X. Now
define a map f: (boundary of D* x In T — copy X)| onto the copy of X
in the manner of f,, f5, and f,. By repeating this construction on a latitude
curve, we then have a local homeomorphism of T onto a complex whose
complement is two open 3-cells. Then, as in the construction of the sphere
case, we can obtain the desired map.

The case where M?® is a Torus can be shown by constructing 2n +1
copies of X in the manner of the Torus.

Finally, the non-orientable case follows in that all non-orientable
surfaces can be immersed in 8% and our Torus construction will reduce
the complement to a set of open 3-cells.
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