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OPERATORS ON VN(G) COMMUTING WITH A(G)

BY

CARLO CECCHINI (GENOVA)

1. Introduction. Let G be a locally compact group; we dcnote by
VN (@) the von Neumann algebra generated by the operators of left transla-
tions by elements of G, and by A (G) its predual, as in [2]. For every v
in 4(G@) we consider the linear operator T' — »T on VN(@) defined by
requiring the equation
(IUT, u) = (T’ 'm’)

to hold for every u in A (G). We call ¥ the set of bounded linear operators &
on VN (@) commuting with A4 (@), i.e. such that

v®(T) = @ (vT)

for each v in A(@) and T in VN (@). It is immediate to check that % is an
algebra.

In Section 2 we identify the space # of those elements in Y which
are weak-* continuous on VN (@) with the algebra B,(G@) of multipliers.
of A (@), and we show that ® is a subset of the center of . In Section 3
an cquivalence chain is proved, connecting the commutativity of U,
the discreteness of G, and the fact that U coincides with #. Section 4
is devoted to the identification of A with the dual of the subspace of A
congisting of uniformly continuous functionals (UBC) on A (@), defined.
as in [3] and [4], in the particular case in which G is an amenable group..

The problems discussed in Section 2 are in a sense the “dual” problems
of the ones treated in [6] and [7]. Some parts of this paper*, in particular
Section 4, have been proved independently by Lau [4].

2. In this section we prove two theorems relating the algebra B,(G).
of multipliers of 4 (@) with .

THEOREM 1. There ts a natural isomorphism 2 between B,(G) and the:
subalgebra R of the weak-* continuous elements in A, where A(F) = D, ® being
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a weak-* continuous element of A, and F a multiplier of A(Q) defined by the
equation

1) (F(u), T) = (u, ®(T))

Jor every u in A(Q) and T in VN (G).
Moreover, for any F in B,(G) we have

[A(F)}(L,) = F(2) Ly,

-where L, i8 the left translation by x on Ly(G).

Proof. Relation (1) establishes an isomorphism between the Banach
-algebra of continuous linear operators on A(@) and the Banach algebra
of weak-* continuous linear operators on VN(G). We must show that if
F is a multiplier of 4 (@), then A(F) is in A and, conversely, that if @ is in
A, then A~ !(P) is in B,(G).

The first assertion follows from the fact that for all u, v in A(G) and
T in VN(G) we have

(’D[}.(F)](T), “) = ([A(F)](T)y 'm’) = (T’ F("w)) = (T’ "’F(“))
= (0T, F(u)) = ([A(F)](oT), u)

.and, thercfore,
o[A(F)U(T) = [A(F)](ot).

The second assertion follows from the fact that for all «, v in A(G)
and ¢ in G we have

[[A~ (@) )(uv)] () = (L., [A~*(P)](uv))
= (P(L,), wv) = (vD(L,), u) = (P(vL,), u)
= (vL,, [A71(®) () = (L., v[A~(P)]())
= [o[A7(D)](w)] ().

The last statement in the theorem is true, since

(ABNE,), u) = (L,, F(u)) = (F(u))(z) = F(x)u()
= (F(x)L,,u) for any u in A(G).

COROLLARY 1. & i8 abelian.

Proof. B,(G) is obviously abelian, and so is # by Theorem 1.

THEOREM 2. # < Z(N) if Z(A) is the center of NA.

We need first the following lemmas:

LeEMMA 1. If F is in B,(GQ), then F(v)T = [A(F)](oT) for all v in A(G)
and T in VN (@Q).
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Proof. Given v in A(G) and T in VN (@), for all « in A(@) we have

(F(v)T,u) = (T, F(v)u) = (T, F(vu)) = (T, vF(u)) = (oT, F(u))
= ([A(F)](vT), w).

LeMMA 2. If oT = 0 for all T in A(G), then T = 0.
For the proof sce [2], Proposition (4.6).

Proof of Theorem 2. Let @, € # and @, € . By Theorem 1 there
is an clement F of B,(G) such that A(F) = &,. Then, by Lemma 1, for
any v in 4(@) and T in VN (G) we have

v (D, (Do(T))) = v ([A(F)](P:(T)))
= [A(F)] (vD(T)) = F(v) (P.(T))
= @, (F(”)T) = @, ([A(F)](”T)) = D, (¢1(”T))
= v (@, (D,(T)))
and therefore, by Lemma 1, @,9, = 9,9,.
COROLLARY 2. The algebra of linear bounded operators on VN (G) com-
muting with A(Q) i8 the same as the algebra of bounded linear operators

commuting with B,(G) (in the sense of the correspondence established in
Theorem 1).

3. The aim of this section is to study the commutativity of 2.

LEMMA 3. L, is the unique norm-one element in VN (G) such that vT
= v(x)T for all v in A(G).

Proof. It follows from Theorem 1 that L, has this property. Let T
be any other element in VN (@) with norm one. There must be at least
one point x, # « in the support of 7. Let us take a v in A(G) such that
o(x) # 0 and v(%,) = 0. Then x, ¢ suppoT, and so T and vT have different
supports, whence the property in the lemma cannot hold for 7.

PropoSITION 1. The set of common eigenvectors for all elements in A
48 the set of all elements of VN (Q) of the form oL, for = in G.

Proof. Let @ € A. Then

v®(L,) = D(vL,) = @ (v(2)L,) = v(x)D(L,)
for all » in 4 (@), and 8o, by Lemma 3,
b(L,) = ¢(P, ) L,,

where ¢ is a complex number depending on @ and «. If T in VN (@) is not
of the form aL, for some  in G, then its support contains at least two
different points x, and z,. Then, as in Lemma 3, T cannot be an eigen-
vector for any v in A(G) such that v(z,) = 0 and o(x,) # 0.
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THEOREM 3. Thfollowing statemenis are equivalent:
(I) G is discrete,

(I) A = &,

(III) A 48 abelian.

Proof. (I) = (II). If G is discrete, then VN (@) = L,(G@), for — denot-
ing by 6, the function whose value is 1 on # and 0 elsewhere, and by e
the identity of G — we have

If = TL, f = T(3,+f) = (T4,)+f,
T, being an L,-function. If we put (T4,)(x) = T'(z), we have Tf = T (x)f
for any T in VN(@). Since J, is in 4(@), we also have T'(z) = (T, 4,).

Then it follows from Proposition 1 and the equality (L., 4,) = 1 for each
@ in A and for each T in VN (@) that

((DT)A (x) = (¢(T)’ 6.1:) = (Q(T), 6z6z)
= (8,2(T), &) = (®(8:(T), &) = (2 (T (@) Ls,), 4,)
= (®(T(2)L,), 8,) = T(a) (¢(®, 2) L, &,
= T(2)p(D, ).
Therefore, to each @ in U there corresponds a multiplication by the

function ¢(®, z) on the space of the functions T (x). Now let T, be a se-
quence in VN (G) weakly converging to zero. For any @ in A we have

lim (®(T,), 8,) = lim ¢(®,a)(T,(x)) = 0,

and, simply by taking finite sums, we get
lim (®(T,),v) =0
1—»00
for any » with compact support in 4 (@), since G is discrete. But the ele-

ments of A(G) with compact support are norm dense in A4(G), whence
the implication follows.

For (II) = (III) see Corollary 1.

(III) = (I). If @G is not discrete, then there are two different means
4y and u, on G by [5]. Let us write

O(T) = w(I)I (i =1,2).

The @,'s are different norm continuous linear operators on VN (&)
commuting with A4(G), since

Dy (vT) = Dy(vT)I = Dy(T)v(e)I = Dy(T)vI = vPy(T).
But @, and @, do not commute, since

Py (2(T)) = B; ((T)I) = py(T)I = P4(T).
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4. In this section we deal with a particular case of an amenable group
and show the relation between A and the dual of a certain subspace of
VN(G).

LEMMA 4. Let @ be an amenable group ; then {vT: v e A(G), T € VN(G)}
18 a closed subspace of VN (G). It coincides with the set of elements in VN (@)
Jfor which

limv, T =T,
where v, 18 an approximate identity in A(QG).

Proof. We apply Corollary 2.4 of [1] with A = 4A(@), X = VN(G)
and o(v)T = oT for v in A(@) and T in VN (@). The mapping ¢ is faithful,
since »T = 0 for each T implies vL, = v(x)L, = 0 for each # in @, and
then » = 0.

Definition 1. The subset of VN (G), described in Lemma 4, will be
called UBC(®), as in [3] and [4].

Remark. If ¥ ¢s in A and ¥|ypeq = 0, then ¥ is the zero operator.

Proof. We have v¥(T) = ¥ (vT) = Oforallvin A(G)and T in VN (Q).
Therefore, by Lemma 2, ¥(T) = 0 for all T and ¥ = 0.

Definition 2. Let @ be an element of UBC* (dual of UBC); then
we can define the operator ¢(®) on VN(G) by requiring that the equation
(o(P)(T), v) = (P, oT)

hold for all T in VN (@) and » in 4 (Q).
THEOREM 4. For any amenable group G the mapping o defined above
is an isometric bijection from UBC(G)* onto .
Proof. The operator ¢(®) is in A. Its linearity is obvious; for all
% in A(@) and T in VN (@) we have
(v[(a(@I(T)], %) = ([(o(D)(T)], uo)
= (@, (w)T) = (P, u(vT)) = ((o(®))(vT), u)

and, therefore, o(®) commutes with the action of v on VN(G). Finally,

lo(@)l = sup ([e(P)NT)| = sup ([o(P)(T)], )
Te[VN@)); T VN(@)),
=T 33%); (P, oT) = Sup (2, R) = ||D].
oA (G Re[UBC(G),

The mapping o is one-to-one, since if ¢(®P) = 0, then for all T in VN (Q)
and v in 4(G) we have

0 = ([o(P)(T)],v) =(P,»T) and & =0.

The mapping ¢ is onto, since the equation (X (T),v) = (P, vT) has
clearly a solution in X for any ®.
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