1980

FASC. 1

OPERATORS ON VN(G) COMMUTING WITH A(G)

 \mathbf{BY}

CARLO CECCHINI (GENOVA)

1. Introduction. Let G be a locally compact group; we denote by $\operatorname{VN}(G)$ the von Neumann algebra generated by the operators of left translations by elements of G, and by A(G) its predual, as in [2]. For every v in A(G) we consider the linear operator $T \to vT$ on $\operatorname{VN}(G)$ defined by requiring the equation

$$(vT, u) = (T, uv)$$

to hold for every u in A(G). We call $\mathfrak A$ the set of bounded linear operators Φ on $\mathrm{VN}(G)$ commuting with A(G), i.e. such that

$$v\Phi(T) = \Phi(vT)$$

for each v in A(G) and T in VN(G). It is immediate to check that $\mathfrak A$ is an algebra.

In Section 2 we identify the space \mathcal{R} of those elements in \mathfrak{A} which are weak-* continuous on VN(G) with the algebra $B_2(G)$ of multipliers of A(G), and we show that \mathcal{R} is a subset of the center of \mathfrak{A} . In Section 3 an equivalence chain is proved, connecting the commutativity of \mathfrak{A} , the discreteness of G, and the fact that \mathfrak{A} coincides with \mathcal{R} . Section 4 is devoted to the identification of \mathfrak{A} with the dual of the subspace of \mathfrak{A} consisting of uniformly continuous functionals (UBC) on A(G), defined as in [3] and [4], in the particular case in which G is an amenable group.

The problems discussed in Section 2 are in a sense the "dual" problems of the ones treated in [6] and [7]. Some parts of this paper*, in particular Section 4, have been proved independently by Lau [4].

2. In this section we prove two theorems relating the algebra $B_2(G)$ of multipliers of A(G) with \mathfrak{A} .

THEOREM 1. There is a natural isomorphism λ between $B_2(G)$ and the subalgebra $\mathcal R$ of the weak-* continuous elements in $\mathfrak A$, where $\lambda(F)=\Phi$, Φ being

^{*} This work is partially supported by the Laboratorio per la Matematica. Applicata.

a weak-* continuous element of \mathfrak{A} , and F a multiplier of A(G) defined by the equation

$$(T(u), T) = (u, \Phi(T))$$

for every u in A(G) and T in VN(G).

Moreover, for any F in $B_2(G)$ we have

$$[\lambda(F)](L_x) = F(x)L_x,$$

where L_x is the left translation by x on $L_2(G)$.

Proof. Relation (1) establishes an isomorphism between the Banach algebra of continuous linear operators on A(G) and the Banach algebra of weak-* continuous linear operators on VN(G). We must show that if F is a multiplier of A(G), then $\lambda(F)$ is in $\mathfrak A$ and, conversely, that if Φ is in $\mathfrak A$, then $\lambda^{-1}(\Phi)$ is in $B_2(G)$.

The first assertion follows from the fact that for all u, v in A(G) and T in VN(G) we have

$$egin{aligned} ig(v[\lambda(F)](T),uig)&=ig([\lambda(F)](T),uvig)&=ig(T,F(uv)ig)&=ig(T,vF(u)ig)\ &=ig(vT,F(u)ig)&=ig([\lambda(F)](vT),uig) \end{aligned}$$

and, therefore,

$$v[\lambda(F)](T) = [\lambda(F)](vt).$$

The second assertion follows from the fact that for all u, v in A(G) and x in G we have

$$\begin{split} \big[[\lambda^{-1}(\varPhi)](uv) \big](x) &= \big(L_x, \, [\lambda^{-1}(\varPhi)](uv) \big) \\ &= \big(\varPhi(L_x), \, uv \big) = \big(v\varPhi(L_x), \, u \big) = \big(\varPhi(vL_x), \, u \big) \\ &= \big(vL_x, \, [\lambda^{-1}(\varPhi)](u) \big) = \big(L_x, \, v[\lambda^{-1}(\varPhi)](u) \big) \\ &= \big[v[\lambda^{-1}(\varPhi)](u) \big](x) \, . \end{split}$$

The last statement in the theorem is true, since

$$((\lambda(F))(L_x), u) = (L_x, F(u)) = (F(u))(x) = F(x)u(x)$$
$$= (F(x)L_x, u) \quad \text{for any } u \text{ in } A(G).$$

COROLLARY 1. R is abelian.

Proof. $B_2(G)$ is obviously abelian, and so is \mathcal{R} by Theorem 1.

THEOREM 2. $\mathscr{R} \subseteq \mathscr{Z}(\mathfrak{A})$ if $\mathscr{Z}(\mathfrak{A})$ is the center of \mathfrak{A} .

We need first the following lemmas:

LEMMA 1. If F is in $B_2(G)$, then $F(v)T = [\lambda(F)](vT)$ for all v in A(G) and T in VN(G).

Proof. Given v in A(G) and T in VN(G), for all u in A(G) we have

$$(F(v)T, u) = (T, F(v)u) = (T, F(vu)) = (T, vF(u)) = (vT, F(u))$$

= $([\lambda(F)](vT), u)$.

LEMMA 2. If vT = 0 for all T in A(G), then T = 0.

For the proof see [2], Proposition (4.6).

Proof of Theorem 2. Let $\Phi_1 \in \mathcal{R}$ and $\Phi_2 \in \mathfrak{A}$. By Theorem 1 there is an element F of $B_2(G)$ such that $\lambda(F) = \Phi_1$. Then, by Lemma 1, for any v in A(G) and T in VN(G) we have

$$egin{aligned} v\left(arPhi_1\left(arPhi_2(T)
ight)
ight) &= v\left(\left[\lambda(F)
ight]\left(arPhi_2(T)
ight) \\ &= \left[\lambda(F)
ight]\left(varPhi_2(T)
ight) &= F(v)\left(arPhi_2(T)
ight) \\ &= arPhi_2\left(F(v)T
ight) &= arPhi_2\left(\left[\lambda(F)
ight](vT)
ight) &= arPhi_2\left(arPhi_1(vT)
ight) \\ &= v\left(arPhi_2\left(arPhi_1(T)
ight)
ight) \end{aligned}$$

and therefore, by Lemma 1, $\Phi_1\Phi_2 = \Phi_2\Phi_1$.

COROLLARY 2. The algebra of linear bounded operators on VN(G) commuting with A(G) is the same as the algebra of bounded linear operators commuting with $B_2(G)$ (in the sense of the correspondence established in Theorem 1).

3. The aim of this section is to study the commutativity of A.

LEMMA 3. L_x is the unique norm-one element in VN(G) such that vT = v(x)T for all v in A(G).

Proof. It follows from Theorem 1 that L_x has this property. Let T be any other element in VN(G) with norm one. There must be at least one point $x_0 \neq x$ in the support of T. Let us take a v in A(G) such that $v(x) \neq 0$ and $v(x_0) = 0$. Then $x_0 \notin \text{supp} vT$, and so T and vT have different supports, whence the property in the lemma cannot hold for T.

PROPOSITION 1. The set of common eigenvectors for all elements in \mathfrak{A} is the set of all elements of VN(G) of the form aL_x for x in G.

Proof. Let $\Phi \in \mathfrak{A}$. Then

$$v\Phi(L_x) = \Phi(vL_x) = \Phi(v(x)L_x) = v(x)\Phi(L_x)$$

for all v in A(G), and so, by Lemma 3,

$$\Phi(L_x) = \varphi(\Phi, x) L_x,$$

where φ is a complex number depending on Φ and x. If T in VN(G) is not of the form αL_x for some x in G, then its support contains at least two different points x_1 and x_2 . Then, as in Lemma 3, T cannot be an eigenvector for any v in A(G) such that $v(x_1) = 0$ and $v(x_2) \neq 0$.

THEOREM 3. This following statements are equivalent:

- (I) G is discrete,
- (II) $\mathfrak{A} = \mathscr{R}$,
- (III) A is abelian.

Proof. (I) \Rightarrow (II). If G is discrete, then $VN(G) \subset L_2(G)$, for — denoting by δ_x the function whose value is 1 on x and 0 elsewhere, and by ϵ the identity of G — we have

$$Tf = TL_{\delta_e}f = T(\delta_e * f) = (T\delta_e) * f,$$

 $T\delta_e$ being an L_2 -function. If we put $(T\delta_e)(x) = \hat{T}(x)$, we have $Tf = \hat{T}(x)f$ for any T in VN(G). Since δ_x is in A(G), we also have $T(x) = (T, \delta_x)$. Then it follows from Proposition 1 and the equality $(L_x, \delta_x) = 1$ for each Φ in \mathfrak{A} and for each T in VN(G) that

$$egin{aligned} \left(oldsymbol{arPhi} T
ight) \hat{\ } \left(x
ight) &= \left(oldsymbol{arPhi} \left(T
ight), \, \delta_x
ight) = \left(oldsymbol{arPhi} \left(T
ight), \, \delta_x
ight) = \left(oldsymbol{arPhi} \left(\hat{T} \left(x
ight) L_{\delta_x}
ight), \, \delta_x
ight) \ &= \left(oldsymbol{arPhi} \left(\hat{T} \left(x
ight) L_x
ight), \, \delta_x
ight) = \hat{T} \left(x
ight) \left(oldsymbol{arPhi} \left(oldsymbol{arPhi}, \, x
ight) L_x, \, \delta_x
ight) \ &= \hat{T} \left(x
ight) oldsymbol{arPhi} \left(oldsymbol{arPhi}, \, x
ight). \end{aligned}$$

Therefore, to each Φ in $\mathfrak A$ there corresponds a multiplication by the function $\varphi(\Phi, x)$ on the space of the functions $\hat{T}(x)$. Now let T_n be a sequence in VN(G) weakly converging to zero. For any Φ in $\mathfrak A$ we have

$$\lim_{n\to\infty} (\Phi(T_n), \, \delta_x) = \lim_{n\to\infty} \varphi(\Phi, x) (\hat{T}_n(x)) = 0,$$

and, simply by taking finite sums, we get

$$\lim_{n\to\infty} \big(\varPhi(T_n),\,v\big)=0$$

for any v with compact support in A(G), since G is discrete. But the elements of A(G) with compact support are norm dense in A(G), whence the implication follows.

For (II) \Rightarrow (III) see Corollary 1.

(III) \Rightarrow (I). If G is not discrete, then there are two different means μ_1 and μ_2 on G by [5]. Let us write

$$\Phi_i(T) = \mu_i(T)I \quad (i = 1, 2).$$

The $\Phi_{\mathbf{f}}$'s are different norm continuous linear operators on $VN(\mathbf{G})$ commuting with $A(\mathbf{G})$, since

$$\Phi_{\epsilon}(vT) = \Phi_{\epsilon}(vT)I = \Phi_{\epsilon}(T)v(e)I = \Phi_{\epsilon}(T)vI = v\Phi_{\epsilon}(T).$$

But Φ_1 and Φ_2 do not commute, since

$$\Phi_i(\Phi_j(T)) = \Phi_i(\mu_j(T)I) = \mu_j(T)I = \Phi_j(T).$$

4. In this section we deal with a particular case of an amenable group and show the relation between $\mathfrak A$ and the dual of a certain subspace of $\operatorname{VN}(G)$.

LEMMA 4. Let G be an amenable group; then $\{vT: v \in A(G), T \in VN(G)\}$ is a closed subspace of VN(G). It coincides with the set of elements in VN(G) for which

$$\lim v_a T = T,$$

where v_a is an approximate identity in A(G).

Proof. We apply Corollary 2.4 of [1] with $\mathfrak{A} = A(G)$, X = VN(G) and $\sigma(v)T = vT$ for v in A(G) and T in VN(G). The mapping σ is faithful, since vT = 0 for each T implies $vL_x = v(x)L_x = 0$ for each x in G, and then $v \equiv 0$.

Definition 1. The subset of VN(G), described in Lemma 4, will be called $UBC(\hat{G})$, as in [3] and [4].

Remark. If Ψ is in $\mathfrak A$ and $\Psi|_{\mathrm{UBC}(G)}=0$, then Ψ is the zero operator.

Proof. We have $v\Psi(T) = \Psi(vT) = 0$ for all v in A(G) and T in VN(G). Therefore, by Lemma 2, $\Psi(T) = 0$ for all T and $\Psi \equiv 0$.

Definition 2. Let Φ be an element of UBC* (dual of UBC); then we can define the operator $\sigma(\Phi)$ on VN(G) by requiring that the equation

$$(\sigma(\Phi)(T),v)=(\Phi,vT)$$

hold for all T in VN(G) and v in A(G).

THEOREM 4. For any amenable group G the mapping σ defined above is an isometric bijection from UBC(\hat{G})* onto \mathfrak{A} .

Proof. The operator $\sigma(\Phi)$ is in \mathfrak{A} . Its linearity is obvious; for all u in A(G) and T in VN(G) we have

$$egin{aligned} igl(vigl[igl(\sigma(arPhi)igr)igr),uigr) &= igl(igl[igl(\sigma(arPhi)igr)igr),uvigr) \ &= igl(arPhi,(uv)Tigr) &= igl(arPhi,u(vT)igr) &= igl(igl(\sigma(arPhi)igr)(vT),uigr) \end{aligned}$$

and, therefore, $\sigma(\Phi)$ commutes with the action of v on VN(G). Finally,

$$egin{aligned} \|\sigma(arPhi)\| &= \sup_{T \in [\operatorname{VN}(G)]_1} \|[\sigma(arPhi)](T)\| &= \sup_{T \in [\operatorname{VN}(G)]_1} \left([\sigma(arPhi)(T)], v\right) \ &= \sup_{T \in [\operatorname{VN}(G)]_1} (arPhi, vT) &= \sup_{R \in [\operatorname{UBC}(\hat{G})]_1} (arPhi, R) &= \|arPhi\|. \end{aligned}$$

The mapping σ is one-to-one, since if $\sigma(\Phi) = 0$, then for all T in VN(G) and v in A(G) we have

$$0 = ([\sigma(\Phi)(T)], v) = (\Phi, vT)$$
 and $\Phi \equiv 0$.

The mapping σ is onto, since the equation $(X(T), v) = (\Phi, vT)$ has clearly a solution in X for any Φ .

REFERENCES

- [1] P. C. Curtis and A. Figà-Talamanca, Factorization theorems for Banach algebras, Function algebras, Scott Foresman 1966.
- [2] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bulletin de la Société Mathématique de France 92 (1964), p. 181-236.
- [3] E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Transactions of the American Mathematical Society 189 (1974), p. 371-382.
- [4] A. T. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, preprint.
- [5] P. F. Renaud, Invariant means on a class of von Neumann algebras, Transactions of the American Mathematical Society 170 (1972), p. 285-291.
- [6] A. Zappa, The center of the convolution algebra C*(G), Rendiconti del Seminario-Matematico dell'Università di Padova 52 (1974), p. 72-83.
- [7] The center of an algebra of operators, preprint.

Reçu par la Rédaction le 21. 1. 1977