Scalar differential concomitants of first order of a symmetric connexion Γ^i_{jk} in the two-dimensional space and their applications

by Michael Lorens (Katowice)

Abstract. Let A^n be the *n*-dimensional space with a symmetric connexion Γ^i_{jk} . As is known (cf. [5], p. 105, also [3], p. 279), if a purely differential geometric object of first class is a differential concomitant of first order of the symmetric connexion Γ^i_{jk} , then this object is an algebraic concomitant of the curvature tensor R_{ijk}^l in A^n . In particular, determination of first order scalar differential concomitants of Γ^i_{jk} is important from the geometric point of view, because we can characterize the spaces A^n by means of such scalars.

L. Bieszk (cf. [1]) has determined (in the functions class C_1) the general form of scalar and density concomitants of the curvature tensor in the two-dimensional space A^2 .

In the present note we determine in A^2 all scalar (density) differential concomitants of first order of Γ^i_{jk} , but we assume no regularity conditions concerning those functions (Section 1).

In Section 2 a certain classification of spaces A^2 is given.

In Section 3 we investigate one of the classes found in Section 2.

1. In the space A^n with a symmetric connexion Γ^i_{jk} the curvature tensor R^l_{ijk} has the form

$$R_{j\downarrow l}^{i} = 2\left(\partial_{fj} \Gamma_{kll}^{i} + \Gamma_{fj|s|}^{i} \Gamma_{kll}^{s}\right).$$

The problem of finding the first order scalar differential concomitants of Γ_{jk}^i rests on solving the equation

$$(1.2) f(R_{i'j'k'}^{l'}) = f(R_{ijk}^{l}), i, j, k, l, i', j', k', l' = 1, 2, ..., n.$$

Tensor (1.1) has the following concomitants:

$$(1.3) R_{ik} = R_{llk}^{l},$$

$$V_{ik} = R_{ikl}^{l},$$

and for n = 2 we have

$$(1.5) V_{ik} = 2R_{[ik]} = R_{ik} - R_{ki}$$

(cf. [2], p. 213).

276 M. Lorens

In the *n*-dimensional space the number N of essential components of the tensor $R_{ijk}^{\ l}$ is equal to $n^2\binom{n}{2}$. For n=2 we consider the following essential components:

$$R_{121}^1$$
, R_{122}^1 , R_{121}^2 , R_{122}^2 .

From (1.3) it follows that

$$(1.6) \quad R_{121}^{1} = R_{21}, \quad R_{122}^{1} = R_{22}, \quad R_{121}^{2} = -R_{11}, \quad R_{122}^{2} = -R_{12}.$$

We introduce the following notation:

$$K_{ik} = R_{(ik)} = \frac{1}{2}(R_{ik} + R_{ki}),$$

$$(1.8) \omega = \operatorname{Det} ||K_{ik}||,$$

(1.9)
$$\sigma = \operatorname{Det} \| V_{ik} \|.$$

First we prove

LEMMA. In A^2 every scalar differential concomitant of first order of Γ is a scalar concomitant of the tensor K_{ij} and of the density σ .

Proof. As follows from (1.5), (1.6), (1.7), our problem leads to determination of scalar concomitants of the pair of tensors (K_{ij}, V_{ij}) . In A^2 the tensor V_{ij} has the single essential component $V_{12} = a$. If $\sigma = \text{Det } ||V_{ij}||$, then $a = \sqrt{\sigma}$ or $a = -\sqrt{\sigma}$. We notice that the following pairs of matrices

$$\left(\|K_{ij}\|, \| egin{array}{ccc} 0 & \sqrt{\sigma} \\ -\sqrt{\sigma} & 0 \end{array} \right), \quad \left(\|K_{ij}\|, \| egin{array}{ccc} 0 & -\sqrt{\sigma} \\ \sqrt{\sigma} & 0 \end{array} \right)$$

are congruent. Hence every scalar concomitant of the pair (K_{ij}, V_{ij}) is a scalar concomitant of the tensor K_{ij} and of the density σ .

This completes the proof.

Now we shall determine the general solution of the equation

$$(1.10) h(K_{i'j'}, \sigma') = h(K_{ij}, \sigma),$$

where

$$K_{i'j'}=A^i_{i'}A^j_{i'}K_{ii}, \quad \sigma'=J^{-2}\sigma$$

and $||A_i^{i'}|| \in GL(2), J = \text{Det} ||A_i^{i'}||.$

We assume that $\omega \neq 0$. It is known that we can always find a non-singular matrix $||A_{\mathcal{L}}^{i}||$ such that

$$||K_{i'j'}|| = \left\| \begin{array}{cc} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{array} \right|,$$

where $\epsilon_i = \pm 1$.

It follows from (1.11) that

$$J^{-2} = \varepsilon_1 \varepsilon_2 / \omega.$$

Inserting (1.11) and (1.12) into (1.10), we obtain

(1.13)
$$h(K_{ij}, \sigma) = h\left(\left\|\begin{array}{cc} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{array}\right\|, \ \varepsilon_1 \varepsilon_2 \frac{\sigma}{\omega}\right),$$

where σ/ω is a scalar.

Let us put $\omega=0$. Then the matrix $||K_{ij}||$ has the following eigenvalues: $\lambda_1=0$, $\lambda_2=K_{11}+K_{22}$. Therefore there exists an orthogonal matrix $||A_{i'}^{i}||$ such that

$$\|K_{i'j'}\| = \left\| egin{array}{cc} K_{11} + K_{22} & 0 \ 0 & 0 \end{array} \right\|.$$

If $K_{11} + K_{22} \neq 0$, we put

$$\|A_{j''}^{i'}\| = G(\sigma) \left\| \frac{1}{\sqrt{|K_{11} + K_{22}|}} \quad 0 \right\|,$$

where

$$G(\sigma) = egin{cases} \left\| egin{array}{ccc} 0 & 1 \ 1 & 0 \end{array}
ight\|, & \sigma = 0, \ \left\| egin{array}{ccc} 0 & rac{1}{\sqrt{\sigma}} \ 1 & 0 \end{array}
ight\|, & \sigma
eq 0. \end{cases}$$

Inserting the matrix $||A_{i''}^i|| = ||A_{i'}^i A_{i''}^{i'}||$ into (1.10), we get

$$(1.14) h(K_{ij}, \sigma) = h\left(\left\| \begin{matrix} 0 & 0 \\ 0 & \operatorname{sgn}(K_{11} + K_{22}) \end{matrix} \right\|, \eta(\sigma) \right),$$

where

$$\eta(\sigma) = \begin{cases} 0, & \sigma = 0, \\ 1, & \sigma \neq 0. \end{cases}$$

If $K_{11} + K_{22} = 0$, then

$$h(K_{ij}, \sigma) = h\left(\left\| \begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right\|, \eta(\sigma) \right).$$

Thus we have obtained the following

THEOREM 1. Every scalar differential concomitant f of first order of the symmetric connexion Γ_{jk}^i , for n=2, has the form

$$f = egin{cases} arphi(r,s,\,\sigma/\omega), & \omega
eq 0, \ \psi(r,s,\,\eta(\sigma)), & \omega = 0, \end{cases}$$

278 M. Lorens

where s is the signature of the tensor K_{ij} , r is the rank of the tensor K_{ij} , φ and ψ are arbitrary functions.

Remark. With aid of similar methods we can obtain the following corollaries:

COROLLARY 1. If $\omega^2 + \sigma^2 = 0$, then there do not exist differential concomitants of first order of the symmetric connexion Γ^i_{jk} , for n = 2, which are G- or W-densities of a weight $p, p \neq 0$.

COROLLARY 2. If $\sigma = 0$, $\omega \neq 0$, then there do not exist differential concomitants of the first order of the symmetric connexion Γ^i_{jk} , for n = 2, which are G-densities of a weight p, $p \neq 0$; however, every differential concomitant of first order of Γ^i_{jk} which is a W-density of a weight p has the form

$$|\omega|^{-p/2}\gamma$$
,

where γ is an arbitrary function of the signature s of the tensor K_{ij} (see also [4], p. 74-75).

COROLLARY 3. If $\sigma \neq 0$, then every differential concomitant of first order of the symmetric connexion Γ^i_{jk} , for n=2, which is a density of a weight $p, p \neq 0$, has the form

$$\varepsilon |a|^{-p}g$$
,

where

$$a = V_{12},$$

$$\varepsilon = egin{cases} 1 & \textit{for a W-density}, \\ \operatorname{sgn} a & \textit{for a G-density}, \\ g = egin{cases} \varphi(r,s,\sigma/\omega), & \omega \neq 0, \\ \psi(r,s), & \omega = 0. \end{cases}$$

For
$$\sigma = 0$$
:

I.
$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$
,

II. $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$,

III. $\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}$,

IV. $\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}$,

$$\begin{array}{c|c}
\mathbf{v}. & -1 & 0 \\
\mathbf{o} & \mathbf{o}
\end{array}, \\
\mathbf{vI.} & 0 & 0 \\
\mathbf{o} & \mathbf{o}$$

For $\sigma \neq 0$:

I.
$$\begin{vmatrix} 1 & \frac{\sigma}{\omega} \\ -\frac{\sigma}{\omega} & 1 \end{vmatrix}$$

II. $\begin{vmatrix} 1 & -\frac{\sigma}{\omega} \\ \frac{\sigma}{\omega} & -1 \end{vmatrix}$
 $\omega \neq 0$,

III. $\begin{vmatrix} -1 & \frac{\sigma}{\omega} \\ -\frac{\sigma}{\omega} & -1 \end{vmatrix}$

$$\begin{bmatrix} \mathbf{IV.} & \begin{vmatrix} \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{vmatrix} \\ \mathbf{V.} & \begin{vmatrix} -\mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{vmatrix} \end{bmatrix} \omega = 0$$

$$\mathbf{VI.} & \begin{vmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{vmatrix}$$

(see also [5], p. 224).

The type of a space A^2 is given by the following quantities:

$$r, s, \sigma/\omega, \quad ext{if } \omega \neq 0, \\ r, s \quad ext{if } \sigma \neq 0, \ \omega = 0.$$

On the other hand, a suitable space A^2 exists for every type of the tensor R_{ij} $(R_{ijk}{}^l)$. In fact, we have

For $\sigma = 0$:

III.
$$\Gamma_{11}^{11} \stackrel{*}{=} 1$$
, $\Gamma_{12}^{1} \stackrel{*}{=} -1$, $\Gamma_{22}^{1} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{1} \stackrel{*}{=} 0$, $\Gamma_{22}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} \Gamma_{12}^{2} \stackrel{*}{=} \Gamma_{12}^{2} \stackrel{*}{=} \Gamma_{22}^{2} = 0$.

For $\sigma \neq 0$:

I. $\Gamma_{11}^{11} \stackrel{*}{=} \alpha u^{2}$, $\Gamma_{12}^{1} \stackrel{*}{=} 1$, $\Gamma_{12}^{1} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{11}^{2} \stackrel{*}{=} 1$, $\Gamma_{12}^{2} \stackrel{*}{=} 0$, $\Gamma_{12}^{2} \stackrel{*}{=$

where u^1 , u^2 are local coordinates in the space A^2 , $a = \text{const} \neq 0$.

3. Let A^2 be a space with a symmetric connexion Γ_{jk}^i . We assume that there exists a symmetric regular tensor g_{ij} and that

$$(3.1) V_k g_{ij} = 0.$$

(V denotes the covariant differentiation with respect to Γ_{jk}^i). It is known (cf. [2], p. 224) that in this case the parameters Γ_{jk}^i are Christoffel's symbols of the tensor g_{ij} and that such a space A^2 is a Riemann space.

Now we shall investigate spaces A^2 with $\sigma = 0$. In this case we shall seek a symmetric and regular tensor g_{ij} which fulfils (3.1). If r = 0, i.e., $R_{ij} = R_{ijk}^{l} = 0$, then (3.1) has the following solution:

$$g_{ij}=C,$$

where C = const (cf. [2], p. 228) and such a space A^2 is a Riemann space. For r = 1 or r = 2 we consider the system of equations

$$R_{12}g_{11} - R_{11}g_{12} = 0,$$

$$R_{22}g_{12} - R_{12}g_{22} = 0,$$

$$R_{22}g_{11} - R_{11}g_{22} = 0.$$

We know (cf. [2], p. 227) that (3.2) is a necessary condition for (3.1) to hold.

We now prove the following

THEOREM 2. A space A^2 with $\sigma = 0$ and r = 1 is not a Riemann space.

Proof. If r=1, then at a point p of the space A^2 the symmetric tensor R_{ij} has the canonical form

$$\|R_{ij}\|_p \stackrel{*}{=} \left\|egin{array}{c} arepsilon & 0 \ 0 & 0 \end{array}
ight\|, \quad arepsilon = \pm 1.$$

The system of equations (3.2) has at a point p the form

$$\varepsilon g_{12}=0, \quad \varepsilon g_{22}=0.$$

Hence $g_{12} = g_{22} = 0$ and every solution of (3.2) is singular.

This completes the proof.

Now we consider the case r=2. In this case we prove the following

THEOREM 3. The space A^2 with $\sigma=0$ and r=2 is a Riemann space if and only if

$$(3.3) V_k R_{ij} = -a_k R_{ij},$$

where a_k is a gradient field.

Proof. If a space A^2 is a Riemann space with $\sigma=0$ and r=2, then

$$R_{ij} = -Kg_{ij},$$

where K is Gauss' curvature and $K \neq 0$. Thus we have

$$V_k R_{ii} = (\partial_k \ln |K|) R_{ii}$$
.

We assume that $\sigma = 0$, r = 2 and (3.3). If r = 2, then the general solution of (3.2) has the form

$$g_{ij} = \tau R_{ij}.$$

Putting (3.4), where $\tau \neq 0$, into (3.1), we obtain

$$(3.5) V_k(\tau R_{ij}) = 0.$$

By covariant differentiation of (3.5) we obtain

$$(\partial_k \tau) R_{ij} + \tau V_k R_{ij} = 0$$

and thus

$$(3.6) V_k R_{ii} = -(\partial_k \ln |\tau|) R_{ii}.$$

It follows from (3.3) and (3.6) that

$$\partial_{\nu} \ln |\tau| = a_{\nu}$$
.

Let us put $a_k = \partial_k \beta$, where β is a scalar field. Then we have

$$\partial_k(\ln|\tau|-\beta)=0$$

and thus

$$\tau = e^{\beta + c},$$

where c = const.

This completes the proof.

References

- [1] L. Bieszk, On density concomitants and twice covariant tensor densities of the curvature tensor in the two dimensional space L², Demonstratio Math. 7. 2 (1974), p. 125-153.
- [2] S. Golab, Rachunek tensorowy, Warszawa 1956.
- [3] M. Lorens, Über Differentialkomitanten der linearen Übertragungen, Ann. Polon. Math. 23 (1970), p. 275-279.
- [4] Remarks on differential concomitants of the covariant tensor, Prace Naukowe U. Sl., Prace Mat. 1 (1969), p. 71-77.
- [5] J. A. Schouten, D. J. Struik, Einführung in die neueren Methoden der Differentialgeometrie, Gröningen 1935.
- [6] E. Siwek, Sur les domaines de transitivité du groupe de transformations des composantes d'un tenseur covariant du second ordre, Ann. Polon. Math. 10 (1961), p. 217-223.

Reçu par la Rédaction le 18. 2. 1977

k