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Scalar differential concomitants of first order of
a symmetric connexion 7}, in the two-dimensional space
and their applications

by MicHAL LorENS (Katowice)

Abstract. Let A™ be the n-dimensional space with a symmetric connexion I‘}k.
As is known (cf. [5], p. 105, also [3], p. 279), if a purely differential geometric object
of first class is a differential concomitant of first order of the symmetriec connexion
Fiilc’ then this object is an algebraic concomitant of the curvature tensor Ri,-,i in A"
In particular, determination of first order scalar differential concomitants -of I'j, is
important from the geometric point of view, because we can characterize the spaces A”
by means of such scalars.

L. Bieszk (cf. [1]) has determined (in the functions class 0,) the general form
of scalar and density concomitants of the curvature tensor in the two-dimensional
space AZ.

In the present note we determine in 42 all scalar (density) differential concomi-

tants of first order of I‘}'k, but we assume no regularity conditions concerning those
functions (Section 1).

In Section 2 a certain classification of spaces A% is given.
In Section 3 we investigate one of the .classes found in Section 2.

1. In the space A™ with a symmetric connexion I7, the curvature
tensor R has the form

(1.1) Ry =200y Tiy+ T I -

The problem of finding the first order scalar differential concomitants
of I}, rests on solving the equation

(1.2) f(Ri'j'k'l’) =f(Rijkl)r Gy fy by lyd'y§' K,V =1,2,...,n.

Tensor (1.1) has the following concomitants:

(1.3) R, = Ry},

(1.4) Vi = Ry

and for n = 2 we have

(1.5) Vt‘k = 2R[ik] = Rz'k_ Ry,

(cf. [2], p. 213).
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In the n-dimensional space the number N of essential components
n

of the tensor R} is equal to n“(2

). For » = 2 we consider the following
essential components:
Rxnly R12217 'RIZIZ! R1222'

From (1.3) it follows that

(1.6) Ry =Ry, Ry =R, Rjn®=—R,, R = —R,,.
We introduce the following notation:

(1.7) K, = By, = 3(By+Ry),

(1.8) o = Det ||Kyl,

(1.9) o = Deti ||V,l-

First we prove

LeMMA. In A* every scalar differential concomitant of first order of I'
is a scalar concomitant of the tensor K, and of the densily o.

Proof. As follows from (1.5), (1.6), (1.7), our problem leads to deter-
mination of scalar concomitants of the pair of tensors (K, V;;). In A*
the tensor V; has the single essential component V,, = a. If ¢ = Det |V,

then a = Vo or a = —Vo. We notice that the following pairs of matrices

R (nK L] Ve )
_ ]/E 0 ] (7B ‘/E 0
are congruent. Hence every scalar concomitant of the pair (K, V)

is a scalar concomitant of the tensor K,; and of the density o.
This completes the proof.

Now we shall determine the general solution of the equation

(IIKuII’

(1.10) h(K"j': o’) = h(Ky, 9),
where
K. = ALALK,;, o =dJ%
and ||4Y|| e GL(2), J = Det |4} ].
We assume that w # 0. It is known that we can always find a non-
singular matrix |A%| such that
e, 0

(1.11) 1 ppoll =
0 &

where ¢ = +-1.
It follows from (1.11) that

(1.12) CI—z = & Eg/w-
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Ingerting (1.11) and (1.12) into (1.10), we obtain

61 0 g
’ 3132; ’

(1.13) h(Ey, 0) = h( )

&
where o/w is a scalar.
Let us put @ = 0. Then the matrix |[K,|| has the following eigen-

values: 4, =0, A, = K,,+K,,. Therefore there exists an orthogonal
matrix [4%| such that

K11+K22 0
K,..| = .
(1o 0 0
X K,,+K, #0, we put
| 1 0
[IA;’H = @G(o0) '/lKu'l‘Kzzl ,
0 VIE+Kal
where
[ 01
tolf =Y
G(o) = 1|
0 ﬁ y @ #0.
1 0

Inserting the matrix ||4%.|| = |A% A% into (1.10), we get

0 0!
1.14 h(K.. =h
( ) ( ;,,0’) ( 0 sgn (K, + Ky) ’77(0')),
where
0, o=0,

1) = |1, o #0.

If K11+K22 == 0, then
00

(1.15) h(K;, 0) = h(HO 0”, 17(0)).

Thus we have obtained the following

THEOREM 1. Every scalar differential concomitant f of first order of the
symmeiric connexion Iy, for n = 2, has the form

. [?(1’,8,0’/0)), w #0,
- "/’("! s, 77A(°'))) w =0,
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where s is the signature of the tensor K, r is the rank of the tensor K, ¢
and y are arbitrary functions.

Remark. With aid of similar methods we can obtain the following
corollaries:

COROLLARY 1. If w?+ o2 = 0, then there do not exist differential con-
comitants of first order of the symmetric connewion I, for n = 2, which
are G- or W-densities of a weight p, p # 0.

COROLLARY 2. If 0 =0, w # 0, then there do not exist differential
concomitants of the first order of the symmetric connexlon Iy, for n = 2,
which are G-densities of a weight p, p # 0; however, every differential con-
comitant of first order of I}, which is a W-density of a weight p has the form

lwl—PﬂV’
where y 18 an arbitrary function of the signature s of the tensor K,; (see also

[4], p. T4-T75).

COROLLARY 3. If o # 0, then every differential concomitant of first
order of the symmetrie connewion I'y,, for n = 2, which is a density of a weight
p, p # 0, has the form

ela|™*g,
where
a = Vi,
1 for a W-density,
° T |sgna for a G-density,

_‘9’(":8:“/‘0)’ w #*0,
y(r, s), w=0.
2. We use the results of Section 1 to a certain classification of spaces A4 2

From our considerations it follows that the tensor E; in A2 (consequently
R.!) can have the following canonical forms:

For ¢ = 0:
10
I. y
01
1 0
I1. y
0 —1
N-=1 O
I1I. ’
0 -1
10 ~
Iv. y
00




<

VI

[

For

II.

III.

Iv.

V.

VI.

1 —1 0|
o ol

’

.00}
0o
o #0:

1 1
—-10
—11
—10
0 1
—-10

Scalar differential concomitants

cu-;vEO,

(see also [5], p. 224).

The type of a space A? is given by the following quantities:
if w#0,
if 0 %20, 0o =0.

7,8,0/w,

r,s
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On the other hand, a suitable space A® exists for every type of the tensor
R (Ry}). In fact, we have

For ¢ =0:
LIh21, Ih21, IL2o,
-’-'121;‘11 ]“122;0, ]"222; ’
IL Pllléli I'llzé_lf 112]2;0’
L, -1, r,£0, r,=o,
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III Iy =1, = —1, I =0,

.Plzlél’ F;"zéoy 1"2’*’2;0’
. =L ILEo, Do,
P11.=17 P12=07 P222=11
V. Fh%_l, 1-1112%0’ 1"._;2%0,
1-'121=1’ F122=0a fz= —11
VI Plllépllzépzlzéplzléﬁzé[%:o-
For o # 0:
L lelfa“a, P},%l, inz%(”
P121=17 I'122=0’ I'22=27
IL h=aud, I, =1, I, =0,
.I?lélf I'lzzéor Fzzzéoy
o b2 e BET TLE,
11=_1y F12=01 22=07
1 # . 2 1 & 1 *
Iv. f‘lili:u’??ig’ f‘zﬁzlg’
1n=-y4, 12 =Yy £22= 1y
V. 111'%““2’ P::%Ov F;,%O,
P121=1’ P122=01 I'222="‘1’
VI I’llléauz, 1’*112_.1_0’ I'zlzéoy

Pflél’ rlzﬂéoi ngéoi
where u!, u2 are local coordinates in the space A%, a = const # 0.

3. Let A? be a space with a symmetric connexion 1",;',. We assume that
there exists a symmetric regular tensor g,; and that
(3.1) Vegy = 0.

(V denotes the covariant differentiation with respect to I'f,). It is known
(cf. [2], p. 224) that in this case the parameters . ,",, are Christoffel’s symbols
of the tensor ¢, and that such a space A’ is a Riemann space.

Now we shall investigate spaces A’ with ¢ = 0. In this case we shall
seek a symmetric and regular tensor g,; which fulfils (3.1). If » = 0, i.e,,
R, = R, = 0, then (3.1) has the following solution:

9y = Cr
1§
where C = const (cf. [2], p. 228) and such a space A’ is a Riemann space.
i

For r =1 or r = 2 we consider the system of equations

By2g11 —B11 612 =0,
(3.2) Resg12 — Byagss = 0,

Ry 944 —Ry105 = 0.
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We know (cf. [2], p. 227) that (3.2) is a necessary condition for (3.1) to
hold.

We now prove the following
THEOREM 2. A space A* with o = 0 and r = 1 48 not a Riemann space.

Proof. If » = 1, then at a point p of the space A? the symmetric
tensor K, has the canonical form

e 0

| Byll, = 00

y €= ZF1.

" The system of equations (3.2) has at a point p the form
efa =0, &gy =0.

Hence g,, = g5, = 0 and every solution of (3.2) is singular.
This completes the proof.

Now we consider the case »r = 2. In this case we prove the following

THEOREM 3. The space A® with ¢ = 0 and r = 2 is a Riemann space
if and only if

(3.3) ViBy = —a Ry,

where a; i3 a gradient field.

Proof. If a space A? is a Riemann space with ¢ = 0 and r = 2,
then

Rﬂ = —Kgij,
where K is Gauss’ curvature and K # 0. Thus we have
Vk.R“ = (aklanl)Rﬁ.

We assume that ¢ = 0, r = 2 and (3.3). If » = 2, then the general
solution of (3.2) has the form

(3.4) 9 = tRy.
Putting (3.4), where z # 0, into (3.1), we obtain
(3.5) Vk(T‘R‘ij) = 0.

By covariant differentiation of (3.5) we obtain

(akT)Rij'i‘ka.Rﬁ = 0
and thus

(3.6) Vk‘R{j = —(akIDITI)R‘j.
It follows from (3.3) and (3.6) that
aklnlfl = ak.
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Let us put a, = 8, f, where £ is a scalar field. Then we have

Oy(Iniz| —B) =0

and thus

7 = eﬂ+c’

where ¢ = const.

(1]
(2]
(3]
[4]
(5]
[e]

This completes the proof.
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