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1. INTRODUCTION

The importance of good descriptive statistics dealing with the strength
of monotonic dependence of two random variables and with quantifying
the form of a bivariate distribution is easily recognized by applied stat-
isticians. Descriptive methods with impressive graphical representations
are specially useful, since — as was remarked by Gnanadesikan and
Wilk in [4] — “man is a geometrical animal and seems to need and want
pictures for parsimony and to stimulate insight”.

Monotonic dependence functions of bivariate distributions and their
sample counterparts, introduced by Kowalczyk and Pleszezynska in [6]
and [6], are hoped to prove a good graphical device and an important
tool of statistical data processing. Before recalling the definition, let us build
up some intuitions by means of the following example.
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Fig. 1. V-shaped distribution and its mdf’s

Suppose that the distribution of (X, Y) is concentrated so that it
forms the shape of the letter V inscribed into the unit square (Fig. 1),
both marginal distributions being uniform. It follows that, for any p € (0, 1),
the p-quantiles of X and Y, say x, and ¥,, are both equal to p. With y’s
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(or p’s) increasing, the values of X decrease and increase in turn. Then
one can look for a function, say ux y, which maps (0,1) into [—1,1]
and which takes negative (positive) values for p <.} (p > }), such that for
any p the function uy y(p) measures in some way the tendency of large
(small) values of X to associate with possibly large (small) values of Y.
This function could be as that one represented by the graph in Fig. 1.
A similar function for the ordered pair (Y, X) should identically be equal
to zero, since Y is not monotonically related to X in any intuitive sense.
The discrepancies between ux y and uyp x reflect the asymmetry of the
distribution.

Similar intuitive considerations can be repeated for any bivariate
distribution, with p’s corresponding to p-quantiles of the respective random
variable. There is a lot of various possibilities of formalizing ux 5; one —
chosen by Kowalezyk and Pleszczyriska [6] in the case of random variables
with continuous marginal distribution functions — was to define ux y(p)
as a suitably normalized expected value of X under the condition that Y
exceeds its p-quantile. This conditional random wvariable is denoted
here by X|?,y, where ?, » is the characteristic function of the set
{y: y>y,}. Thus X|t,y is a function of (X, Y) given in the form
(1—p)"'Xt, »(¥Y). Similarly we can introduce X |t, x, where #, x is the
characteristic function of {#: # > 2,}. Now, uxy, called a monotonic
dependence function (mdf) of X on Y, is defined by the formula

rx, v(P) for E(X]t, y) > EX,
px,v(p) = + . '
—ulx y(p) otherwise,
where
EX|t, p) -EBEX
(1) uE v (p) = 2.¥

E(X[t, x)—EX

and p e (0, 1). Clearly, ux y(p) does not depend on the choice of z, and y,,.
In the example discussed above we get uy x(p) = 0 and
[2p—1)/1—p) for p<1/2,
\(2p—1)/p for p > 1/2,
which is in accordance with the intuition (see Fig. 1). Obviously, in this
case corr(X, Y) is equal to zero.
In [5] the definition of uy ;- is extended to a set C of random variables
(X, Y) with finite expectations and marginal distributions not concen-
trated on a point. The only change is a suitable “randomization” of charac-
teristic functions appearing in (1). Namely, for any (X, Y)eC

bx v(p) =

0 for a < y,,

tpr(a) =17y, fora =y,
1 for a > y,,
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where
0 for P(Y =y,) =0,

Yr,p = (1 _p—-P(Y - yp))/P(Y = yp) OtherWiSe,

and ?, x is defined analogously.

A pair of monotonic dependence functions ux y and uy x is treated
as a characteristic describing a shape of the distribution of (X, ¥) and
as such it should be invariant on linear increasing transformations of both
variables. It follows from Theorem 2.1 (iv) in [5] that this requirement
is fulfilled while any of mdf’s taken apart, say ux v, is invariant on linear
increasing transformations of X and on increasing transformations of ¥,
which seems desirable when dealing with a characteristic indicating the
monotonic dependence of X on Y.

2. MDF'S FOR SOME ESSENTIAL CLASSES OF DISTRIBUTIONS

The example concerning the V-shaped distribution illustrates the
fact that one has to expect a change of sign of at least one of the mdf’s
if intuitive requirements of monotonicity between the two variables are
not fulfilled. To express this statement in a formal way, we recall (The-
orem 2.1 (vi) in [5]) that if X and Y are positively (negatively) quadrant
dependent, i.e.,

PX<# Y<y)=(SQPX<2)P(Y<y),

then both ux y and uy, x are non-negative (non-positive). Hence a change
of sign of any of the mdf’s implies that X and Y are not quadrant de-
Pendent.

The class of quadrant dependent random variables contains many
important families of random variables considered in the statistical liter-
ature. A review of such families of (X, Y) is given in [7]; it includes, e.g.,
contaminated independence models: X = U+aZ, ¥ = V+bZ for any
independent random variables U, V,Z and any a, b. Another example
is that of linear regression dependence models: ¥ = a+gX + U for any
independent X and U and any a, . The class of quadrant dependent
random variables is also closed under the operation of forming mixtures
of any two independent pairs of quadrant dependent random variables
under the condition that the dependence is either positive or negative
for both pairs. In all these cases both mdf’s are of a constant identical
sign.

Returning to the class of distributions with constant mdf’s, it is
convenient to remind the concept of boundary distributions. Let F and G
denote marginal distribution functions of X and ¥, respectively; then
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there exist two distribution functions Hz g, and Hz g, .
Hfg(#,y) = min(F(2), G(y)),
Hyp (@, y) = ma’x(F(w)+G(y)_1, 0)7

such that any other distribution function Hjy g with marginal distribu-
tion functions F and G satisfies the inequalities

Hpq(®,y) < Hpg(@,y) < Hf g(x,y) for every z,y.

H* and H~ correspond to the so-called boundary distributions which
are concentrated on a non-decreasing and non-increasing curve, respec-
tively. For continuous ¥ and @ the curves are described by F(z) = G(y)
and F(z) =1—G(y).

Suppose that there exists an increasing function h: R — R such that
the boundary distribution corresponding to H 4 or to Hy 4 is concentrated
on & = h(y) or on —x = h(y), respectively, i.e., either X and h(¥Y) or — X
and h(Y) have the same distribution. Then, by Theorem 2.2 in [5], for
any oe[—1,0)v(0,1] and (X, ¥)e C the equivalence

(2) pxy(@) =< EX|Y = gh(Y)+(1—]o|)EX almost everywhere

holds, where ¢ is equal to corr (X, h(Y)) whenever the latter exists.

An important special case is that where h is linear, which implies
that EX|Y in (2) is almost everywhere linear in Y. It is convenient to
introduce the following definition:

Definition 1. For any (X, Y) € C we say that X is strongly linearly
dependent on Y if the regression function of X on Y is a linear non-constant
function and there exists a linear I: B — R such that I(Y) and X have
the same distribution.

It follows from (2) that if X is strongly linearly dependent on Y,
then there exists a unique o # 0 such that ux y(p) = o, with ¢ equal
to corr(X , Y) whenever the latter exists. It is sometimes convenient to
use the expression “X is p-strongly linearly dependent on ¥Y” in order to
indicate the corresponding p. The class of distributions with mutual
g-strong linearity (of X on Y and of Y on X), exemplified by binormal
distributions, is that for which the correlation coefficient, if any, is a perfect
measure of monotonic dependence, since both mdf’s are identically equal
to it.

For (X, Y)eC, if X is p-strongly linearly dependent on Y and if
f: R — Rislinear almost everywhere (with respect to the distribution of X),
then f(X) is o’-strongly linearly dependent on Y with o’ = ¢ when f
is almost everywhere increasing and with o’ = —p when f is almost
everywhere decreasing. This statement, which follows from Theorem 2.1
(iv) in [5], implies that the mdf of X on Y remains constant under in-
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creasing linear transformation of X. It would be interesting to know how
some other increasing transformations of X affect the shape of mdf’s
when X is strongly linearly dependent on Y. This problem is approached
here by means of some tentative examples.

Let (X, Y) be binormal N (mx, my, ox, oy, ¢) and let f(z) = exp(x)
8o that (f(X), ¥) has a lognormal-normal distribution. It follows from
the definition of the mdf that

{p—D(&—0ox)}{p—P(&,—0ox)} for 9> 0,

Hexpi, 7 (P) = {p— (& —0ox)} [{P(&+0x)—p} for ¢ <0,

where @ is the distribution function of a univariate standard normal variate
and & = &7 Y(p).

For ¢ > 0 the function u,,,x) y decreases from 1 to 0 as p increases
from 0 to 1 (cf. Fig. 2a). This is in accordance with our intuition: the
function exp(X) increases rapidly as @~ + oo which spoils the positive
relation between exp(X) and Y for large values of Y. On the other hand,
exp(x) decreases slowly when x™ — oo and the positive relation between
exp(X) and Y is stronger for small values of Y than that in the binormal
case.

a b [ <
flx)=
f(x)=ex f(x) =—-e=X [=sgn (x)(elxl._-’)

ﬂ
f(x)=sgn (x) (1-e~'*!)

o 05 7 0 05 7 g 05 1

Fig. 2. Mdf’s of f(&) on %, where (§,7) ~N(0,0,1,1, p)

For a function f which decreases rapidly as ™ —oo and increases
8lowly as @ 7 + oo the situation is reversed. This case is illustrated in Fig. 2b
Where f(#) = —exp(—w). It is easy to check that for a binormal (X, Y)
Wwe have

.“e-xp(X),Y(p) = .u—exp(—X),Y(l —p).
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~

By a similar intuitive argument one can expect that functions of the
types considered in Fig. 2¢ and Fig. 2d lead to concave and convex, respec-
tively, mdf’s of f(X) on Y.

Summing up, we assert, though we are not able yet to prove it, that
if an increasing function f of one of the four types considered above is
applied to X and if X is strongly linearly dependent on Y, then the mdf’s
of f(X) on Y are non-increasing, non-decreasing, concave and convex,
respectively. This is adequate to the shape of the distribution of (f(X), X),
since under the influence of the corresponding f the distribution of (X, ¥)
is appropriately “stretched” or “narrowed”. To build up some intuition,
consider four distributions being uniform over the areas indicated in
Figs. 3a-d. All these distributions represent a positive relation between X
and Y. Moreover, its strength decreases gradually with ¥ in the first distri-
bution, increases gradually in the second one, increases and decreases
in turn in the third one and, finally, decreases and increases in the last one.
These intuitions, suggested by the forms of the distributions, are con-
firmed by the shapes of the corresponding mdf’s presented in Fig. 3. It is
easily seen that these mdf’s correspond to those presented in Fig. 2.

distribution a distribution b ; distribution c distribution d
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o 7|0 7 0 7 0 7

Fig. 8. Distributions uniform over shaded areas and the corresponding mdf’s

The considerations above give some rough idea of the class of distri-
butions with mdf’s which are increasing, decreasing and unimodal.

Generally, different kinds of mdf’s considered in this section could
be useful in statistical modelling, since qualitative information of this
type is often available in practice. The results of the section could also
be used in data analysis and informal inference based on the graphs of
empirical mdf’s.
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3. MDF'S IN THE NEIGHBOURHOOD OF BINORMAL DISTRIBUTIONS

3.1. General remarks. The methods of multivariate statistical ana-
lysis are developed almost exclusively for multivariate normal distribu-
tions and, therefore, the “neighbourhood” of this distribution. is specially
interesting in the investigations of robustness of particular methods and
in statistical modelling. Some families of distributions “close” to binor-
mal distributions are considered here from the point of view of the type
of dependence. The first step in this direction was already made in Section 2,
where distributions convertible to binormal by some monotonic marginal
transformations were discussed (cf. Fig. 2).

Throughout this section, (&, %), (&, 7n’) and (&, n"’) denote inde-
Pendent pairs of random variables with the same standard binormal
distribution N (0, 0,1, 1, o), and @ is the distribution function of N (0, 1).

3.2. Bivariate ¢{ Student’s distributions. First, we start with a more
general class of distributions containing a bivariate ¢.

Let (U, V) be a pair of random variables with zero means, the cova-
riance matrix
o1 00103

K =

’

00,0 0'22

and a continuous distribution with the same marginals and linear regres-
sion functions. It follows that U and V are mutually e-strongly linearly
dependent. Let Z be a continuous random variable which is independent
of (U, V) and has a positive density function on (0, 4+ oo) and a finite
expectation. We are interested in the form of the dependence of X = UZ 4
+m; and Y = VZ-+m,, where m = (m,, m,) is a pair of real numbers.
It is easy to check by straightforward calculations that the regression
function of X on Y is linear. Consequently, X and Y are mutually p-
8trongly linearly dependent, which means that the form of the dependence
of U and V is preserved and the role of Z is analogous to that of a positive
Constant influencing scale parameters only. It follows that p is the corre-
lation coefficient of U and V, and of X and Y, whenever they exist.
According to the terminology used in [2], a bivariate random variable
hag the ¢ Student distribution with q degrees of freedom, location vector m
and precision matrix T = K~! if it is defined as X and Y above with U
and V replaced by (o, £, 0,&) and with Z = §;', where ¢S} is distributed
a8 2 with q degrees of freedom. Then for any ¢ > 1 the bivariate ¢ preserves
the mutual strong linear dependence of the binormal (&, ) and, more-
Over, for ¢ > 2 the coefficient o is equal to corr(X, Y). For ¢ = 2, ¢ can
be interpreted as a generalized correlation coefficient. For ¢ =1, i.e.,
for a bivariate Cauchy distribution, EZ is not finite and the considera-
tions above are not applicable. One can only suggest an extension of the



586 T. Kowaleczyk et al.

definition of strong linear dependence of X on Y as well as the correspond-
ing extension of the definition of the mdf to cover the case where X and Y
are defined as at the beginning of this section while EZ is not finite. With
such an extension one would have ux y(p) = ¢ for any bivariate ¢ distri-
bution including the Cauchy one.

3.3. Contaminated binormal distributions. There is plenty of different
possibilities of introducing the contamination to bivariate distributions
and the terminology is rather unstable. We consider the following mixtures:

(i) A —e)P;pt+ P s

(ii) (1—2¢&)P;,+ &P, o+ ePgr ey
(iti) (1—26)P,+ePyyasat Peram—ar
(iv) (1 —2¢)Ps,+ePp g y—a+ePs_gpriq-

Here x> 1,d > 0, 0 < ¢ < }, and P, , denotes the probability distri-
bution of (&, n). According to Devlin et al. [3], case (i) is called contaminated
normal and cases (iii) and (iv), in which outliers appear along the principal
axes of P,,, are called major axis and minor axis outliers, respectively.
Case (ii), introduced by us, is called independently contaminated normal.
In the sequel we discuss cases (i)-(iv) in turn denoting by (X, Y) the
corresponding mixture.

In case (i), ux, y(p) = corr(X, Y) = o, since it is easy to check that
any mixture of two independent pairs of g-strongly linearly dependent
random variables is also g-strongly linearly dependent.

In case (ii) we have

1—2¢+ s[x-l- exp [(?/f;("z —1)) /2"2}]
1—2¢e+ [l 4 xexp{(yp(»*—1))/2%2}] y

(3) tx,r(P) =@

where y, is the root of the equation

(1 —6)¢(yp)+8¢(yp/%) =Pp.

The mdf’s defined by (3) are concave as presented in Fig. 4a. Conse-
quently, this type of contamination acts on (£, ) in a similar way as the
function in Fig. 2¢ applied to §. This is in accordance with our intuition
since the contamination introduces dispersion which weakens the mono-
tonic dependence for p distant from 0.5, ux y(0.5) being still equal to o-
However, we see in Fig. 4a that the mdf’s are not too strongly affected
by the contamination even for considerably large » and e. On the other
hand, the absolute values of corr(X, ¥) given by o (L —2&(%—1)) /(1 — 2ex?)
are much smaller than the corresponding values of |g|. For instance,
for ¢ = 0.5, ¢ = 0.05 and » = 3 we have corr(X, Y) = 0.316.
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In case (iii) we have
(4) px,7(p) = e+ [d(1—0)e{P(y, +d)— P(y,—d)}1/ M,
where
M = (1-26)p(y,) +elo¥p+ )+ 9y —d) +a{P(y,+d) — D(y,— d)}]
and y, is the root of the equation
(1—26)D(y,) +e@(y,— )+ P(Yp+0) = P.

Obviously, for ¢ > 0, outliers appearing along the line # = y should
increase considerably the strength of the monotonic dependence for p

mdf a mdf b o mdf c
1- 11\_—/ 1{
051 05 05
0 1 0 7 0 7
=05
¢=05 e~ 05 p=05
a5 €=005 | % € =005 e =005
x=3 d=5VT+y d=5/7-¢ .
-1 -1 -1

Fig. 4. Mdf’s of contaminated binormal distributions
a — independently contaminated, b — major axis outliers, ¢ — minor axis outlicrs

distant from 0.5. This means that major axis outliers act on (£, ) in a similar
way as the function in Fig. 2d applied to & which coincides with our
intuition and is confirmed by the graphs given in Fig. 4b. Moreover,

corr (X, ¥) = (o+2¢d?) /(1 + 2¢d?)

increases quickly with ¢ and d. For instance, for o = 0.5, ¢ = 0.05 and
d = 5/1.5 we have corr(X, Y) = 0.894. Then for ¢ and d large enough
the values of mdf’s as well as of the correlation coefficient are very distant
from o.

In case (iv), the formula for the mdf corresponding to the minor
axis outliers can easily be derived from the respective formula (4) for major
axis outliers. Indeed, let (X(g), ¥ (g)) and (X’(¢), X'(o)) denote the pairs
of random variables in the case of major and minor axis outliers, respec-
tively. Then the distributions of (X’(g), ¥’(g)) and of (—X(—g), ¥(—¢))
are identical and it follows from Theorem 2.1 (iv) in [5] that

px, v (P; 0) = —pux,v(P; —o).

For o > 0 and ¢ and d large enough, minor axis outliers spoil entirely
the mutual monotonic dependence of & and 7 and make o meaningless.
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This explains the exceptional behaviour of the estimators of p for this
particular distribution which was pointed out in [3]. The corresponding
graph is presented in Fig. 4c. The correlation coefficient given by the
formula

corr (X', Y') = (0 —2ed) /(1 + 2&d?)

is also strongly affected. For instance, for p = 0.5, ¢ = 0.05 and d = 5/0.5
we get the value —0.333.

3.4. Discretized binormal distributions. Let s,, ..., 8; be a sequence
of real numbers such that

at at
—oo=80<81< “'<sk<sk+l= —|—00.
Let f be a mapping from R onto {0, 1, ..., k} defined by
f@;81,...,8) =+ g <awx<s,,:i=0,1,...,k.

We restrict ourselves to discretizations by means of the mapping f
defined above. Such a transformation should preserve the type of mono-
tonic dependence. For instance, it follows from Lemma 1 (iii) in [7] that
the positive quadrant dependence is not affected by f.

The cases of only one and of both variables being discretized are
congidered in turn. For the pair (&, f(n)) we have

() Be.r(n) (p) = Ql¢(sj—1)(¢(3j) —p) +‘P(3j)(P— ¢(31+1))}/M
G=1,...,k+1),
where 0 # p e [D(s;_,), DP(s;)] and

M = (@7 (p)) {D(s,) — D(8-1)} -

The formulas for py, , and wuyq) s, were also easily derived from
the definition of the mdf but they have a complicated form and,
therefore, are not presented in this paper. The corresponding graphs are
given in Figs. ba, b, ¢. In each case three sets of the discretization points

mdf a mdf b mdf c
06 ‘ a6

.., ..-k‘s
51 N .-f/ =
o Sammowan) k=11
k=2
04
031 03
0 05 7 [7] 05 7

Fig. 5. Mdf's of discretized binormal distributions

a — the second component disoretized, b — the first component discretized, ¢ — both components
discretized
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81y ...y 8, Were consjdered:
(i) b =2, (8158) =(—1;1);

(il) ¥ =5, (815.--58) =(—1.5; —0.6;0; 0.6; 1.5);

(iii) 2 =11, (815 ...y 81;) = (—1.5; —1.2;...;1.2; 1.5).

In the sequel, the three cases are referred to as k¥ =2, k¥ = 5 and
k = 11. For any of them, ¢ = 0.5.

Let us discuss first the pair (&, f (17)). Obviously, the strength of the
monotonic dependence is not affected by discretization in the case
where p’s correspond to s, ..., s, and, consequently, ,ue,f(,,)(d)(s,.)) = g for
t=1,...,k as is seen from (5). Generally, however, the discretization
of % results in the fact that the strong linearity of & on 7 is spoiled, since
the values of £ are more dispersed for 7 € (s;, s;,,) than for % taking any
particular value from this interval. This leads to the graphs in Fig. 5a.
Since the discrepancies from g increase with the lengths of the intervals
(8;y 8;41), they are extreme for k¥ = 2 while the mdf for ¥ = 11 provides
a good approximation for .

The case £ = 1 is not presented in Fig. 5 in order to achieve greater
clarity but it is evident that any dichotomization of # results in a con-
cave e 5, S0 that the effect is similar to that produced by the function in
Fig. 2¢ applied to &.

Returning to the pair (f(£), n), let us notice first that for ¥ = 1 the
function f can be considered as the limit case of the functions in Fig. 2d,
and hence the corresponding mdf is convex. For k > 1, since there is no
digpersion of the values of f(£) for # e (s;, $;,,), the strength of the mono-
tonic dependence of f(£) on 7 increases for p e (D(s;), D(s;,,)) as compared
with that of & on 75, and hence uy , restricted to this interval
is concave. This is best illustrated in Fig. 5b for ¥ = 2 and p belong-
ing to the interval (®(—1), $(1)) = (0.159, 0.841).

The mdf’s of £ on f(n) and of f(§) on n are interesting examples of
mdf’s for a “mixed” continuous-discrete bivariate distribution. Both
mdf’s should be compared with the correlation coefficient of f(&) and 7,
evaluated by the formula (cf. [1])

k
corr(f(8), 1) = e D, [#(8:)oe));

where

k
%o = 2, [{O(5:1) — Pls)}]— {Bf (O ,

and

k
Ef(£) = D [i{P(8:42) — P(5:)}].
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For ¢ = 0.5 and k¥ = 2,5 and 11 (cf. Fig. 5) corr (f(£), n) is equal
to 0.39, 0.45 and 0.48, respectively.

Figs. ba and 5b reflect the opposite tendencies which characterize
mdf’s when only the first or only the second component is discretized.
It was interesting to find out “the effect of the battle” between these
tendencies when both variables were discretized. The result of the compro-
mise is as given in Fig. 5c. Evidently, the graphs are of similar shape to
the corresponding ones in Fig. 5b but they are “smoother”. This means
that the discretization of the first component was “more powerful” than
that of the second one, the latter being noticeable only in the smoothing.

Fig. be throws some light on the problem of presentation of mono-
tonicity tendencies demonstrated by contingency tables in an arbitrary
case.

4. CONCLUDING REMARKS

In this paper the mdf’s are characterized as a measure of monoto-
nicity of a bivariate distribution. However, practical usefulness of mdf’s
depends mostly on the properties of their sample counterparts. By The-
orem 3.1 in [5], for any p € (0,1) the empirical mdf’s converge to the
theoretical ones with probability 1. Asymptotic or finite sample distri-
butions are not known yet. We obtained some results by Monte Carlo
methods and we used them in procedures dealing with correlation esti-
mating and binormality testing. This will be presented in a fortheoming
paper. Moreover, empirical mdf’s will be used in model choice problems
when one wants to choose a distribution convertible to binormal by a mono-
tonic marginal transformation belonging to a specified class of functions.
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ZASTOSOWANIA FUNKCJI ZALEZNOSCI MONOTONICZNE]
W ANALIZIE DANYCH

STRESZCZENIE

Scharakteryzowano funkcje zaleznoci monotonicznej jako statystyke opisows,
8tuzaca do badania monotonicznofei i ksztaltu rozkladu dwéch zmiennych. Szczegblowej
analizie poddano otoczenie rodziny dwuwymiarowych rozkladéw normalnych, do
ktérego zaliczono rozklady ¢ Studenta, rozklady normalne z zakléceniami i rozklady
Dormalne poddane dyskretyzacji.
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