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Abstract. In this paper, the mean values of entire functions of slow growth,

(-]
.defined by Dirichlet series have been considered. Let f(s) = Y a,e*n (8 = o4 it,
n=]1
Apy1 > A, Ay — oo with n) define an entire function. The entire function f(s) is said
to be of slow growth if

loglog M (o)
p _ —

lim su =0,
a—00
loglog M *
lim S.llp w = ﬁ. (1< < Q" < oo),
00 IDT logo

where M (o) = lu.b.|f(c +it)|. The constants ¢ and A* are called logarithmio order
—o<i<oo

and lower logarithmic order of f(s), respectively. Define the following means of J(8):

1 T
(1) 45(0) = As(0,f) = [L(0)P = [Ls(0, )Y’ = lim — [ If(e+it)Pdt,
T—00 i
@) ma,k(0) = ma,i(0,f) = e~ [ Is(a)e*=da, .
. 0
(3) mg 1 (0) = my (0, f) = ok~1 [ Ij(a)akdz.
(1]

A few properties of above means and their derivatives have been studied in
this paper. The growth properties of means of more than one entire function have
also been studied. As an illustration we have the following theorem:

Let f,(s) and f,(s) be two entire functions of logarithmic orders ¢} and g, and
lower logarithmie orders A and A;, respectively. Then, if

joglogmy ;. (0, f) ~ log[{logmys x(a, f,)} {logms 1 (0, f2)}],
the logarithmic order o* and lower logarithmic order A* of f(s) satisfy the inequalities
N+h<i<e' <eo+er-
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Further, if
loglogmy, y (o, f) ~ [{loglogmy, i (a, f,)} {loglogm, 4 (o, f1)}1'/2,
then

(A4 < A< 0" < oy @3)2.

1. Introduction. Consider a Dirichlet series f(s) = > a,¢en (s = o +it,
n=1
A1 > Ayy A, — oo with n), which we shall assume to be absolutely con-

vergent everywhere in the complex plane and is bounded in any left
strip, and hence it defines an entire function. The order ¢ (0 < ¢ < o0)
of f(s) is defined as the limit superior of loglogM (c)/o, a8 ¢ — oo, with
M(o) = lub |f(o+1t)l.

—<i<omo
For a class of functions of order zero, i.e. for which o = 0, logarithmic

order, p*, and lower logarithmic order, 1*, are defined by [3];

L

. sup loglogM (o) 0 - .
. —_— = <AL < .
(1.1) llm inf logo ) A<i<o 00)

Also, for 0 < 6 < oo and 0 < k < oo, we consider the following means
of f(s):
(1.2)  4y(0) = 4y(a,f) = Ls(@)) = [Ls(o, )T

T

1
= lim — f If (o + it)ldt,

T—o0 2T -7

where the integral in (1.2) exists on account of the absolute convergence
of the series for f(s);

(1.3) ma,k(“) = 'mo,k(o';f) =e " fId(w)ekzd‘l’i

and

(1.4) My (0) = my (0, f) = a7 [ I, (@)a*da.
0

Then the following results are known ([1], p. 277):

sup loglog & *
(L.5) lim in‘f’ %a(") — {f- (1< 2 < o* < o0),
=+

where @ (o) stands for I,(o) or m, ;. () or m; . (o).

In this paper we have obtained a few properties of m, ,(s), m; ,(0)
and its derivatives from the mean values, defined by (1.2), (1.3), and (1.4).
We shall always assume that f(s) is of order zero and of logarithmie order g*,
lower logarithmic order A*.
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2. THEOREM 1. Let f(8) be of logarithmic order ¢* and lower logarithmic
order 2*. Then

21) lim°P log[my;(0) /my 1 (0)] _ 0" —1

inf logo A*—1 1<¥<e"< o),

where m, ;. (o) 18 the derivative of m, (o).
The proof of this theorem is based on the following lemma:
LEMMA 1. logms (o) i8 a convex increasing function of o.
Proof. Since

m,,(0) = e* [ 1, (z)¢ds,
0
we have

dflogm, ()]  Is(o)—ke™* f I,(z)e*d

d[o] - My, ()
o I,(0)
My 1, (0)

H

which increases, since for any finite positive k, ¢¥°I,(s) is a convex in-
creasing function of ¢**m, , (o) [2]. Hence we have

d*[logm, ,(0)]
dl[o]?

>0 for o> a,(),

and Lemma 1 follows.

Proof of Theorem 1. In the first lemma we have shown that
logm, (o) is a convex increasing function of ¢ for ¢ > ¢,. This implies
that logm,, (o) is differentiable almost everywhere with an increasing
derivative. This enables us to write logm,, (o) in the form

Y ml (@
(2-2) long,k(a) = logmd,k(Uo)"l' f md‘ktw; dm’ G > 0p-
2 9,k
Thus
ml
logm, (o) < logm, ;(0,) + m"'"g; (o —ay)-
3,k

Proceeding to limits as ¢ — oo, we get

1.

. sup loglogm, (o) sup log[m; (o) fms ;. (0)]
2.3 lim . : <l .
(2.3) o inf logo coveo 0 logo ¥

(*) op nced not be the same at each occurrence.
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Again, for an arbitrary n > 1, ¢ > g,, we have

logmy, ;. (no) = logmy, ;(a)+ f 3,4 (2) dx
My 1 ()
o
m‘”‘fa; o(n—1),
8,k
therefore,
(2.4)  lim *UP 108108Ma(9) . sup log[my(9)/my(o)] |

000 1DE logo = },_,w inf logo
Erom (2.3) and (2.4), we have

. sup loglogm, ,(a) . sup log[m,(a)/m, ,(a)]
2. 1
(2.5) .,l_.nolo inf logo .l,l_m inf logo
On using (1.5) in (2.5) for @ (o) = m, (o), we get (2.1).
COROLLARY. For almost all values of ¢ > a,,

+1.

My 1 () 10 < m, (o) < My 1 (6) o1+,

where € i3 an arbitrary small positive number.

THEOREM 2. Let f,(8) and f,(8) be two entire functions of logarithmio
orders g}, o5 and lower logarithmic orders 1}, A; respectively; then if

(2.6) loglogm, (o) ~ log[{logm, (o, f,)} {logm, ;(a, f2)}],

the logarithmic order o* and lower logarithmic order A* of the entire func-
tion f(s) are such that

(2.7) M+ <a<eo*<oi+el,

and if

(2.8)  loglogm, (o) ~ [{loglogm,y(a, f1)} {loglogm, (o, f2)}1":,

then

(2.9) [T BT A" < o < [of 011",

where m, . (0), My (0, f,) and m, (o, f;) are the mean values of f(s),!fl(s)
and f,(8), respectively.

Proof. Since the entire functions f,(s) and f,(s) are of logarithmic
orders o] and g3, from (1.5) we have

lim sup loglogm, (o, f1) _ *

o000 logo'
and

]im sup loglogmd.k(a’fZ) — #‘.

a>0Q IOgO'




Entire Dirichlet series of order zero 153

Hence, for an arbitrary number ¢ > 0 and ¢ > q,,

loglogm, (o, f,) ( .. €
2.10 . =
( ) logo <[le -+ 2 )1

and

(2.11)

loglogm, ;. (o, f5) «, €
log o <|et ?) ’

Adding (2.10) and (2.11), we get

log [{logm, (o, f1)} {logmd,k(a! Ja}
logo

(2.12) < (er+o;+¢).

.Proceeding as above for the limit inferior, we get

log [{logm, i (a, f1)} {logm, (o, fa)}]

(2.13) logo

> (A + 2 —e).

Now, if (2.6) holds, then from (2.12) and (2.13), for any ¢ > 0 and suffi-

ciently large o, we have

loglogm, , (o)
logo

Proceeding to limits, it leads to (2.7). Again, multiplying (2.10) and (2.11),
we get

(A +2—e) < < (o1 +e; +e).

[{loglogm,,.(a, f,)} loglogmy,(oy fo)}1 [ 4 e\[ 4, &
) (logo)? <(9‘+?)(9‘+2)

for any ¢ > 0 and sufficiently large o. Similarly, we have

(2.14

« V[ € [{loglogm, (o, f1)} {loglogm, 4 (0, f,)}]
o[- - 5]« Corbem st

for any £ > 0 and sufficiently large ¢. Further, if (2.8) holds, then from
(2.14) and (2.15), on taking limits, (2.9) follows.

COROLLARY 1. If f,(s) (¢ =1,...,n) are n entire functions of logar-
ithmic orders o}, ..., or and lower logarithmic orders A%, ..., A» and having
the mean values m; (o, f1), ..., my (0, f,) respectively, then if

108'108"”"0,1:(0) ~ log[{logm, (o, f1)} ... {log’ma,k(f’" )3,

the logarithmic order o* and lower logarithmic order A* of the entire function
f(8) having mean value m, (o) are such that

Nt +a<<e*<o+... +on
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and if

. loglogm,,, (o) ~ [{loglogm, ,(o, f1)} ... {loglogm, (s, f,)}1",
then

(A <2< et < (o] - )™

CoROLLARY 2. If f,(8) and f,(8) are two entire functions of regular
logarithmic growth of logarithmic orders o) and o, respectively, then so is
J(8) of logarithmic order o* and

e* =o1+e:.

COROLLARY 3. If f,(8) (§ =1,...,n) are n entire functions of regular
logarithmic growth of logarithmic orders o), ..., 0n respectively, then so
18 f(8) of logarithmic order o* and

e* =oi+... +en

Now we know that logl,(o) is a convex increasing function of o [2].

Hence, if we replace m, (¢), m,, (0, f1), .- -5 Mo x(0, f,) BY Ls(0), L,(0, f1),

.y I,(o, f,) respectively, in theorems first and second, then results remains
the same in view of (1.5). The details are omitted.

THEOREM 3. Let f(3) be of logarithmic order o* and lower logarithmic
order 1*. Then
ooo 1Nf logcr 1
where my,, (o) is the derivative of mj} (o).
In order to prove this theorem we need the following lemma:
LEMMA 2. logm; (o) i8 a convex increasing function of logo.
Proof. We have

(1<1*< o* < ),

a_
aflogml,(0)]  do - oE™ex(?)]

d[logo]

__Tsla)
'm;.k(ﬂ)

) —(k+1),
— [loga]
do

which increases, since for any finite positive k, o**'I,(c) is a convex
increasing function of o*+'m; (o) ([1], p. 277). Hence the lemma follows.

Proof of Theorem 3. In the second lemma we have shown that
logma x(0) is a convex increasing function of logo for ¢ > ¢,. This implies
that logm; ,(o) is differentiable almost everywhere with an increasing
derivative. This enables us to write logmy (o) in the following form:

My () do
my(x) @

logm, k(o) = logm, x(T0) + f

—y 0> 0Oy
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or,

my (o) o
logm;} (o) < logm; . (dy) + —22-— 1o (—)
3,k PR m:’,,(cr) g %
Proceeding to limits as o — o0, we get
sup loglogm; sup log[m;’ ,
(2.16)  lim P 108 g My, (0) < lim P BLMs,.(9) [Myx(0)]
oo IDE logo o—oo INf logo

Again, for an arbitrary n > 1, ¢ > ¢,, we have

no
m:,’k (x) ﬁ m:;.’k (o)

logm; = logm; —25 " logy.
ogm; ,(no) = logm; (o) + J wh@ = mea) 0g7
“Hence,
(2.17) lim s.up loglogm, (o) > lim S.llp log [m;:k(a? [my ()] i
o0 IDE logo ssoo 1D logo

Combining (2.16) and (2.17), we get the result in view of (1.5).

A similar results as in Theorem 2 can also be proved easily for the
means ’m;"k(a), m:,k(o'y J1)s oees m:,k(ay f») in place of m, ;(a), m, (o, f1), ...
«eny My (0, f,) Tespectively.

Finally I wish to thank Dr. G.S. Srivastava for his help and guidance.
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