ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XVII, 1 (1980)

ZOFIA LAWNICZAK (Wroclaw)

. ON LEAST SQUARE ESTIMATION CF SECOND ORDER
STOCHASTIC PROCESSES WITH DISCRETE TIME

1. Introduction. Classical least square linear prediction theory is
concerned with a stationary stochastic process, i.e. with a family X,
(n =0,1, —1,...) of complex-valued random variables on a probability
space (£, #, P) which have zero means and finite covariances EX,X,
depending only on n —m. One accomplishment of this theory is the analyt-
ical charaecterization of regular and singular processes. In the one-dimen-
sional theory of stationary processes the family of random variables forms
a Hilbert space and, consequently, Hilbert space methods play there
a key role. The idea occurred again for non-stationary processes of second
order. _

The attempt to extend the classical prediction theory to non-sta-
tionary processes, developed by Cramer [2], has attracted the attention
of several mathematicians, e.g. Abdrabbo and Priestley [1], Mandrekar [4]
and others.

This paper is devoted to the study of second order processes with
discrete time (being not necessarily stationary). In Section 2 we give
results on the Wold decomposition and I -regularity. In the last section
we show how the classical results may be extended to oscillatory pro-
cesses.

2. J-regularity and Wold. decomposition. Let (2, #, P) be a proba-
bility space, and T — the set of all integers. X = {X,,t T} is called
a second order process if, for every te T, X, e L,(2, #,P). Let H(X, A)
and H(X) be closed subspaces of H = L,(Q, #, P) generated by X,,
t e A, and by all X,, respectively, where A4 is an arbitrary subset of 7.

Definition 1. Let J be an arbitrary family of non-empty subsets
of T. The process X is
(a) J-regular if

n H(X7 A) = {0}7
AdeJ
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(b) J-singular if
NH(X, A) = H(X).

AdeJ

THEOREM 1 (the Wold decomposition). Let J be an arbitrary family
of non-empty subsets of T. Then:

(2) For any given second order process X, there exists a decomposition
X, = Y,+ W, having properties (i)-(v):

(i) ¥ and W are second order processes on T

(ii) for all t, s € T, Y, is orthogonal to W ;

(iii) the process Y is J-regular, and the process W is J-singular;

(iv) for all Aed, H(Y,A)c H(X,A) and H(W,A) c H(X, A);

(v) H(Y) «c H(X) and H(W) c H(X).

(b) If the family J satisfies the condition
(%) V 3 ted,

teT deJ

then the components of the Wold decomposition are uniquely determined.

Proof. (a) The proof of the first part of this theorem is similar to
that in the classical case. Let S be an intersection (over all 4 €J) of the
subspaces H(X, A). Let W, be the orthogonal projection of X; onto S
and let Y, be the orthogonal projection onto its orthogonal complement S-.
One can easily show that conditions (i)-(v) are satisfied.

(b) Suppose that X, = ¥, +W, for all teT and that conditions
(1)- (v) are satisfied. We prove that ¥ and W are the same processes which
we have constructed in part (a). From conditions (ii) and (iv) it follows
that for all 4 eJ |

H(X,A)=H(Y,A)®H(W, 4).
If Y,eH(Y,A), then Y, | H(W, A). We have
8 =MNHX,A4) =Q[H(Y,A)@H(W,A)]

AeJ
=|NHY, He[NH(W, ).
AeJ AeJ
Using the J-regularity of Y and the J-singularity of W we may write
this formula in the following form:
S=H(W,B) forall Bed.

By (%), for any t € T there exists a B €J such that W, e H(W, B)
and Y, e H(Y, B). Then for all tcT we have W, €8, ¥, | §, and X,
= ¥Y,+W,. Hence

W‘ = PrOjsX‘ a)nd Yt = PrOjS.LX‘.
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Remark 1. If the process X is stationary and J is closed over transla-
tions, then Y and W are stationary and condition («) is satisfied.

Examplel. Let Uy, U,, ... be an orthonormal system in L,(2, 4, P).
Consider now the processes {V,}, t € T, and {X,}, t € T, where

Ve = Ul‘; V= Uza V—-l = U, ceey
X, = U+ Vi + V.
We define a family of subsets of T' as follows:
J={2cT:4n{0,1} =0}.

We want to find the Wold decomposition of the process X.
By the construction used in Theorem 1 we have Y, = V;+V,_,
and W, = U,, since
N H(X, 4) = [[Uoﬂ

AdeJ
On the other hand, the processes
W, = Vs, t#0,1,
U0+ VO’ t = 0, 1,
V¢+Vt-17 l #071’
Y; = V—17 t = 0’
LVI, t = 1,

satisfy conditions (i)-(v) of Theorem 1.
We remark that X is stationary.
Definition 2. Let X(t A) be an element of H(X, A) which satisfies

the following condition:
IX,— X(t, A)] = min |X,~yl, ie, X(,4) = Projgax X
yeH(X, 4)

THEOREM 2. Let 1, be {4, = {se T :s <}, t € T}. Then:
(a) The process X is I -reqular iff in H(X) there exists a complete

orthogonal system {V,,s T} such that
t

4
VX = Yats)V, ad D la(t,8)f < .

teT 8=—o00 8=~ 00

(b) If X is an I -regular process, then there exists a complete orthogonal

system {V,}, s €T, such that
¢

V X(t+m, 4,) = D a(tfm,s)V,.

m>0 §=2—00
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Proof. (a) Sufficiency. We have

H(X,A,) = [X,,s<t] c [V,,s<t].
Therefore,
NH(X, 4,) = ﬂ[[Vs,S t] = {0},

teT
since the system {V,, s € T} is complete in H(X). Hence X is I_-regular.

Necessity. Let D(X, t) be the orthogonal complement of H (X, 4,_,)
in H(X, 4,). We note that
V H(X,4) =[ ® DX, @] N E(X,4)] = ® D(X,s),

teT $=—o0 $=—00 g=—

_since the process X is I_-regular. We have also
D(X,t) = PI'OjD(x,t)H(Xa 4,) = PrOjD(X,t) [X.1,

since X, | D(X,?)for each s < t. It follows that D(X, ?) is either a one-
dimensional space or D(X,t) = {0}. (In the case of a stationary process,
D(X,t) is exaetly one-dimensional.)
Let V be an element of D(X, ) which has norm 1 if D(X, t) % {0}.
If D(X,s) = {0}, let V, = 0.
From this definition it follows immediately that the set {V,: V, %0,
< t} is either empty (and then H(X, 4,) = {0}) or forms a complete
orthonormal system in H(X, 4,). In both ecases, for each w e H(X, A,)

(In particular, for X,) we have
¢

w= D (w0, V)V,

8=—o00
(( , ) denotes the inner product in L,(2, #, P)), where

t

D) lw, V)< oo.

8=—o0

(b) This follows directly from part (a) of this theorem if we observe

t+m t t+m
Xipm = 2 a(t+m,s8)V, = 2 a(t+m, 8)V,+ Z t+m,s)V
§=-—00 8=—o00 8=t+1

where the first sum belongs to H (X, 4,) and the second one is orthogonal
to H(X, 4)).

The error of prediction ||X,+m—X (t+m, 4, is given by

t+m

" ) la(t+m, 8)2.

8§={+1
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As an application of the results above we consider simple examples
of the autoregressive process and the moving-average process.

Example 2. Let X )be an autoregressive process, i.e., X, is given
by X,—a,X,_, = V,, where V, is an orthogonal system in L,(Q2, #, P)
and the norm of V, is either 1 or 0. The process X; may be written in the
form

X, =Vi+a, Vi, =Vi+aV,_ +ae_ X, =...
Thus
V V Xt == ata/t'__l cee at_s_l_l V8+

teT s<t

+[VitaVii+ .. tagay_ oo 050 Ve + X, 4],

and the second term is orthogonal to V,. Hence

Wy _y oo Qg s<t,
(Xyy V) =11, 8 =1,
0, s>1.

From Theorem 2 (b) it follows that

¢ t
X(t+m,1) = Z‘ (Xismy Vo) Vs = Z U ymOim—1 ++ Oym—s Ve

8§=—00 S=—00
=@ Qpm—1 - Upp144—s [Vt Z, Gy .o Oy V ]
S=—0

== a,_l_ma,H_m_l e am+1X‘.

We note that b.¢ (t+m 1) depends only on X,.
Remark 2. If X(t—l—m i) depends only on X, for ea.ch m > 0, then X
must satisfy the condition
Xt+1"bt+1Xt = Vt+1;

{V;} forms a complete orthogonal system in H(X).
Indeed, for all ¢ e T we have X(¢+1,1) =, , X,. Thus

Xy —b Xy = Vi E-D(X’ t+1).

{V,} is a complete system, since X, | D(X,t—2).

Example 3. Let X be a moving-average process such that X,
=aV,—b,V,_,, where {V,} forms an orthogonal system in L,(2, 2, P)
and the norm of V, is either 1 or 0. We want to find X (t+m, 7).
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We have
t4+m—2

‘Yt+m = a’t+m Vl+m_ bt+m Vl+m—-l + Z 0 Vo

and, by Theorem 2 (a), X is I_-regular. From Theorem 2 (b) it follows
immediately that

t R
X(t4+m,t) = D (Xypm) Vo) Vs =

§=—00

Remark 3. If X(t—i—m,t) = 0 for m > 1, then
HX,)oH(X,t1-2) = H(X,1).

Since H(X,t) = D(X,t)®D(X,t—-1)DH(X,t—2), we have
H(X,t) = DX, t)®oD(X,t-1).

Hence X, =@ V,+bV,_,, where V,e D(X,t), V,_,e D(X,t—1).

0, m>1,

—bt+1V‘, ’m=1.

3. Oscillatory processes.
Definition 3 (after [4]). The second order process {X,, t € T} is called
oscillatory if it has the representation

2n
X, = f ¢“a,(u)dZ(u) for allteT,
(1]

where Z is an orthogonal measure defined on the Borel subsets of [0, 2=
with values in H and

2n
[ la(w)PP(du) < 0o for all teT,
0

where F(A) = ||Z(4)|7.

ProposITION 1. If {X,, t € T} is an oscillatory process, th en there exists
an inmer product preserving isomorphism 1 between H(X) an d some closed
subspace of Ly(F).

Proof. We put

(LX) () = a(u)e™.

Obviously, 1(X,) is an element of L,(#). We have

2 27
(X, X)) = ([ a(we™dzw), [ a(w)é™az(u)),
0 0

= [ a(u)e a,(u) & dF (u) = (a,(-) 6", a,(")6* ) m)

= (UX,), UX,))zyr)-
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Let @ = [I(X,),t e T]. The mapping ! may be extended uniquely
to the inner product preserving isomorphism between H(X) and G. Theo-
rems 3 and 4 are based on the idea of [1].

THEOREM 3. Let {X,, t € T} be an oscillatory process of the form

2

X, = [ auwe*™dz(n), F(4)=IZ(A).

0
N

Suppose F io be absolutely continuous with respect to the Lebesgue
measure and such that

dF 2 X —iun
== =F  f) = P, where y(u) — Z g(m),
and
m(uw) = Y e ™g(t,n), teT.
n=0
Then

X, = D hit,n)V_y,
n=0

where {V,} is a complete orthonormal system in H(X).

Proof. Since y(u) # 0 a.s. (with respect to the Lebesgue measure),
We can write

9

X, = [ oau

0

p(u)
w(w)

From the forms of the functions y and a, it follows that

dZ(u).

a(u)p(u) = D e " k1, n).

n=0
We put

2m .
1 ema
Vor of pluy 220

We show that {V,,te T} forms a complete orthonormal system in
H(X). We have

Vt:

2r 27

tiu eitu

1 e 1
V.2 = ___ az(u), ——— az
Vil ( Vor of y(u) (®) Vor of y(u) (u))tz

1 f aF(w) _ 1 ] ()
2z J lp()*  2m J p(w)?

I
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Let 8 £ t. Then

1 i eitu 1 m et'su
V, Vg = |—— A7 (u), ——— iz
Vo Vo = (= [ iy 0 f vy 4400

1 f Mgy — 0,

" om
]

H

Thus the completeness of {V,} is obvious.
Coming back to X, we evaluate

n ¢itu
X, = f
S v

-]

(2 ¢~ (3, n)) % (u).

n=0

Since

0

oo > IXJF = D' Ih(t, )P,

n=0

we can write

e-iu(t—n)

X, — Zh(t,n)'f ) = Var > h(t, m) V.
n=0 0 - n=0

The corollai-y follows immediately from Theorem 2 (a):

COROLLARY. Under the assumptions of Theorem 3 the process {X,} is
I -regular.

THEOREM 4. Suppose that {V,,t T} is an orthonormal system in
H(X). Let

Xy = D h(tyn)Vyp.
n=0

Then X, is an oscillatory process and
2n
(i) [ Inja,(u)Pdu > — oo,
0
(i) F is absolutely continuous with respect to the Lebesgue measure

and

b2 : 2

fln ar du > —oo.
; du(u)

Proof. By the assumptions, {V,} is a stationary I -regular process
with random measure Z and spectral measure F. It is known (see [6])
that F satisfies (ii).
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We have
X, = Y h(t,n) | € ™AZ(u).
Since
oo > |XJF = 2n D |h(t, n)F,
n=0
we get

2n

X, = f e (ih(t,n)e""‘”)dZ(u).

n=0

oo
Putting a,(u) = X &(t,n)e”™", we obtain
n=0

2
X, = f e a,(w)aZ (u).
[1]

From the form of g, it follows that (i) must be satisfied. Thus the
Proof is completed.

Now we consider a family J, of complements of all singletons of T'.

For the rest of this paper let us suppose that {X,} is an oscillatory
Process and a,(u) = y(u)e” ™, where {y,,teT} forms an orthonormal
complete system in L,(du). Let I be as in Proposition 1. We put

A

Xs = Pl‘Oj[Xt’#ﬂ Xs .

THEOREM 5. Let F be absolutely continuous with respect to the Lebesgue
measure and let dF |du = f > 0 a.s. Then for all s € T there exists c(s) such

that
_ ‘0(8)%]
X, =1 1[ _ 7.
t 1p8 f

Proof. Let s be fixed andlet¢p = l(i,). We know that ¢ € [y,, ¢ +# s].
It follows that y,—¢ L [y, ¢  s]. Hence

2r .
(1) [ [wsw)—p)lp()f(w)du =0, & =t y
Let us put

2r -
(2) o(8) = [ [va() —@()]p, (u)f(u)du
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and consider the functions [y (%) —¢(%)]f(v) and c(8)y,(u). According
to (1) and (2) both functions have the same Fourier coefficients with
respect to {y,, t € T} and, therefore, they coincide.

PROPOSITION 2. Undei the assumptions of Theorem 5 we have
c(s) = ”Xs_Xs”:!-
Proof. We have

c(8) = (y,—o, Ys)L,(F)
and

(¥s—o, 'Pa)Lz(F) = (Ys— @, %)Lzm —(v;—o, ‘p)L?_(F)
(because ¢ is orthogonal to y,—¢). Hence

e(s) = ”'/)s-(p”f},z(lf") = ||X3_X3”2-

THEOREM 6. Under the assumptions of Theorem 5 we have

N ROl
1X,— X, U Tu)—du] .

The proof of this result is essentially the same as in the classical case
(see [6], p. 42-47) if we put y, instead of ¢™* and [0, 2x] instead of
[0,1].

Example 4. We consider a Haar system in L,[0, 2=]. Let

PlO(u) = 1/V2r,
1/V2x, u €[0, ),
‘P(lo)(u) =10, U = T,
—-—1/l/_2—;, u € (x, 27],
and, for m =1,2,... and ¥ =1, 2, ...,2™,
Vor |Vor, (k—1)m/2™ ! < u < (k—27") =271,
oW (u) =1 —VamWox, (k—2"Y)m/2™ ' < u < kn/2™,
0, otherwise.

The set of functions {p¥, p{¥, ¢! m =1,2,...; %k =1,2,...,2™}
is called a Haar system in L,[0, 2r] (as we know, it is a complete ortho-
normal system; see [3], p. 194).

Let us put

vo=0¢ 9 =00 y_,=¢, 9

o
l
s
Y
<
I
o
I
s
&
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We consider the oscillatory process {X,,teT} for which a,(%)
= y,(u)e~"™ and the spectral measure F has the density f(z) = a*.
To verify if {X,} is J,regular we evaluate

‘ deQa:( 1—)2 fﬂidu=oo
J o flw Vor J ow |

_ From Theorem 6 it follows that IIXO—Xollg = 0, and hence {X,}
18 not J,-regular. v
To see that {X,} is not J,-singular we calculate

21 T
f lp_g (u)f? du — 4 1 2
. f(w) - 2 u? 72

By virtue of Theorem 6 we have ||X_2—X‘_2||2 = 722> 0 and it
follows that {X,} is not J,-singular.

We note that {X,} is not stationary, since, e.g., (X,, X;) # (X_;, X,).

Example 5. Let {p,} be as in Example 4. Let {X,} be an oscillatory
Process of the form

2

X, = f vy (u) e e~ dZ (u) \

0 ’

with the spectral measure F which has the density

fo = [+ gww]

To find X o We evaluate

™ lyo(u)® 1
f 9 du

T Vo

By virtue of Theorem 6 we have llX,,—-X.,M2 = 1/2—1; From Theorem 5
and Proposition 2 we obtain

o) = | vl = VZ= polw) | ot + 3wt ||

1 1
= yo(u) —po(u)— _2‘71’1(“) = —'é"'l’l('“)
and
_ 1 1
‘Xo':= ) =1 l("‘2—'1’1) = "'E‘xl‘

5 — Zastosowania Matematyki 17.1
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ZOFIA LAWNICZAK (Wroclaw)

0 SREDNIOKWADRATOWE] ESTYMACJI PROCESOW STOCHASTYCZNYCH
DRUGIEGO RZEDU Z CZASEM DYSKRETNYM

STRESZCZENIE

Praca posdwigcona jest badaniu proceséw stochastycznych drugiego rzedu z cza-
sem dyskretnym (niekoniecznie stacjonarnych). Otrzymuje si¢ rozklad Wolda i repre-
zentacje w postaci sredniej ruchomej. Dla proceséw oscylujacych otrzymuje sie ana-
lityezng charakteryzacje I -regularnych i Jy-singularnych procesow oraz postaé ich
liniowej prognozy.



