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On the generalized Ramanujan-Nagell equation I
by :

. Brurers {Leiden)

Introduction. Tn this paper we shall study the diophantine equation
¥ — ) == 2 (D) e Z) in the positive integers @, ». The equation @247 = 27
is known as the Ramannjan—Nagell equation. It was solved by several
authors (see Hasse [6]) and has five solutions, namely (@, 1) = (1, 3),
(3, 4), (B, b}, (11, 7), (181, 15). : l

In*1960 Apéry [1] proved that the equation @2 —D = g» (D < 1,
1) 5% —T) has at most two solutions. Browkin and Schinzel [4] conjectured
that this equation has two solutions if and only if D = —23 or 1-—2%
for some k= 3. Schinzel ([7], p. 212) partly resolved this conjecture by
proving that; unless 1) = 1 —2°, the equation has at most one solution
with % > 80. In Theorem 2 of the present paper we prove the Browkin—
Sehinzel conjecture,

Theorems 3 and 4 deal with the equation 22 —D = 927 (D > 0).
In Theorem 4 we prove that this equation has at most four solutions.
Hurprisingly it turns out to be possible fo construct infinitely many equ-
ations each one admitting precisely four solutions. In Theorem 3 a complete
clagsification is given for those equations with 0 < D < 10'? having
exactly three or four solutions. I have not found any reference to the
cage J) - 0 except for a remark by Hasse ([6], p. 100) and a few congru-
enea conkidarstions by Browkin, Schinzel {[4], p. 311).

Theorems 2, 3 and 4 depend on Covellary 1 of Theorem 1 which
stadios that o < 435 4-10 (log| D log2) for any solution (z, ), This result
makes it possible to solve a given equation o1 = 2" in finitely many
steps, Theovem 1 gives @ good lower hound for the approximation to V2 by
rational mymbers whose denominators are a power of two. The proof
of this theorem uses so-called hypergeometric funetions. In 1937 Siegel [8]
introdnced these functions in the theory of diophantine approximations.
By refining Siegel’s method Baker [2] succeeded in giving a good lower

3__
bound for the rational approximations 0. V2. The proof of Theorem 1
ifin fact an adaptation of Siegel’s method.

|8 — Aein Arlthmoetles XXXVIIL 2, 4
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Theorem 5 is an analogue of Theorem 1 for some integers other than
two. We do not work out the applications of this theorem here. The appen-
dix of thig paper contains 2 list of all equations «® — D = 2"with | D| < 1000
which have two or more solutions, together with their golutions.

Tt also contains some numerical regnlts which are used in the proofs.
T would like to thank R. Brand for performing the required calculations
on o computer and finally Prof. K. Tijdeman, who introdueed moe to the
subject and assisted me dnring the preparvation of thiy paper.

1. Proliminary remarks om hypergeometric funetions. A hyper-
geometric function F(a, 8, p, 2) ¥ defined by the sories

1 e f 2+ (a4-1) B{A+1) 2_'!_
! RS TR

1y
which converges for all [¢| < 1 and for z = 1if y—a—f> 0. TFurthermore
Fla, 8, v, 2) satisfics the differential equation

2@—L) P+ {(a-+ B+1)e—p} I - afT = 0.

(For these and other properties of hvpomeometridfnnc‘ni(ms.see Forgyth
[81, Bicberbach [3], Siegel [8], Baker [2] and [9])

LmvmA 1. Lot 0y, 1y be posilive integers mwh that P == Yoy b Py y Mg 2= Py
Put G) = F{—%—ny, —ny, —n,2), H(2) = % My, Ny, My B} AR

Ping-+1, n1+1}_,%+2, )
Py +1,m+%,n+2,1)"

Then G(z) and H(z) are polynomials of degree m, and n, vespectively and
o) ~VI—eH(2) = 2"P6 (1) B(z). |

Prook. It is easily checked, that &(z l/l —z H{(z) and 2"V F(n,+1,
ny+ ¥, B2, 2) satisty the dlﬂemnmal eqmtmn
(1) ' 2le =) F {(F ~n)z -t} F L ng(ng - §)F = 0.

Henco there oxists a linear relation between these functions. By substi-
tuting # = 0 and £ =1 we find that this relation ix given by

ey

B =

G(e) —V1—2 H{z) e 2" PG (L) E(2).
LEMMA 2. Let G(z), H (), 0y, 0y e defined as in Lemma 1. Lhen

(a) 1G(2) ~V1—z H(z)| < GL)el"™ for lo| < 1,
(M) G(L) < G() < G0) =1 for 0 <21,

)

@ ew=("]] (1 —-;,;?,;;)~
TR §
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Proof. Since I
we have

W (g =1, 0y -+ &, -2,

Fn, H M- §, %+ 2, 2) has only positive coefficients,

) < P+, n-+4,0+2,1) l#| < 1.

.Ho,rice |7 ()] < 1 and by Lemma L we find assertion {a}. Secondly, notice
ihad ’

for

G{2) =Gy (=% —ny, —ny, §, 1 —2).

L S R, —
By —tyy —n, §,1—2) a8 a polynomial in 1—e

7'( hag positive coef-
ficients, sinee ny 2= 0. This implies

G(L) < G(R) = GA) T (=4 ~nyy —ny, },1—8) < G(0) for O<z<l.

Thirdly, by substituting 2 = 0 we find

1= Q1) F(~}—n,, ‘_'”':n 3, 1).

According to a well-known formula due to Gauss (see [31) we have

I'(§) Ln+1)

F(—}—n
* I(ng+1) P+ 3)°

—ity, §y 1) =

Hence
Ty

e = ([ f-)

LwvnMA 3. Both ( ) G (42} and ( )J:T (49) are polynomials with integer
eoefficients. '
Proof.

(n)en - (2) 2 ) Db gy
2 (ﬂz?{H) w:;:v.az %;a((ﬂv: j))...((r:i k]:«;;) (—ta)"

i)
iy

\“’ ("’"“ ) (e

iy

Since (’”2 ;;"%)4% z if. follows that (:1)0(42) €Z[z]. In a completely anal-
ogous way we find '

fa

(ﬁl_) H(4e) = 2 (m ;i‘)(ﬂq:lk)( —def e e,

k=0
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LevmA 4. Denole

G*(Z) = F(_"%"""('nﬂ"l"l)y = (1 'E']-); _(%"i"‘?'): z),
H*2) = F(L—(ny-1-1), —(ny+1), —(n--2), 2],

Then
G (2) H(2)—H"(2) G(z) = ¢-a""

Proof. According to Lemma 1 we have

for some constant ¢ 0.

G(2) —V1—z I {z) = &*"'F(z)
amnil

G* ‘/l Tl* P z?f"\‘.’!ﬁ]* (‘,3’)

for some hypergeometric functions I’ F*. By eliminating Y1 —¢ we find
that G*H —H*¢ iy divigible by 2", Since it iy a polynomial of (10{,,1‘00
w41 we find the above lemma. A Mlculm.ion of the coofficient of !
in @*H --H*G shows that the constant ¢ is non zero.

2. In this section we prove Theorem 1, which enables us to prove
Theoremg 2, 3 and 4. Before we proceed, we prove

148\
Lewvma 5, Let kymeN. If vz 376 Hwn( )<: > (-1«1,5) .

Proof. Assnme n = 3m--8 for some melN, d€{0,1,2}. Then
wy _ {3m4-8 Bmi -8
] R T

(Bfm ~l—cﬁ')/( 3w —1) H)) - (5’”""* ) (3m + 8 —1) (3m - d ‘“2)__ - 27
” m—1 e (2m - 8) (2m -+ 6 —1) !

se{0,1,2)

Observe that

for all m =2,
This implies

ot 5

Y RN (*d ‘H) : - R E "
B - - ’l g8y 1AW o1 8 27\ 13
LAY ( ! ) ) A REAYEI

“Hence ony lemma follows,
TunornM 1. Let p be an odd power of 2. Then for all © & Z,

Proof. Itis well known fhat 181247 = 2'% Put w == 2'5 and § = 7.
Throughout this section &, H, n, ny, ny will he defined ag in Section 1.

. odd powers of 2, and since w*? (dw)2"™ =

On the generliced Bamowujon-Nagell eguation I 393

By Lemma 2 we have

WIS

) ~Vizs m@] < G (t).

Insert 2 = djw and puat
A o (H;)G‘_é_ lj__ﬁ__ g 8
wy  \m (w " Tdwy (ﬂl) wl
Then

A 181 B i K] u-'r‘]G L "
(4e0)"t  a0'*(dap)"s | < (a;_ ( )(ﬂ,l)’

where 4 and B arve integers and 4 s 0 by Lemmas 2 and 3. Let e Z
and let p bo a positive odd power of 2. Put & = |x fpM* 1], Adding this to

181 B (4wt i
i< A (w) G(l)(ﬂfl)’

— E)jfz(él_?’v)ﬂﬂ-ul-ﬂ- .
(o) [ 5\
B |A] (w) G(l}(ﬂl)'

= (pjw)? > (dw)* !, and choose %y, %, such >
“ 0y K BA L, #g zu1+i Notice that we have two choices

wo find
® 181 B

PP w B dw)yma
Let 2 & N be such that (dw)* =
that £ —4§ <5

@ EY

for w,. Wo chooso n, such that the expression (2) for & is non-zero.
This iy possible, for if K = 0 for both choices of n,, we would have
(GH* — G*H) (8 /w) = 0, where &, H correspond to one and &%, H* to the ofher

c¢hoice of #,. This ig impossible in view of Lemma 4. Since p and w are
w' (dw)* = p'* we have

1 . (47,0)“1 5 n+1 n
A (dgpyrar S <ot 14| ({U‘) G(l)(nl)'

Hoenee
Rkl
(3) L < sl A ()™ 4N dep)e (ZE) G(1) (’_‘ )

T

10. Then gy 2= 6 and by Lemma 2 we find that

wfe) = [l ga)= [P <5

4
/ . .
The socond ferm on the right-hand side of (3) can be estimated by

:1 u s n+1 1 S5 462 ) .
- —_— = 40

Assume 7=
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and sinee m,; > §i—§ this is bounded by
1 & ,wﬂfli 39 67/2 2413 ) 1
4w (28 ( ) 2

e
The first term on the right-hand side of (3) can be estimated ay follows,
We have by Lemma 2 that

A] = {4y (” )G (»@%) < (4™ (*” )

w

L5% My

Since n = 20, -4, 1y 55 AL and A 10 we casily sec that n > 3ny,
80 Lemma 5 can be applied. We now find

. . 1 3 ?.’.'11-J~A .
|A|w”z(4w)“'2-~-”l < (::q) w”“(‘l’L!J)H""l < _‘_z_ (Mk ) ?‘01/3(44/0);.4.,,,1

24
w'® [ 12w\ 36w \™
TN\ e

and since #n, < &#4--1 this is bounded by
w? [ g * 36w .
e {Em-g-- (12@::)5’3} “2:%“ < 2200 dap) 0%,
We have chosen A such that (4w)* < 4w (p/w)™. Thuy we find that the
first term on the right-hand side of (3) is bounded by
22'98’&!}3!2(4%)1'31 < 22'91!)5/2(4:’&0”2)1'98190'9 < 242.562:.(}.9r

and finally inequality (3) becomes
1< a2MIphoif §,
Hence ¢ > 27%5%%% and onr theorem is proved tor the case 1> 10. Now
assume that 1 < 10. Then p < w(dw)™ < 2°*%, From [#*—p| = 1 it follows
that ‘
& . 1 - 1 .,
.’p.]ﬁ» - l -2 :&{ =u —‘11;6_1_17 0.9 ~ Em'p ﬂ.J’
which proves our theorent. '

3. Consequences of Theorem 1. Lot DeZ, 1) #0.

Coronrary 1. If the eguation a®-~0) == 2" Ras a solution (v, n),
then n << 430 +10(log| D] /log2).

Proof. Tf # is even then it follows that (D] = le? —2" = 2%, Uence
n < 2log| D] flog 2. _ ‘

If » is odd, then by Theorem 1 we have

.%‘ 1| > 2~4-3,52m‘0.91nl

P
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On the other hand, #*—D = 2" implies |z/2%® ~1} < |D|27". These two
inequalities imply » < 435 410 (logiD|/log2).

CoroLLAZY 2. If |D| <2 and »*—D = 2% has a selution (,n),
then

7 < 18 4 2log| D flog2.

Proof. Wemay assume that n is odd. If | D] < 2° then» < 1395 accord-
ing to Oorollary 1. Let V2 = 2 27" with e, € {0, 1} for all k. The values
om0

of @, for k< 700 are given in the appendix. It follows from Table ILI
that @ — 2% 2 2% for n < 1395, Combining this estimate with | — 22|
< |D|j2™ we find n < 18 4-2log | D jlog?2.

4. Tunorsm 2. Let D e N be odd. The equation x+D = 2" has two
or more solutions in positive integers @, n if and only if D = 7,23 or ok -1
for some k= 4. The solutions in these exceplional cases are given by

(6) D =7, (@, m) = (1,3}, (3, 4), (8, 5), (11, 7), (181, 1d),
(b)_D = 231 (iE, '”’) = (3a 5)5 (459 11)7
(¢) D =2"—1 (b=4), (z,n) =(1,k),@" —1,2k-2).

Proof. We first treat the case D 2 —1 (mod 8). Suppose there
oxigt two solutions (y, 1) and (2, m) say. Bince y and 2 are odd, we have
14D == 2%mod 8) and 1-+.D = 2™(mod 8). Furthermore, D & ~1 (mod 8)
and hence I, m < 3. This implies 1+ = 2° % 2™ = D+1 (mod 8), which
i a contradiction. .

Now assume D = —1 (mod 8). Let ¢ be the smallest positive integer
sueh that M24-b*D = 28 for some positive integers M, b. The following
fact is well known (sec Hasse [6], pp. 83~85, Apéry [1]). If there exist
integers @, r such that -+ D = 2% then b == 1 and e|r. Moreover, for the
Lueas-sequence given by a,, = Ma,,_, —2%,_,, a, =1, 4y =0 Wo have {a,,|
== 1. Conversely, if there is an index m such. that |a,,| =1 then #* 4 D = grtme
for some @ € N and D = 227 — M* We are going to search for all Lucas-
sequences of the type a, = Ma, -2,y With la,] =1 for some
mo

Assume |a,,| = 1 and m-¢ is even. This implies a2 D = 24 ME for gome

ML

# & N. Observe that 2°7°> D = 2¥F"0 —p > 2% _1 and heneo m < 2.
The solutions for the equation @+ D= 2" yielded by |6, = 1 and &, = 1
ave (#, w) = (1,2 --6) and (2°7'—1,22e).

Assume |a,] = 1 and m-e¢ is odd. This implies @t D ow 937 for
some # & N. We digtinguish two cases depending on whether D exceeds 2%
or not. :
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(1) D = 2%, From Corollary 2 of Theorem L1it follows that 2 4 me
< 18+ 2log Dflogd. Further 2% = M4 D implics ¢ = (logDlog2) —9,
Henee, by D=7,
log2
e B . LS
"= g n )
D =7 implics by definition ¢ = 1, M == 1, The corresponding reenrrent
gequenee I8 @, = a,,.; —2a,, ,. For m < 26 the only values with |a,| = 1
are given by m == 1, 2, 3, 5, 18, These wvalues yield the solations (w, %)
= (1,3), (3,4), (8, D0), (L1, 7), (381, 16 for the cquation m2 -7 =0 0,
D =
D =23 implicd ¢ =8, M =3 Lot {g,} be the corresponding Lincas-
sequence. Then |a,| == 1, m = 26 DGuplies w = 1, 3 which yiads the sol-
utions {w,n) = (3,5), (48, 11) for the equation @228 = 9" I = 31
implies e == 3, M = 1. The corvesponding equation |a,| =~ 1, <26
implies m = 1, 2 which e¢ase we have alrendy dealt with. Asgsume D 3 39.
Then e 2= 4 and, since ¢ is odd, we have ¢z 5. D 2 39 implies

£ e
B ey

i

7.

log2 .
< QO e e 1D
77 0 Tow (D 4] &< 9
and henee m < 7. Since m is odd, wo observe that a, =1 (wod 4). So
iyl =1 implics a, = 1. We must check whether @, =1, a; =1 or
@y == L I8 possible. @y = L iwplies M*—2° =1, Hence M = 3, ¢ = 3,
vontradicting ¢z B, @y == 1 implies M*—2° == 1, Henee M =3, ¢ = 3,
confradicting e == b.oa, = 1 fmplieg M* —3M* 2° 2% = 1 or equivalently,
(MFsmgede 1) = 145272 A number of the shape 1--5-2%"% can ouly
he a square if 2¢—2 =4, Leo ¢ = 3, contradicting ez 5. a, == 1 implies
M =520 L BIM3% 2% = 1. hemee M® :=1(mod 2°). This implies
M =l (mod 2%, Sinee MWD o= 28T it also follows that M < 429
ence M* oo 14 2" for some 0«2 =< 3. Thig can only oceur if B,
¢ = 3 or o 3y e w4 hoth confeadicting e 2= By and i g = 0, Lo, M = 1L
I8 M =1 however, 1—5-92°46-2% 9% =1 must have o solution,
which 8 mpossible, ‘

(I1) 1) = 2%, From Corollavy 1 of Theorem L it follows that 2. me
< 430 -10log.Dflog2. Together with ¢ (logD/log2) —2 this fmplies

P BN loed .
W < 1()\Ll‘ (I)/-[ ) 044 *l‘l() -z 1.5 B
Notice that e = (log D/log2) —8 > G4, .

Itiis obvieus frow the fovmula @, = Ma, ., ~2%,,_, that a, - 0™
(mod 2°). Hence a,, = 1L implies M™ 7 = 1 (mod 2%, Pub m =1 -2
for some:0dd «. Since m < 15 we may sssume S 2. By M™ s 1 (mod 2%)
we have M = 1 (mod 2°7%). Sinee M* < 2% we observe that M =14

icm
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4277 for some 05 p < 22H < 16, Suppose M = 1. We can show by
induction on m that a,, = 1—{m ~2)2(mod 22 for all m > 2. 8o a,, = 1
implies m—2 = 0 (mod 2%), which contradicts the fact that w is odd.
Hence we must assame M > 1. Pub M = L1+ 0-2% for some k3= 2,
podd. Thenl 4: g 28111 o205 — 1 4.y .90t g equivalently o-2% (02814 1)
= 37t We divide this equaliby by 2°7! and obtain g(e-25 1 4£1) < 4.
By 274257 we have k412 e—t> 92, Since x4 << 16 and k> 92, we
find 2" 1o (e 2% 1) <€ < 16 whieh i impossible.

Collecting all solntiony that we have found we obtain the assertion
of Theovem 2.

5. The following lemmag are technical preparations for Theorem 3.
LmvvA 6. Let D=0, D =1 (modR), I not a sguare. Suppose there
cirlst positive integers @, 9, 2, k1, m such that z*—D =25 y2—D =2}

(a) m—2 =1 and

LS LA Lt B R VR s |
3 ' 3 7 3

ol—
(@, 0,2, &k, 1, m) —_—( ,5,1,2141

(h)  m -2l b1,

Prootf. We may agsume that k= 3. Notiee that Zl;ayﬂ’—mﬂ 4+ 8
=120 4d > 1L21/33——T-“13 444 and since D > 17, thid implies 1 = 7. Suppose
! == 7. Then it follows from 2'> 12V8 I +44 that D < 41. The only
value of D such that D =1 (mod 8), D 41 and D+27 is o square, is
D == 41, Tt is casily checked by Tables II and IIT that #* —41 = 2™ with
T« an « 65 has no golutions, From now on we may assume that 12 8.

Note that w, y and 2 are odd and thab

Y=o YA+ s oper j
Py D L g and 3 5
Notice that 25% divides oither (y —®)/2 or (y--2)/2 and that 2'* divides
oither (# ) /2 or (2-4+4)/2. Put (§ —@)[2 = u, (¥ +)/2 =0 and (#—¥)/2
ma g 270 §h g sy (mod. 4), (249)/2 = a2 if 2 e —y (mod 4). Thus we
oltadin :

WY == PR 982 gngd a(d'QE_g.+ E{’M*]“’U)) = gmt -1,

where ee{—1,1} is determined by 2 = ey (mod 4). Notice that
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(u—S)(fuv‘) =0, since v >« 3 and hence w-+v < juv--3 = §;(2z -
. A e 2‘”2-]-7) It follows from (4) that o is odd and
Zm,l 1 (zr )21-—- l

(5) B(uto) = ——m—a 2 T T

where we have put 7 = m—20--2. Using u+o< 3O 4T) it follows

from (B) that

o) 7 1
80" Grly gt e B N
o =2 < o (T2 + “'s( + M)’ 64

It is easily seen fhat » = 0 and |e¢—27%| < §. Hence « iy uniquely deter-
mined by » and # must be odd. Farthermore we find, on using 12 §,
that

{6)

27‘
< 0373 i  azb.

a

Suppose # =1. Then a« =1 and u-+o = 2" —1. Together with wuw
= 2072282 ghiy implies % =1, ¥ = 27" -2 which contradicts the
assmnption w = 3. Suppose 7 = 3. Then a = 3 and w+v = (2"*-11)/5.
Together with wy = 2772 —2%% {his implies (4 —3}(0—3) = ~282L8,
Since v>uzd and 128 it casily follows from these Lqmtions That
% ow= 8y, 0 o= (271 —8)/8, k= 5. Hence @ == v —u = (272 —17)/3, ¥ = u-
4 == (972 41)/8 and fim.llv g = (17-277* —1}/3. Thig ix precisely case (a).
Assume r 2= 6, Then oz 5 and ineguality (6) holds. An inspection
of Table IT shows that (6) implies » == 15 or 31 or # 2 b3. Next we prove
that » % 15, 31. Since @ > u we find that w(u-+v) < 2uv < 2(2°7*—2).
Combining this with '

[th ] = {2

we eonclude that

)2 1 fa > (12— el 2 1) o

220 —2) Da
(") L S T
© Bliminate o from (4) and (6). Then we {find after rearranging terms that
(6(2F —a?)tpwm ) 2% o2 w(at o o) e 8FF,

Notice that 25°* divides cither % or au--s and henco 28 g afu “l-1. Thus
wo find

(8) e(2" — af)u —af 2% < max(w{au -}, a-2%7%)

Suppose v == 15, Then a = 181, |a? —2" = 7. By (7) we find » < 52 and
by (8) 297% « 2%, I-Iencel< 22, From( Y we sce that a divides 2™ —1

€ (eu-+1)max{a, u).
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= 2B 1 and this is impossible if 1< 22. Suppose 7 = 31. Then

a == 46341, |o* —2"| = 4633. By (7) we find » < 21 and by (8) 2% <« 2%,

Hence 1< 87, From (B) we see that 46341 divides 297%* —1 zmd this is

mlp()mbln if 1< 37. We have shown that the asswmption » = 5 leads to
2 B3, as asserted.

LummA 7. Let d € N be square-frec and 4 = 1 {mod 8), & > 1. Suppose
there ewist inlegers o, A, B, p, ¢ 5 0 such that

AL Bl/dl (p—}—qu/d)’

>1, p =qgB{mod?2).

f) -

2

Then o == 2 and p, g & {—1,1}.

Proof., Without logs of genemhtv we may assume that p, gB e N.
If @ iz odd then

BYd - (qu/E)“ S (BI/E)"-IBV& BV

9 2 2 2>2’

which is a contradiction. Suppose « = 4, then B = §(p¢+p¢*B%d)B,
which is impossible. Since every integer « > 2 is divisible by an odd prime
or by 4, we are left with the case ¢ = 2. This implies B = pgB and hence
[p| = |q| == 1, a8 asserted.

Loymma 8. Let D > 0, D
A2=D = 9" for some A, A", n,n' and n>n'y 27 >

1 logD { )1"2
8.8 log? ’

Procf. Choose B e N such that D = B*d and d is square-free. Sinee
D is not a square we have d s 1. Factorise 4 —B'd = 2% in Q(Vd) to
A—BVi A+BVd

S111:)1 1 R = on2
obtain T

gome idenl o dividing 2. According to the theory of algebraic integers
it is possible to find a positive integer ¢ such that

= 1 (mod 8), D not a square. If 42 ~D = 2%,
49D then

Hence ((A+BVd)j2) =a*™* for

1) af == (a A ﬁl/ ) for some a, § € £ with Bif,

2y it oF e (gi;h;l/d) with ~B|8, then elk.

This fnplies ((A--BVa)2) = ((a+ V@) [2)" 2 in ideal notation.
Heuce (A-+BVd)2 = +so™ where & is & unit in Q( (Vd) and
#= (a- §Vd)/2. Notice that  can be written in the shape & = (& + eV d) /2
with Ble,. Units which can be written in this shape form. a cyclic group
(mod J-gign) with generator » say.
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Hence
A+BVd , ,
(9) ~+5— e e for some re 2,

Let #, & be the conjugate of v, o respectively. Then (9) implies

(10) IBVA| = VD] = [p"g® 2 5 0Bl
Furthermore,

W D42V D) e b,

I-erg'(”’" 2)ie | o

A LBV = A2V D2

Divide expression (10) by [p7e®™#H) then

T{DNYE N g -1‘
slo) G

T iy easy to see that if |w—-1] < d < § thon floge < 1.22 4. Bince 2%
> 2% > 49D implies (DM P ) wwe can apply this moqudhtn, and obiain

-2 b
+ o log | £

»

(an ‘ ~ 17 log =

In o completely .Hm.”l(wuns way we find that A7 = 2% implies the

exigfence of an integer »' sueh thot
n 142
< 2,80 ( ) .

i)'l!

1
-2

o e L0 o
4

1'
{12 1 —'log| =
b

A
E i
Suppose /o —2) = ' -2) Let oo = (¢, n —2fe), f ==, n—2/e)
where (a,b) denotes the largest comunon divisor of o and b. Suppose
g = 2, Uying {(9) we find that there exigt integers p, g soch that (4 -+ ‘Bv’}i) /2
= [(p - Q.BI/E) 27 and this contradicts f> 2 by Lemma 7. Buppose
,3 == 2, then we hove a==1, since fx a  Henee (474 .B’l/(i) /2

4 (4 BV{I)/Z) and this huplies A = 41 by Lemma 7, which Iy
unpossmle We conclude thatl v/(n—2) r*’/(w, - 2). Blitninate log|a/e|
from the incgualitios (1) wnd {12). Led - Ho;:,\'u/w[, then we oblain

L il g
(' -2) -2 -2

n—2)(n —2)

285 ( 1 (D “=}m L (DV™ 57 1DV
AR P ) B R e )“ﬁﬁiiﬁ”ﬁ’
w2

; g [ 9N\ 1 % 2'” )
TEBI\D) 7 835 Tog2

Henco

icm
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We deteimine o lower hound for « as follows. Let » = (5—]—17]/&) /2 with
Bly. Since » is a unit, we have & —u*d = 4. By separating the cases
gy = 0 and By < 0 we eusily caleulate that a0 = Ilog \v[w|| = 2log (4(|£] +

4- V@) Using the tacts |&] = Vaid£4 and that log(}{2 V2 —4 ))flt)gJ,
iy monotonieally nercasing for o> 2 and that D= 17, we find that
£ (- sV AT 4 I SO
0ot TV VARV VD~ 44V D
2 9 9
og (JY134V17 M o < 108D
o : 1 og e .
haﬂl/]T 1.05

Together with the lower bound for » this estimate for « yields our Iemma.

6. The equation z°—1D = 2" D> 0. Before procceding we note

the following peculiavitics.
(1) It D = 9% —3.251 .01 for some &k 2 3 then (2, n) = (2* -3, 3),

(2F 1, k- 2), (2%-11, k- 3), (3-2F—1, 2k +8) are sotutions of the equation
P2 — D = 2T

(I0) 1t D =
then (z, #) = (&8 —2F -1, k+2), (&'
solutions of M-ﬂ]) = 2",

g2 17y
----—--—73——_) —32 for some odd 129, then (w,#)

9% yogik _gktl__gktl_ oMl 11 for some k> 1, I > k41,
— 2541, 142), (2542 =1, b4l +2) are
(IIT) Tf D = (

-3, ol-g 17 - 2i T_q
m(z - 17, 5), (ﬁ 3+~1__’ g) and ( T 2Z+1) are golutions of

o J) == 20,

We shall refer to these equations as type I, I or IIT equations respect-
ively. It is casily checked that » given equation cannot belong to more than
ono type. Note that for type T equations we have required %z 3 in order
to wake D positive. I wo insert & == 2 then we find D = -7 and the
corvesponding solutions are (@, n) = (1, 3), (3, 4), (5,8), (11, '?) Ingert
k=1, then D = =7 and the solutions are (x4, n) = (—1, 8), (1, 3), (3, 4)
and (5, B). We can do similaaly for type TIT equations. Ingert | = 7, then
D = 7 and (@, n) = (5, ), (11, 7), (181, 15). Insert b =5, then D == '—23
and (z,n) = (~8, 8), (8,5), (45,11). Insert i =3 then D= —7 and
(2, %) == (—B,B),(1,3), (11, 7). Collecting these solutions we see that we have
obtained all solutions of the equations @*+7 = 2" and @823 = 2%
(seo Theorem 2). One might consider this as an explanation for the oecur-
rence of these two exceptional cases in Theorem 2.
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TunoruM 3. Let D eN be odd. Consider the equation ©2—D =2
i positive ntegers. Then o type I, I, TIT equation has at most 5, 4, 4 sol-
utions respectively. AW other equations have at most 3 solutions. If D < 102
then o type 1, 1L, IIT equation has exactly 4, 3, 3 solutions respectively. All
olher equations with I < 10" have ai most 2 solutions. :

Proof. We first deal with the eases D a sguare and D s 1 (mod 8).
Suppose I = 42 for gome 4 € N. Then o2 —d¢* == 2" implies §(x —dY${x--d)
= 2" % Bince (x--d)/2 and (z--d)j2 arve relatively prime wo coneludoe
(—@/2 =1, (®4d)/2 =277 and hence d = 2** 1, It follows that
there is at most one solution. Suppose D) s 1 (8). Since # i odd we have
#* =1 (mod 8). Henee 2" = 1 —0D # 0 {mod 8) and » <2, One emwily
observes that the equation a*— 1D = 2% cannot have two golutions with
w2,

From now on we assume that I is not a square and D == 1 {mod 8).
Let o, % bo the largest golution and 2, »' the second largest, According
to Corollary 1 of Theorem 1 we have n < 435 +10log D/log2. TIf 2% > 49D
we can apply Lemma 8 to obtain an upper bouwnd for #/,

1 {2¥ \"logD logD
mrsemrin || s e w < 4,| [ | | .M
8.8 ( D ) log2 <" 35+10 log2
Hence
. log2 2 ]
b e I k PR AU A 3
2% < max l(8.8(4@5 Top. D +10)) D, 491)],

and since D 17 we find 2% < 2.10°D. Hence

log D

13 W < 214 :
(13) 7' < l—log-z

If D« 2% we know from Corollary 2 of Theorem 1 that

(14} R no< 18-+2 logl .
' tog?

We first prove the theorem for type I, IT and LII equations. Suppose
there is a fifth sofution (z, m) for a given type T equution. It casily follows
from Lemma, 8 that m > 2k-+43. Applying Lomma 6 to the solutions
(2B -0, B -4-3), (3-2F—1, 2% 43), (2, m) we find that m 2 B1-4-2(2k-+3)
> 07+ 2log Dlog2. Using (13) we see that (2, m) must be the largest
solntion. Henee there are at most 5 solutions. Tf D < 10" then by (14)
the solution (2, m) cannot exist at all. Suppose there i3 o fonrth solution
(#, m) for & given typo II or IIT cquation. In cage wo bhave a type 1L

icm
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equation, application of Lemma 6 gives m > 5142(k414-2). Since

D = (270 L D Ll (2% 4- 912 —ghtitr _ (ol ok o 92(l+k+2)—8
we obtain i B81-4-9{k-414+2) > 59 +logD/log2. In case we have
o type IIT equation, application of Lemma 6 gives m = 5142 (2141}
= 51--2log.D/log2. Using (13) we zee that (2, m) must in both cases
he the largest solution. Henee there are at most 4 solutions. If D < 10
then by {14) the wolution (2, ) cannot exish.

Agsume that the equation #* —D = 2" does not belong to type I, I1
or 11T and sappose that there exist at least 3 solutions (=, k), (¥, 1), (z, m)
with m = 1> k> 1. Suppose y—a = 2. Then y*—a% =2 —2F implies
A(p+1) == 9 ~2% and hence o =2"F-2"0-~1 and D = %2
e QU4 o2k plebl=8 __of-l__ok=1 7 Thiy yields either a type I
equation (it & = 8) or a type II equation, contradieting our assumptions.

Suppose y —w = 4, Then y?—g? = 2" —2% implies 8(w-+2) = ot . 2k
and hence v 4-2 == 207 — 2473 Since ¢ is odd, k must be three, so s = 277" —3
and D = 2?83 = 22079 _3.97-2.1 This yields a type I equation,
contradicting our agsumptions.

We therefore conclude that 4 —z > 6. Applying Lemma 6 we find
that m > 51421, Furthermore 2'> y2—a®> 122> 12D*? and hence
1> logl12D** log2. Thuy s = B1+loglddjlog2 +log Dflog2 > 58+
+log.Dlog 2. :

Using (13) we see that (2, m) is the largest solution. Hence there are
at mogt three solutions.

T¢ D < 10! then it follows from (14) that the solution (2, m) cannot
exigh. ' :

TumorE 4. Let D & N be odd. The equation x® —D = 2% has al most
Four solutions in positive integers &, M. :

Proof. By Theorem 3 it suifices to prove that a type I equation
has at most four solutions. Assume D = 1 —3 2871 4-2°% for some %= 3.
The functions V1 4% — 62 can be written as o power series in # with integer
coofficients. This can bo seen as follows. Write

Bince hoth /(1 —2)2= 2-}- 22+ ... and V1—dfi=1—2t-}... avepower series
with integer coetficients, our assertion follows. Furthermore V1 + 2% — 62

= jo] ae" is an analytic function in the complex plane with the
Tl
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322 deleted. This tunetion ean be chosen to he
'ium/d wi ]hw‘o

real eut {3~ 2]/5"
value 1 for z = 0. For 0« p <

Write this integral as the stun of an intogeal over |2 = M, M = 3.2
and an integral over a contour surrounding the cut |3 ~~~21/:§", 3aY
If v ;= 2, the contribubion of the infegral over || == M is zero a8 wo
by letting M tend to infinity. By sabsitbnting ¢ - 2—3 we obiain

.J.Vz
Observe that a, < 0 for all » = 2 and
{15)
Hl/z S 21/2 LY T UL P
0 < |a/ | f _.‘7[ i < < - . o ,6? (1., -
o i (t--8) T 2}/3 o

[ys]
= > al2™®, Wo know that the equation a?—D =

Paa()
solution.s Suppose there is a fifth solution (a, #). By Lemma 6 we ha
2 BL - 2(2k--3) == 4k -+ B7. Chooge the sign of o gueh that o =21 (mod

Thun @% — 1) = 2" implics @ = VD (mod 2+ ) and henee

2% hag zut least f¢

0

(16) & == 2 8,25 (mod 221,

. Fasd
Furthermore, o* — D = 2% implieg |2} < 207D ginke n = 4k - B7. Supp¢
n < 6k. Since g, = ——d dy = —4, @y = —12 we find that o =1 —~3-2f
~4-2%  (mod 2%12), Sine(* || < 2"“)“ < oM a1 e 30F e g g
< 2 the latter congruence implies o = L -2 d 2%, ik iy inpo
ible because @ -1 cannot be a power 0}. 2 for thiv value of @ Wo i
asgumne wz= Gk -1 Tab B (o128 -F1 Observe  that (R4 %
< (A-1)/24-3% =0, 16 follows from conpgruence (16) that

(17) 3 4,2 % (mod gUE iy

y I
Suppose 6% < 2574 By (15) we have et,] =5 6" and henee

]Za grk| o 1-!- - ) (694 <

=0 r=»1

—-

(b :)Ic) AJL{ i'ﬂ

R:G
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fince wo ‘blao huve of < 2002 < 9BF o 1 gMBH) | eongrnence  (17)

implies @ - 2 2. However it also follows from congrience (16) that

Pesl
Rt
@ = Z a,2% (mod 242y
=0

Togethor with @ = a, 2" this congruence implies 2% | 0pt1. Sincelag,, # 0

and. g - l(’”” ]w (15),
gontradieting 6% . 9%-¥,

We therefore conclude that 6% 2 257* and hence k—2 < Rlog6/log2
<2 2.6(1 - {n-+1)/2k). From Corollary 1 of Theorem 1 it follows that
o« 430 -H10Jop Dilog 2 < 435 420k and hence

we observe that § 87 » |ap,,| = 25,

T 567
k-2 < (10+1+ ”’7{?’) [(2.6) < 29+ “k‘ ,

whiell implies %< 45 and hence D < 2%. Application of Corollary 2 of
Theove 1 yields # <2 18 +2log Dflog2 < 18+ 4k, which contradicts
7z Al -4- 57, Hences there exists no fifth solution.

7. All previous results depend on Theorem 1. It is possible to give
an anplogne of Theorem 1 for other powers than binary powers.

TrworEM 5. Let N be some positive integer which is not a square. Suppose
we ogn find an integer A and an odd power w of N such that 22+ 4 =w

5 i
2(2—e) z .
for some x ¢ N and w > max (2° |AE, 2758 where e

w1 f 84, ¢ =2 if d|d. Put

== 0 if 4'is odd,

log2
Y Mm+ (17.... )log'w'
Then
Y 1
;fiu 1}}“{6‘% fp

Jor every odd power p of N and every y € N.

Remark, A dew values of A and w that satisfy the assumptions
of Theorem & ave the following, (4, w) = (—37, 3"%) (26, 23%) (—8, 46°)
(19, 65%) and (60, 76%), In this paper we will not work out the applieations
of Theorvem 5. They ean be obtained by the argnments given in the previous
soctions. ‘

g -~ Acta Arlihmetica XXXV z, 4
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Proof of Theorem 5. We use the hypergeometric polynomials 6
and H defined in Lemma 1. Since @ 2= 2%, we may notice that

] 1 .
_ W ..‘_ e %1(%1 “““1) e (’”’1 "‘—Tﬂ "j“l) e I
18) (Gl = JAE;( A 2) al{n—1) ... (n—Fk-1) (=) I
wy+1)| # oy
st et
for all # e ('. From Lemma 2 we know that

A ™ +1

. 2 . A L 4 l/ s He
(19) (%1) (x(-;;-)_;;ﬂgfl(-;) < (1) (M).

On using Lewma 3 and incquality (18) we observe thatb (:’1) (<1 o)
= A ji2°"%)™ in which 4 e Z and

l"—/ll fg -1
(20) 0 < 4] < (22“'%)”1( )( n ——) :
Farthermore, put (21) H(Apw) = B{(2* “w)*>, Then Be Z by Lemma 3.
Inequality (19) implies
® B 1
1_01_1‘2_-:1“ (2°mp Y=

4

_ (22—%0)17.1
w

1—
4|

(21)

PEN (::1)(3#(1),

Let p be some odd power of N and y e N avbitvary. Put & = |yp'® ~1|.
Combining this with (2) we obtain

K x B 1 (22”%@)“1
P TR T (3 ey < g "

Let 4 €N be such that w*> (p/w)® > v and choose n,, #, such that
M-t < §A+3 and s, = ny 44 Notice that we have two choices
for n,. We choose %, sueh that expression (22) for K iy non-zero. Thig is
possible, for if K == 0 for both choices of n,, we would huve (GH* —G*H) %
X{dfw) = 0 where @, H correspond to one and &, H" t0 the other choice
of n,. This is impossible in view of Lemma 4. Since p and w are odd powors
of ¥ and w'ufe ™ == M 2 p1? we have

A (rJew.

w

(22) K

1 L (2% | A,
| JAI’M?X"E(‘JEMBW)”'Z—“I \<.. K < 8“1“ —“*T‘;ul"‘l' — '&7 (W'l) (}(1) +
Hence ' '
A 71
(23) 1< el Aj0MH(R ) ety (:;’)G‘(l).
w 1
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9. Then n, > 6 and by Lemma 2 we find that

3! _ ]
oos2) =[]~

The second term on the right-hand side of (23) ean he estimated by.

A nl .A 22—0A2 ny .
éwle(za—ew)nz (_1_0__) - }W(T) (ZZ—GA)A,

Agsome 4 >

and since #y > §4-—%, this is bounded by

Ml w 1 g( if2 22/3 2—g, 1/'1 1/3
b \gmigr) @ a1 o < 1412 ) < .

9, we see that # > 3n,;. So Lemma b
271 it

Since n = 21, -4, ny, < 34 —l—— and 4=

1
can be applied, which yields ( 1) <= - 2% From w > max {1d]™,

9
follows that |4/w| < min{[4]~%, 14277} < 275,

mates we imd( )(1~HA 2w )2t < 271 and by inequality (20),

Combining these -esti-

[-A'l < (22— w)n12n—1_

The first term on the right-hand ride of {23) can now be estimated ag
follows,

& —_ "
slAlw-lfz(Zz—sw)ng—m <,§2"w”2(22 f)te,

Since n, = %2—5-3, we find

a]A{’wI"z(2 w)u2 o (24- )4/3w1/2271.13(2z—c,w)51.p‘3.
By the definition of » we have 2783(20%w)¥* — w¥. Sinee @’ < (pw)™,

we obtain

(24-—6 )»ilaw:i,izpv

3|Alw1/2(2‘wew)m~nl < 5 (24— ,w)&,'3,w ,va < - 2

Inequa‘lity {23) now implies
1k L ey,

and hence
-4

3 2
e (R ) B g BI2 g =y =
> 3 (25 fqp )Mo 5 "

P
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Finally assume 1< 8. Then p<w' From |y*—p|>1 it follows that
fr—p" = {p~** and hence
L )

—5/6, v_ﬁ_;
4p'fe AL

-
ly(p'® —1| an =P
~ip

which proves our theorem.

8. Appendix

Table I. If | D] < 1000 then we know by (lorollary 2 of Theorem 1 that «? — D = 2%
can only have golufions with » < 18+ 2log|D|/log2 < 38. A mimple calenlation gives
all odd values of D such that the equation 22 — D = 2% ({D| < 1000) hns two or more
solutions: . -

solutions (z, «)

D= —511 {1, ®) (255, 16)
. w255 (1, 8) (127, 14)
—127 (1,7 (63,12)
-~ 83 (1, 8) (31,10
— 81 (1, 8) (15, 8)
o — 23 (3, 51 (45, 11)
— 15 (1, 4) (7, 6’) ‘
— 7T - (L, 3)(3,4) (55 (11, 7) ({181, 15)
17 {5, 8) (7, 5 } (9, 6) (23, 9)
38 (7, 4) (17, 8)
41 (7, 8) (18, 7)
solutions {z, u)
D= 65 (9, 4) (38, 10)
89 {11, 5) (91, 13)
" 108 (11, 4) (13, 6} (19, 8
113 (11, 3) (25, 9)
161 (13, 3) (15, 6) (17,7) (47, 11)
217 (15, 3) (27, 9)
257 (17, 5) (129, 14)
273 (17, 4) (23, 8)
329 (19, 5) (29, 9)
345 (19, 4) (37,10
358 (19, 8) (49, 11)
. solutions (z, n)
D = 497 (23, 5) (26, 7) (39, 10)
513 (23, 4) (257, 16)
665 (27, 6) (69, 12)
697 (27, ) (363, 17)
713 (27, 4) (20, 7) (35, 9)
721 {27, 3) (183, 15)
7T (29, 8) (131, 14)
825 (29, 4) (43, 10)

. 833 (29, 8) (31,7) (33, 8) (95, 13)
945 (31,4) (71,18) :

V2 =
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Table IL. Powers of two and the nearest odd squares

a = N such
that a is &2 —or
¥ 2r odd and ol —2r ‘
la® — 27 @
minimal
3 8 3 1 0.333
5 - 32 g - -7 1.200
7 128 11 —7 0.636
B 512 23 17 0.739
11 ‘ 2048 45 - 28 0.511
13 ' 8192 91 1) 0.978
15 32788 181 -7 0.039
17 131072 363 897 1.920
19 ) 524288 785 1337 1.844
21 2097152 1449 2449 1.690
23 8388608 2897 4001 1.381
28 33554432 5793 4417 0.762
27 134217728 11585 5503 0.475
29 536870912 23171 24329 1.050
31 2147483648 46341 4633 0.100
33 ’ 8580034552 ) 92681 — 166831 1.800
85 34350738368 185363 — 296599 1.600
37 1374389534172 370727 — 444043 1.200
39 54975581 3888 741455 — 286863 0.400
41 2199023255652 1482911 1778369 1.199
.43 8706093022208 2065821 1181833 0.398 *
45 35184372088832 5831641 |—7135951 1.203
47 140737488355328 11863283 | —4817239 0.408
49 562949953421312 237265067 28184177 1.188
51 2251709813685248 47453133 17830441 -0.376

Table ITI. Binary expanpsion of Va2

1. 011010100000100111100¢110011001311121001110111100110010¢1000010001011

S0010111110110001002101100110111020101001010101111101001111100011101Q11

01111011000001.0111010100010010011101110101.000010011001110110100010111],
0101100100001021000001100110011100110010001010101001010111111001000003

10000010000111010101110001010001311000011101010001021000111111110011011

©1111011100100000111101191100111001000011110111010010101000010111100140

00211001110¢0111101101001010011110000000010010000111001101100011110111
1110100010011101101000110100100016(00000101110100001110100001010101111
00011111010011100101001100600010110011100011000000001000110111100001100

©1101111011110020101011000110111100100100010041011010001.00001000101100... .
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ACTA ARITHMETICA
XXXVII (1981)

Fields with non-trivial Kaplansky’s radical
and finite square class number

by

M. Kura (Katowice)

Let F be afield of characteristio not 2 and let g(F) == 7*/F™ be the
group of square classes of ¥ and g = [¢(F)| — the square class number.
C. M. Cordes [1] classified the Witt groups of anisotropic gquadratic forms
over non-real ficlds with ¢ = 8 and obtained 10 non-isomorphic groups
for this class of fields. A little later K. Szymiczek [10] clagsified the
Grothendieck groups of quadratic forms over all fields with ¢< 8 and
hig claswification in the cease ¢ = 8 gives T non-isomorphic Grothendieck
groups for non-real fields and 6 non-isomorphic groups for real fields.
Having classified Grothendieck groups he wag also able to classify Wikt
groups for all fields with g = 8 and for non-real fields he found the 10
groups confirming Cordes’ classifieation and for real fields with ¢ = &
he got 6 non-isomorphic With groups. Thus there are at most 16 possible
Witt groups for fields with ¢ = 8. Both authors algo supplied some exam-
ples of fields fitting the classifications. But there remained 4 cases (out
of the 16 possible) left without any example of field and it was not clear
whether the nwuber of different With groups ean be further lessened or not.
In this paper we constriet the four missing fields (ef. a remark added in
proof, p. 418). The four fields are charvacterized by the following values of
tield invariants(cef, [10], Th. 3.2).

(Ay g =8, s =32, ¢, = 8§, 4, =2 (the case (4.4) of Theorem 3.2 of
[101); |

(B) ¢ = 8, 8 = oo, @y == 4, uy == 1 (the ecase (0.2));

() g =8, 6§ =1, @y =28, 1, — 2 (the case (4.3));

D) g=28,8 =2, g, =1, uy =8 (the case (4.7)),
where s is the stufe (Jevel) of the field (the minimal number of terms
in a representation of —I1 as the sum of squares), ¢, is the number of
square classes whose elements are represented as the sum of two squares



