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ACTA ARITHMETICA
EXXIX (1081)

On the generalized Ramanujan—Nagell equation, Il
by ‘ '
F. BrUusers (Leiden)

Introduction. In {27 we studied the dicphantine equation #*+.D = 2"
in integers #,n>1 in detail. The proofs of the results obtained
were based on certain properties of hypergeometric polynomials. In this
paper we extend ony investigations to the diophantine equation #*— D = "
in integers  and » = 1, where D is a positive mtegm mud P is an odd prime
not dividing .

In the introduction of Section 1 some facts about hypergeometric
functions are stated. By using these properties we derive the upper bound
for the second largest solution of the diophantine equation given in The-
orem 1. This result cnables us to prove that #*—D = p" has at most
four solutions in positive integers x, n. On the other hand we show that
ﬂle cqu&tion has ab least three solutions if p is of the shape 4a®+s and

D = [(p’—s)[4a)*— p' for some e € {~1,1}, a e N,leN. It would be very
interesting to know if there exist equations which have four solutions
indeed. So far I have not seen any example and one may suspect that
they do not exist

T have not been able to find veferences o the eqﬁuaatwn @t —D = p",
The equation #*+D = p*, with D eN and p an odd prime, has bheen
treated by many authors. In this case fhere cxist at most two solutions
as wag proved by R. Apéry [1]. Foran extenswv list of relevant papers
gee Cohen [3].

1. A few remarks on hypergeometnc polynonuals. Lot Fla, 8,7, )
be the hypergeometric function given by the series :

R CER L ICL S NP
Loy 12 y(y+1)
which converges for all [2] < Land forz = 1 it y—a—pf>0.Let 5y, By »
e N such that n = %, +n, and #, < 3n1,. Define
G(ﬁ) = F(_'Ez“""na: —Hyy —M, :8), H{(z) = F(§—my, —tigy —MH,y 2)
. Flng+1,n+%,nt+2,2)
D Fingt+l, my -, n+2, 1)

E(z)
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According to Lemma 1 in [2] G(2) and H(z) are polynomials of degree =,
and n, respectively, and they satizsfy the relation

(1) G(z)—V1—sH (2} = PQ(1) B{2).

According to Lemma 3 of the same paper (::)G(éz) and (4:“ ) H{4z) have

- . = . v e 1 l

integer cocfficients as polynomials in 2. We prove two more lemomas.
Lmwmea 1. Let |2 > 8, then

Vo3 |gl ’ILI ’
('Jbl)G(z)1 < 2% (1 - —~5-3--) 4 (::1) H(g) < _51_33|1.2. )
Proof.
ny ”
7 Al AN L et " Y fo 1\ fi el r
(‘n’)G(”) - |12( 275 )( Toy ) (_z)f <Z ; ( zk )( hy ) lg:f
= k=0
_ 21: g1 {n—1T)! ! .
k=0 Ny —R-+1 ny (B —K)! (g — k) IR @l

n—R

< 9
"."b]

“1

It is a well-known fact tha.t( )g vkl Thrthermore Ml

P

ginee b << ny << $0,. Thus we obtain

At
Ly
2

]‘(;‘I)G(z)} <,§2 .21.?‘—7‘:—1 (4;61) !;lzﬂ e o1 (1 + -§u)va1’

as asgserted. Furthermorc

(e =| S (ot
B0
"y .

Ty _
< 7 (71,1) (41. r«-k) 2 4 5‘1 =0 1ok e
N () by 3 I w
Eeath. B+l 2 !

Observe that if & > »/2, then n—& < k and hence (‘"’ - 7‘7) / ( k) < 1. By split-

. L oy ayf T
ting the second summation on the right-hand side we obtain

(m) 2@ 2 (b > e

ny<hsin/d RfAIoEmy

< on (1 -} E_[_ " 4+
2

< 2"(2 4 Jal) +

211,—.—}:--112’,‘?1: '.[_ 2|z|“2
ny<hk=nf2

< 2% (24 2]} + (2] + 2ot
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Since 2n, < m, and |z| > 8 we have 2"3(24]a))™ < (2V2+iel ) < ]
and (2j* < (2]e])*"2* < 2™ . Hence

(::1)3(5)} << 4]z,

LeMMA 2. Let G(z) = F{—3—{n,—1), —(ns+1), —n, z) and H(z)

_mF(%—(nl—E—l), —(fg—1), —n,2). Then

G()H(#) —H (2)G(2) = C-at,

where ¢ is some now-zero consiant.
Proof. According to formula (1) we have

Glz)—VI—z H(z) = & 'F(z), G- ﬁ"fé_« H(z) = &7 F (=)

for some power series ¥ and #. Eliminating Vi —z we find that G(z)H (z)—
—H(2)8(2) is divisible by #"*'. Since it is a polynomial of degree n--1
it must be & multiple of 2", The fact that ¢ # 0 can eagily be checked
by caleulation. _

2. Application of hypergeometric polynomials 1o the equation z*— D
=S pﬂ‘.

TeMma 3. Let deN be square-free omd d 1. Suppose that there
ewist integers a, A, B,r, ¢ 7 0 such that

A+BVd = (r+gBVEY, a>0.
Then a == 1. |

Proof. Without loss of generality we may assume that », gB g N.
Suppose a is odd and « > 1. Then we observe that BVd> (¢BViy>BVd
whieh is a contradiction. If e is even, then A -i—Bl/E == (P -+ QB V)
for some infegers P, Q. It follows that B = 2PQB which i impossible.
We therefore conclude a = 1, as asserted. :

LemMA 4 Let D e N, D not a square. Let p be an odd prime not divi-
ding D. If A*—D =gp*, A®—D =p* for some iniegers A, A by
with & > k, p" > 10000 then

log2.9D [p*\'*
45 (’E)” ) '

Proof. Choose B & N such that D = B'd and dis square-free. Sinee D
s not a square, d > 1. Factorization of AP~ B = p* in Q(l@), gives
(A —BVA)(A--BVad) =p*. Since A+ BVd and A—BVa are relatively
prime we can write (4 -{—B]/E) == ¥ for some ideal a dividing p. According

" to the theory of algebraic integers there exists a positive integer ¢ such that
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1) ¢° = (e+4Vd) for some a, f e Z with B|j,

2) it o" = (y+6Vd) with B|3, then ¢n. :
This implies A+Bl/rl a+ﬁ‘l/cl Me in ideal notation. Hence A - BVd
= - 80" where we have pub o = a4 8 Vd and ¢ is a unit in Q (Vd). Notice
that & can be written in the shape & == &, + eg}/qd’ with Bls,. Unity which
can be written in this shape constitute a cyelic group (mod - sign) with
generator 6, say. Hence A +-BVd = 406" for some r e Z. This implies

(2) BBVA| = [2VD) = 07"

whem 0 ¢ are the conjugates of ¢ and o respectively. 13111'1]101'111010, by
pF > 10001)

ﬁmwklcsl

e e 30
0 = A+ BV = (A= VD = VD+p* £ VD > 5(1 P,

Divide (2) by [0"0", then if follows that

31/ D\ 2‘/5 5 TiE Tife ‘

BT e By ol bt B ool B 1

15 p ]6 | 8/ \o N _
One eajsﬂy obsarves that if |w——1| < 8 < ]/lo, then (log 1] < 14;6/11
Since p* > 1000.D implies 2(D/p*) < 1/15.5 we can a.pply this - inequality

and obtain

31 (D

(3) < ) .
14 ¥

In a completely mmlogouh way we find that A”
existence of an integer » such that

~

et log A4

~

-+ —-10

D = p¥ implies the

LB Dye
4 \pF ]

Suppose #/k = /&' and (r, ') == vy, (k, ¥) = * &y Then there exist positive
integers «, § wuch that s = ary, k{a == a?clje zmd o firgy B /w e e,

Since f>a we have g1, Now A --BVA = 676" inplics A - BYd
= 4-(p- qu/d for some p, geZ, which is nnpwmblo by Lemma 3.

We therefore conclude that rjk 5 # B Tat - |lug|0/6|| By elin-
inating log |5 /0| from the mequ‘,bhtu“s (3) and {4) we obtain

)

*9’1041

&
o

+—-1

By ] BL L LD\ L DV 811 D\
By — < [SSUSREEY DI Py Y S, NISHSRRINY I
()kk:“- I I < 14 % (k(_’pk) +]G' (.’pkl) )'< L k(Pk) *

Hence

. . : . Lo h1/2
6y e ,.ff'm(i’_ .
e | 35\ D
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We can determine a lower bound for « as follows. Let 6 = Eﬁ—m@ with
Bly. Sinee 0 is a unit, we have £2—x2d = +1. By separating the eases
&n > 0 and &n << 0 we can easily find that 4 = PIOUIB/BH = 2log(|&| -Hn! }/d)
Since [§] == l/?;zzdil and %3 > B4 = D > 2, we obtain

o i - o
% = Zlog(hyll/d—f—]/nzdil) > 210g{|n|1/d(1+ ]/ 1k ?72—&—)}‘ > log2.90.

This inequality, combined with (6), completes the proof of the lemma.

TamoreM 1. Let D e N, D nit a square. Let p be an odd prime not
dividing D. If the equation 2*—D = p™ has two solutions (w,n) = (4,%),
(A7, E) with &' >k, then

¥ < max (2 10‘s 600])~)

Ploof Let G, H, 4y, tq, 1 bo defmed a8 in Section. 1. By formula (1)
we have

G2y~ V12 H(z) = &1 B(2).
From the introductory Iremarks in Section 1 we know that tle power
series expa,nsmn.s of ( )G(4z) ( ) (42) and V1 —4z 42 in # have mteger
)G(l) (¢) at # =0 has
rational coefficients whose denominators are powers of 2, This implies

that the power series of ( ) (1) #{z) eonverges in the p-adic number

fieldl for all values of # with ]|z||j,< 1, where H ﬂp is the p -adic valunation.
Moreover,

(7)

coefficients. Thel cfore the power series of

<1 for all {lef,

( )G(l)E(z)

Consider the 1dent1ty G(z)—V1—2H(z) = &G E {z) as an 1dent1ty
m Lhe p-adic number field and substitute 2 = —p*/D. On using (7) w

-2/ =Z el
Re(-5)- 5 )a(-5)

if the sign of 4 is correctly chogen, Put & = A (4D)" (’:)H (—p*/D) and

< P—-k(ﬁ-}—l) .
P

and hence

(8) I é p—ktn+1) y

r

7 = (4D} (,’:’)G(w—p'ﬁjb) and’ notice that &, 7eZ. By multiplying (8)
1
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with VD (4D)™ we find that
(@ 16 — VDI, < p~H+.
= max(2-10°%, 6001F). Aeccording to T.emmsa 1

We now assume that p® >

we have

P
Ny

4. |
|&] < D

Ty

,IA|(4_D) = 472 Hpngfc(pu}_pk)uz{ 5,47?22)(%2-2-1,'2)&

and
iy n

n
b ) 1(4:1))"'2 = QM trzpmb (.%1?) _.1,1) 1(4_D)7a,2~n1

_1_)
< 51&12nzpn1k(4p)ng—ﬂ.1 .

" 1
[n] < & (1—E"§

Choose the sign of A’ such that |4’ —V D], < p~
6000% we ean apply Lemma 4 and obtain

log2.9D (p* ”2>k10g3 log2.9D (p*\1
45 \D] T 45 logp® \D] -

¥, 8ince p* 2 max{2-10°,

>

If D= 58 then

logd log2.9D ,m(p‘ )”4 -

log2.9D s e «
15 logpt o 600'* - DM > 15k,

K > e il
o 4.1 log600D*

I D < 58 then | |
log8 log2.9D (2-10%)"*

45 D" log(3-109

k > 18k.

Hence &' > 15k. Choose n such that krn < &' << b{n4+1). Notice that » > 15.

Choose #, such that in—f<<n; < n—}-3 and such that &— 'r]A' = 0,
This is possible in view of Lemms 2. Combine |4’ — Ifmllp »~* with
inequality (9). Then we obtain :
1
e ’ wkind1ly . R
oA S 1€ —nd'll, < max {p~*, p LS

which implies

(10) p}.:r < ||+ nd!| < 5,22312?(113-;.1,'2)1:: n 5”12""223"11"({[,1))”2"”1 I/D _I_pk-,‘
Notiee that ¥p* 4D < 1.06-p*" since p* > p* > 600D, From inequality
(10) it follows that at least one of the terms on the right-hand side is
larger than }p*. Thus we find
R’
§omaparrn 5, P o P
P >3 5

nk

implying = pm—1k 2 109
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or
1.05 - Bm2mprE(A D~ mpt R > p¥ [0

implying  2.1-5M2M 4Dy x piftram)

Hence
' 1 n, 2 amy 2ty

pk < max {10 112 2'#1—1/‘2 (21) Ty g Ra TR D e 41))2}‘

Since ln—{<<n; <in-+} and n > 1B it can easily be checked thait

1 2y 1 2

1071.1 1]2‘)“1"‘”" <10152 LE <2 106

and

2 2y 2ng, 2.4 3213
2=

(2.)" M M gmh (216 0 2 0

Thug we obtain
p* < max(2-10°, 600.D%),

which proves our theorem.

3. The number of solutions of the equation z° D = p". With the
aid of Theorem 1 it is now possible to make some gtatements about the
number of sclations of the equation #2-—-D = p™ in positive integers =, #
Before we proceed I want to draw attention to & special class of equations.
If p =4a+e and D = ((p'~¢)/da)*—p' for some a,leN, ce{-1,1}
{p not necessarily prime) then the equation #*—D = p" has the following
solutions ' -

_[P—s P —e
(w’”)“( da )’ (“?ﬂ'"

One may notice that this can be generalized to the case where ¥ =da?t-¢
for some % € N. The solutions will be the same, except for the first and
third value of the exponent which becomes &, 21- &k, respectively. From .

,l), (Za.p —|-e 21+1)

"o theorem of Chao Ko [4] however, it follows that |p* —4a?] =1 with

% > 1 is impossible, so this generalization is useless.

DrrwiTioN 1. I D and p can be written in the shape given above,
the pair (D, p) and the equation 2?~—D = p" will be called moeptimal.

LEMMA 5. Let D > 0, and p an odd prime not dividing D. If 2? — D = ",
yi—D =g 22 —D = p™ for some 4,2k l,meN with m>1>k
then m 21 is cm odd posm@)e integer. Moreover, if m—21 = 1then p = da® 4
+a, D = |(p'~&)/4a]' —p' for some aeN,ee{~1,1} and & =1.

It m—21 =3, then m—~2l= max{3, %, $(I— 1)}
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Proof. Note that @, ¥ and # have the same parity and thos it follows

that
1T . -
y—o yhi_m . k',p —1 and .:mw.'_?], E:tm@_; == )!
5 Ty TP ‘ 3 3

Notice that p* divides either (y—a)/2 or (y-+#)/2 and that p' divides
either (z—%)/2 or (z+¥)/2. Put (¥ —a)[2 = u, (¥ -+2)/2 == v and (;*fy)/2
= ap' if 2 =y (mod p) and (2-+¥)/2 = ap’ i &= —y (mod p). Notice
that ¢ e N. Thos we obtain

pm-—l —1

(11)

Jmic

Py L

-1 —1
a(ap!--s(u+0)) = 1’4_

WY = and

where ¢ e {~1, 1} is determined by # = sy (nod p). Notice that
vt L wwtl = 3(p'—p") +1< p' 1),
Furthermore, it follows from (11) that

(Pm_ﬂ"éas)iﬂ!mli _ |Pm-l —1

P’
ta e T

1
= w0l < 7 (p'H)

and hence

pm-j2i___ 4(12

<PTHA+pTY.
One easily observes that m—21> 0. Put r = m—21.
by p'> 25, that '

19 Za 9" < (20 +p™) (L 4 A = (1 +2) < 0.29.
(12} 120 ™| < (2a +p™ ) a( ) 2“14/3( %)

We gee that a iz uniquely determined by p" and moreover, gince r even
would imply |2a—p"| > 1, we see Ghat » is odd. Thus the first assortion

of our lemma is proved.
~ Eliminate » from the equalities (11). Then we obtain

(13) | : 4@aap1_|_ w(r‘~—p"-|— du?) = u(p"T—1).
Bince u < v, the first equality of (11) implies _
-k} < $(2'—p*) < $p'—1).

On:using o
. | —ter , 1| p—1
= [P Pl — 2
ol da . 44::./' 4o
we find that S
pt—1.
14 e
.( ) H<‘2lfw+v]“

Then we find,
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We shall now prove the second agsertion of ony lemna, Asggume ¢ =1,
Consider (13) modulo p*. We obtain dean? = g (mod p*) and thus we have
either p*lu or p*|(4zau+1). By (12) and (14) we have u < p¥*40.29 so
pHu i impossible. Since dou< 2(p'? +0.29)2 < 3p—1, the possibility
P¥|(4eau +-1) can only oceur if % = 1 and P = dau+e. Using this, we can
derive from (13) that («—w)p"*! = e{a—u)p and henee a - u. We now
eagily find

Y = w-tv =a+(p—p)jda ~ (p* ~da'~¢)/dota = (p' —¢)/da

and hence :
D o=yt —pt = ((p—e) [a) ~ 97,
ag asserted.

We now prove the third assertion. Assume > 3. Consider {13)
modulo p'. Then we obtain %+ sal —p¥+dut) =0 (mod p*). It follows
that either u+sa( —p®+4u) = 0 or |u-Fea(—p* +4u2)|'= p'. If the first
possibility oceurs, then it also follows from (13) that (dua+e)a = up”.
These two equalities imply ain and #la respectively, hence a = w. This
implies p” = 44+ Aceording to Chao Ko's theorem {4] this ean only
happen if v =1, contradicting » > 3.

We therefore conelude that

P |u - sa( —pE+ dut)| € max {&p", w(dau +e)}.

From (13) it alse follows that #(4au -+ 2) = 0 (mmod p*). Hence we have
cither p*lu or p*|(4au +e). This implies p* < 4o —1. Hence

PP < (dov +1)max (a, u).

On using (12) and (14) we find 4au-+1 < 2 (p™ +0.29)2 +1. Thus p* < dau -+
-+1 implies k<7, a8 agserted. Furthermore

P < (P 0.29) (2(p™ +0.29)8 +1) < 2(p™ 1),
and hence
a Ar-2 é ~pf G
Pt < pt '“5;(1“3‘19 e,

Binee 72 3, we have p" > 27 and hence

4 1A®
A(L4p ™t g o 3.
(L4277 /p \9( +1/27) <
We therefore conclude that 20< 3r--2 or equivalently, = §(I--1).
Lenwia 6. Let DeN and p an odd prime not dividing D. Assume
@D ==yt =’ et —D = p™ for some K l,m, oy, zeN with
m>1>k If m—2 23 then m—21 = logl0flogp. :

B e Anta Avnithenatins TowTE o
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Proof. We use the same notations ag in Lemma 5. In order to prove
our lemma we must show that p” = 10°% By (12) we have |[2a — P < 0.29,
Checking thix inequality for p"< 10° and #2 3 we find the following
solutions, (p", 2a) = (1798, 70), (293, 156), (437, 282), (475, 322), (533, 386),
(713, 598), (739 624), (799, T02), (83%, 756}, (5% h6). We intend to show
that none of these selutions is compatible with the assumptiony of our
lemma and thus p* - 108 ‘
Hrowm (11) it fnllows‘ that da divides p*'"—1. Since 732 3 we ean apply
Lemma 5 and find » = 3 —1). Suppose r =3 then, by »z 51 —1), we
have 1< 5 and honce E 1 p <L 8, Moveover I-4-v 2= 5 sinee ﬂ 2. Checking
the divigibiliby of p7—L (BCi4-r<8) by 4a for our csultﬂllabu(l vilues
of p and « we find no other cases than
29%—1 479-1

T 1906485, e
312 s Gt

= TOTETULE.

In hoth eases 1 = 3. Caleulating y = « +o by the second equality (11)
we find y = 41483, 22409, respectively. It is casily checked that the equation
y*—x* = p'—p" in the unknowns @ and k< I has no solutions for our
calculated valies of y, p and 1.

Suppose v = 5, then I < 8 and Im\~*r<13 The conditions 132((BH7 —1),
I4-r <13 imply 14+ == 18, Then (b2 — /112 = 2179827 and y = 7673.
It is cagily checked that T673% —af = 57 5% (k< T7) has no solutions,
Thus our lemma is proved.

THEOREM 2. Let D > 0, and p an odd prime not dividing D, Then the
equation 22— D = g™ has at most four solutions in positive inlegers «, .
If there are exactly four solutions and D << 25000 or p > (D[40)5, ﬂffm
the pair {D, p} 18 ewceptional.

Proof., We first deal with the ecase that D = d* Lor soue deN.
Suppoge @?— @2 == " for some @, % e N. Then (z—d)(x-d-d) = p* nnd
pinee w—d and @44 ave velatively prime, we find o—d = 1, a-}-d - p”
and henee d = §(p"—1). 8o, if D is o squure, then ¢ —10 « p* has al
most one solution.

Trom now on we assanie that 1) ig not a gquare, Assume that (D, p)
is an exceptional pair with p = det-e and D = ((p'—e)/da) - p' aul
guppose that there exigbs o fourth solution (e, m). Then, by Lemmas b
and 6, we have m 3= 2(20-41) --log10%/logp. Since D < (pfda)? it tollows
that p'" > 10%* > 10%D* and thus, by Theorem 1, (2, m) iy the largest
solution. Assume that (D, p) is a non- exceptu)n;ul pair. Suppose there
are three solutions (@, 1,), (%, %), (¥, %g) With 2, > n, > 0, . By Lemmas b
and 6 we find p™ > 10°p*"2. We also observe that p" > ai —af > da, > 4D
and hence p"s > 16-10°D.

Suppose that there exists a fourth solutiom (a,, m,) Wwith. n, > ny.
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Then, by Lemma 5, p™ > p*% > 2.10°D% According to Theorem 1 (z,, n,)
is the largest solution.

Suppose D < 25000, then p™ > 16-10°D > max(2-10°, 600D*} and
hence (@, n;) is the largest solntion aceording to Theorem 1.

Suppose p > (D/40)*® then p™ = p*> D/40. Furthermore, p™
> 10%™2 > max {3*-10°, 10°(D/40)2} > max(2-10%, 600D%) and hence
(a4, mg) 18 the largest solution aecording to Theorem 1.

References

[31] BR. Apéry, Sur une éguation diophantienne, C. R. Acad. Bel. Paris, 8ér. A 251
(1860), pp. 1451-1452,

[2] F. Beukers, On the generalised REamanujon~Nagell eguation I, Acta Arith. 38
(1081), pp. 389—410.

[3] E. L. Cohen, The diophaniine equation o®--11 = 3% gnd related questions, Math.
Scand. 38 (1976}, pp. 240-248.

[4] Chao Ko, On the diophantine equation x* = g™ -1, zy == 0, Scmntla‘ Binica {Notes)
4 (1964), pp. 457—460.

Received on 14.4.7978 {1063)



