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A problem of Erdos on sums of two squarefull numbers
by
R. W. K. ODONI (Exeter) h

¢. Inroduction. In a recent st [6] of solved and unsolved problems,
P, Tirdios notey that many interesting questions arise when one attempts
to imitate the proofs of results on quadratic forms (and in. particular
sums of squares) when eonsidering their apparent analogues for squarefull
numbers, that iy, positive integers # such that, when p is prime and pln,
then p2ln. (Brdos calls these powerful ﬂu,mbaas)

Our concern in this paper is to answer, in the negmtwe, Erdos’s questmn
a8 1o whether the number of natural numbers < 2 which are sums of two
squarcfull numbers ~ Oz{logz)™* (which is the expected quantity, by
analogy with Landan's well known result [10] for sums of two squares).
We shall achieve this by proving

Tumorym 1. Let % denote the set of sums of lwo squarcfull numbers.
Then there exist positive consianls o, § and y such that

(1) card ¥~ [1, #] > ax{loga)™ *exp(floglogz/logloglog)

for oll @ >y, : . .

Weo remark that Theorem 1 is not necessarily so surprising as it
seems ab first glanee, since A. O, L. Atkin [1] has shown how a .slight
“perturbation” of the sequence, 8, of natural squares ean yield a sequenee 8
for which &' -- 8 has positive natural density. There is no relation between
Atkin’s argwments and onr own, however.

The proof of Theorem 1 iz rather complicated, and themiﬂre reguires
gome proliminary disenssion. We view Hrdos's problemw. as one on the
representation of natural numbers by at loast one of & large set of pomtwo
definite binavy integral quadratic forms. We note that % is ifdlentical
with, the set of all intogers reprosented by ab least one of the quadratic
forms

B2 Lopgty? 1 ~ 1. < m & =1,
B = By A5, ) s w4y for m, fn,/l, m<n and (m,n) =1

Sinece we only regnire an £-result Eor , it will suffice to replace # in The-
orem 1 by any subset %, of #. We ta,ke advantage of this in order to
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simplify the problem. As a first simplification, we take %, to he the seb
of squarefree members of %. This helps to lighten the analysis, since T
can only represent a squarefree number properly, this is, with (@, 4) = 1,
and such repregentations ave straightforward to handle. One would naively
expeet card%,n[1, #] to be > ccard¥N[1, 2] for some absolute ¢ > 0,
so that little is being wasted in Theorem 1.

A second simplitication is to replace %, by ity subset WUy, cONpigting
qf those integers prime to 2pg which are representod by any of the forms
l.;'”ﬂ" where po<p< g are odd primes. This simplification iz a priori
likely to cause more damage than the first simplification, but it has the
major advantage that the genus structure for forms of diseriminant
—4p%g® is much simpler than in the general cage of diseriminant — dan s,

Our third simplification, is to trancate the size of P and ¢ in the £,
under consideration; for the moment let s take Do <l P =l ¢ =5y, whers
¥ =y{w} is to be chosen later. The corregponding subset of #, will im
denoted by %', and it will be card% n[1, z] that we shall bound from
below. Tet #,, denote the et of members w' of &' represented hy ¥,
where (u’, 2pq) = 1 and py<p<g<y. Then o

(0.1) | v= U %,
PP <GSy

o We now appeal to a sgimple combinatorial regult; if (X;),, s any
finite collection of finite sets, then '

(0.2) card | X, > ¥ card X, — eard (X, n.X)).
jed _;;"TI ! %‘Z.,;;’ ( ¢ j)

In thi{s we take X; = #, ~[1, o], where j ig the ovdered pair (n, q)
80 that #'n[1, 9] = UT,X,. We thus need:
J€u

((i)) a lowor bound for card FueN [L, ], uniform. for p, < P gy
= y(@); | o

(ii) an upper bound for card {F e F e [L, &1}, valid for the same
range of p, p* and ¢, ¢';

{ii1) an optimal choice of y (@) to exploit (0.2),

Of tlm?o, (1y is by far the most ditficult part to- aceomplish g it will
oceupy us in §§ 1—_12, culiminating in

THEOREM 2. Provided I -- 4pPg® satisfies g>p > 3logD)

; 2 o fies §>p>p, and (logD)%ssle

< logw, where » > m,, then ' ' Hoe?)

H

() crd Fpo [1,9) > o a(loga)™",

where the ¢, are positive absolute constants.
In §13 we shall solve (ii) by proving
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TurorEyM 3. For sufficiently lorge », if
(log A58 < logm, where A4 = 16p°°p"¢', with p, ¢, ", 4" > Pos

we have
(1I1) AT {F 1y NF g [1, 1} < 055 (log A)s0p{loga) 4.

Finally, in § 14, we shall deduee Theorem 1 from Theorems 2 and 3.

1. Classical results on bimary quadratic forms. We assemble here
for future use some classical definitions and theorems on representations
by binary forms with integral coefficients.

DepNrrioN 1.1. Two integral binary quadratic forms Fy(X, ¥) and
P, (X, ¥) are equivalent if there exists an invertible Z-livear transform-

ation

X a bB\(X

(1’) " ( d)(Y)
of determinant -1, such that Fo(X, ¥) goes over to F,(X,Y ) under this
transformation.

DupiNTrioN 1.2, The form as? - bxy -+ oy? is primitive if the highest
common factor (@, b, o) is 1. If we define the diseriminant & of ax? - bay +oy*
to be b?—4dae, it is readily seen that equivalence preserves digerimninants
and primitivity. The number, h{d), of equivalence clagses of primitive
binary forms of discriminant d is well known to be finite. (See [H], pp.

140-141.) . )
In the sequel we shall only consider the ease d = —4pi¢® withp, < p

< ¢ <y, where p and ¢ are prime. We have the basic

TemMa 1.1, The positive integer n (prime to 2pg) 48 properly represented
by some priwitive form of diseriminani —4p3g® if and only if (—_pq) 8 a
square (mod n). (See [5], pp. 135-136.)

Wo shall also be involved with a weaker concept of equivalence of
formg, namely that of rational equivalence, whereby two pl.‘imitive florms
Bo(x, y) and Fy(w, y) are rationally equivalent if there exists a rational

a B
4= (? 6)’
of determinant <4-1, such that Fy(X, ¥) goes over to F (X, ¥) under
X X
() -)

The equivalence classes here are called genera. All primitsive forma
of a given discriminant ¢ which represent a given integer n (prime to 2d)

rmatirix
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mush lie in the same genus, and thoge integers % (prime to 2d) ropregented
by some form in a given genus can he deferniined by caleulating a finite
number of Legendre symbols involving » and the prime divisors of 2d,

Our immediate aim is that of distinguishing arithmetically the set
of all integers prime to 2pg which ave represented by L, y) oo PR giyr,
and we shall do thiv by dealing with the general problem of which % ave
represented by o given primitive form f of some diseriminant d. The
neatest solution of the latter is provided by using the correspoudence
procedure between classes of primitive forms and regular fdeal clasgos
in orders of quadratic fields, which goes hack to Dedekind snd Weber {I15],
pp. 831~375). For our purposes it is enough to gay the following:

(1) An order @, in an algebraic number field K, iz o free Z-module of
vank [K: ], which is contained in £, the ring of integers of K, a8 a noo-
therian subring with 1, in which every prime ideal = 0 ix maximal, Anr
order, 0, is necessarily of the form Z-+ea, where a is some jdead in Zy.
The Trighest common factor, f, (in Z,) of these ideals q is culled ke Con-
ductor of 0, and is largest ideal of Z, contained in 0. An ideal o of @ for
which. a+-f = @ is said to be regular. Begular ideals of @ have unique
factorization into products of powers of regular prime (maximal) ideals,
Two regular ideals o and b are (strictly) eguivalent it a(4) == B( 1)y whaere {A)
and (p) are prineipal regular ideals, and N o (Ae) = 0. Multiplication
of ideals induces a finite abelian group structure on the ot of regulax
ideal elasses of 0. : '

(2) By considering the operations of extending ideals from ¢ to Zy,
and contracting ideals from Z. to 6, it is easy to show that the regular
1clca.% class group $(0), of @, is naturally isomorphic to $*(®), the gquotient
nf'I ] the group of fractional ideals of Zx prime to §, by the group of
principal fractional ideals (a) = aZ,, in which & mipla) = 0 and @ Al gty
where 4, p & @ and 204-f = u@-1-f = 0, The igomorphisn is induced by
a(s 0 aZ,. : ' '

| (3) The eorrespondence hotween primitive binary quadreatic forms
and regular ideal clagses of quadratic orders is given in detail in [1B],
and depends on the concept of an oriented (or }“OI'(I.H].‘(’U ! Z-basis for
a regular ideal in an oxder. Wo do not explicitly need the full details, bub
we ghall merely indicate how fhe corrospondence pracedure can be uged
to determine which (primitive) forms ropresont a given intogor .

‘ We use the;not_a.tion Z(n) to denote the get of regular ideal classes
(1‘11 the appropriate order ¢ of O (]/_'d)) corresponding to the clagses of primi-
tive forms of diseriminant  which repregent #. In fact, when d = —d4p2g?,
we have @ = Z +pqZ,. Wo are assuming that (n, 2d) = 1, In the powér
set of $(0), we define the product of two subsets 4, B of $(¢) to be
AB = {ab;a € A,beB), where ab is the product in $(0). With this
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definition, we have the basic identity

(1.1) i n,n) =1,

Thus, to determine #(n), we need movely determine % (1%) for all primes
I¥2d. In fact, wo can also say that #(n) consists precisely of the set of
clagsos of H*(¢) occupied by ideals o = Z, for which Na = n. (Thiy
comes from the correspondence procedure.) Since only  squarefred n
interest ug in our applications, we thus nced only know the #(1) for primex
Ly 2pq. . :

Now (1) iy emply unless ( -alp q) =1, and this just says that (1)
splits as the produet of two distinet prime ideals #,,.%, in the ring of
integers of Q(]/E), if @ = —4p®. Sinee (I) is in the identity class of §* (¢},
£, and &, lie in inverse classes 4, #7', and both have norm 1. Thus

R{nn') = B{n)%n')

(1.2) A() = {€, Y.

Fmnally in this section, we define genera of regular ideals, and note
their relation to genera of forms. Two regular ideals a, b < @ are in the
same genus it N(aZy) = Ngo{A) N (bZg), where AZz is in the identity
class of $*(0). The set of genera of regular ideals forms a group in the
obvious manner, and it is isomorphic to a quotient of (@) (hence i also
a finite abelian group). The. correspondence procedure between primitive
form clagges and regular ideal classes induees a 1:1 correspondence
between genera of forms and genera of regular ideals. In all quadratic
fieldg, the genus groups of orders are elementary abelian 2-groups (or
Z,-vector spaces), since the square of any regular ideal iz obvicusly in
the identity genus, Inthe case d = —4p3¢®, the genns group is either Z,DZ,
or Z,DZ,DZ,, and we do not need to know which of them for our appli-
cations. :

2. The integers represented by a given ‘form. A major difficulty
confronting the discussion of the set of integers represented by a given
form. is that the set in question is not, in general, characterized merely
by rational congruence criteria, which do sutfice for the coarser deseription
offered by genera. Although Bernays [2] and the author ([12], by a different
method) obained good results for the number of n, 1 < » £ &, represented
by a given form f for fixed d, and as & -» oo, the methods nsed cannot
cagily be adapted o cover the case when d and » both <+ o, and it is
this ease which concerns us here. We shall geb round this obgtacle by -con-
sidering only thosen < @ (prime to 2pg, and squarefree) which “have enough -
prime divigsors of the right types”. To explain this phrase, we recall that
#(m) == [] #(1), by (L.1), where the ! are primes. By (1.2), each 2(l)

in . )
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is of the form {%,, ¥;'} = %;'{1, ¥3}. Bach ideal in the class ¥} belongs

to G4, the group of classes in the prineipal (i.e. identity) genus. We look

for a particularly small family (%)), in $*(@) for which []{1, %1} = &,.
JeJ

If » hag at least one prime factor |, with #(}) = {¥;, € 1, it follows that
A(n) = an entire genuy, i.o. » ig represented (properly) by all forms in
a given genus. The genus in question is determined by rational congruence
criteria involving only # and the divisors of 24. Obviously we are only
interested in the genus containing I, = I' = po?-|-gy*,

‘We shall now prove a lemma showing how efficiently such a family
(%;)ser can be chosen. Wo say that a set (@), of elements of a finite
additive abelian group 4 is o good system of weights for A if the eloments
Zajmj , with each g independently 0 or 1, cover 4. We then have

LDMMA 2.1, If 4 is an abelion group with N << oo elements, then there
ewists a good system of weights for A with < 2log, N elemenis.

(This is not necessarily best possible, but it is good enough for omr
needs.)

Proof. Suppose first that 4 is cychc, A o= Zy. By congidering the
Z-adie (i.e. binary-digit) expansion of posﬂiwe mtegers, it is clear that
w; =2 (modN),j =1,...,1-[log,N], is a good system of weights
for A.

Now suppose that 4 is a direct sum BDC. If (b)), is & good system
of weights for B, and (c_,,)j% is a good system of weights for O, then it
is clear that {(b;, 0,);j ed} (05, ¢);fedy} will be a good system
of weights for BEC = A. From thls, and our observation about finite
cyelic groups, we see that if .4 iz the direct sum of cyelic groups of prime-
power orders ny, ..., %, then a good system of weights will exist with

& ]
< D' (1 +[ogyny]) < b+ Xlogym; = b+log, ¥
fuml RS )
members, Sinee cach »; > 2, we have 2° < N, k< log, N, and the lemma
ig proved.

Nowlet & denote the order of the groups $(0) = $*(¢). We know that,
in the group @, of clasges in the principal genus, there oxists a good system
of weights (@), with $J' < 2log,$:¢,. The celebrated Gauss dueplication
theorem [8] tells ug that (in additive notation) &, = 28" (¢ ) the image
of $*(0) under the endomorphism & -+ 22. For each @y, with j € J, choose
& preimage ¥;. Then (¥;);, will be our “particularly small J’&mﬂy” giving
H{l €3} = Gy; it containg < 2log,(h/4) elements.

3. Some associated Dirichlet series. Wo consider posﬂ:we integars
#, prime o 2pg, squarefree, and properly repregented by the whole genus
containing ¥, via the mechanism explained in § 2. Denote the get of
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these # by 4. For ¢ = Res > 1, the Dirichlet geries -

(3.1) me"“ -

medt

will converge abesolutoly, and will be a regular function of & = g--it.

We ghall express M(s) in terms of L- and {-funections; an application of

Perron’s summation formula to (3.1) will then yield upper and lower

bounds for 3 {m e .#; m < #}, which is the quantity of interest to us.
For cach # € $*(0), define the Buler produet

(3.2) 16,9) =[["0+1  (e>1),
!

where ! rung through all primes J2pg for which ¥ e Z(1). _

For all positive integers » prime to 2pg, all ideals of Zx (K = Q(Vd)
with norm s are in the same genus, and we call this the genus of n, by
abuse of language. Since the genus group is a finite elementary abelian
2-group, its characters can only take the values 41, By sbuse of notation,
it yis such a character, we write y (1) for the common value of all y(¢) with
Na =n. We also write '

* -
(3.3) 78,%,9) = [T 1+%9@)  (¢>1),
i
with the same convention as in (3.2).
Consider now, for arbitrary genus characters y,

34) gy =[[—1G, ‘fm’)}” f6: %) (e>1),

fed
where (%), it the family introduced at the end of § 2, and, in []¥, ¥
rung through a set of ropresentatwes of all subse.ts of $*(@) of the type
fo, o).

On multiplying out the FEuler produets in (3.4), the right-hand side
is seen to be » Dirvichlet series of the form Y *y(n)n~?, taken over a certain
set of positive squarefree integers, prime to 2pg, with (—pg/n) =1,
and each such # is properly represented by a full genus of forms; the -
intersection of this set with the set of integers ¢of the same genuas as F
i3 precigely . If g (== 4 or 8) iy the number of genera, it follows by ortho-
gonality of group charactery that

(3.5) M (s) == g’"l Zv(F)cp(s, ¥ (o>1),

where 2 is taken over all g genus characters .

Our immediate task iz to. express the ¢{s, ) (and hence M(s)) in
termy of L- and {-functions, whoge analytic properties are better known.
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The Dirichlet L-function associated with a character y of $*(@)

is, by definition,
(3.6) 0= []t—zm¥p~9)
pejf

the product being taken over all prime idealy in If. Agsume now that y
is a genns character; it may be regarded as a chavacter of $*(¢), and wo

(0 >1),

have

3.7 Lis,y) = [] -1 ]' (1—y (o> 1).
It2pg Lo
{ unaplit 1 apllt

It is clear, on the other hand, that

(3.8) n‘*fﬂ @) = [[A4vO1F (o >1).
. Hrng
Ieplit
Hence
eo) I[P 6n = [ @=) [] 0= (o>,
I13pgq itipg -
1 unaptit Lsplis

since % is yo, the identity character. Consequently, as the right-hand
gide of (5.9), and it reciprocal are rvegular and absolutely hounded for,
§ay, o 3/4, we can write

(3.10) H#f(s’,

where G(s, y)*! ig regular and uniformly bounded for o2 3/4, and (3.10)
holds to-the right of any zeros of L(s, ).
To complete the analysiz of singul&rities of ¢(s,

¢, y) =VIL(s,7)-G(s, ),

), it remaing to fleal

with the factors 1—f~'(s, %, for j ed. Using (3.6), we have, for all .
. 2oV J '

characters y of $*(#),

(311) logD(s, 1) = 3 logL—z(p)Np~"~
v{
TENp =V, p = () is in the prineipal class, and 80 1o g (p) ¥p™* = L—17%,

We.thny have, foxr non-prinecipal %,

(o> 1),

(812) B 27 Ylog (s ,x) =0 3 Y Zz(%log(l»«xwwr*)f‘
- g |

- 7 (€) )_7 Vg ()

27 5 2

114];:11!:
o ! plne
Tsplit P2 Swr‘l'

=s(%) DI =R 1) (e>1),

FeR(l)
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where &(%) == 2 if ¥ = ¥, and = 1 if not, while R(s, %) is regular and
absolutely bounded for ¢z 3/4. We also remark for inture reference
that if ¥ is principal we obiain a similar result to (3.12), involving an extra
term which can be ahsorbed into R(., ¥). It is important to note that,
for &= 3/4,

(3.13) 2 (B(8, €)| is absolutely bounded

€cd
for any subset A of $*(0), sinee, for ¥ # %,,

B, B =] > 3 31|

lsplit pli ne=2
l+2pg PR

<I3 Srets 33 S

I pR n}z P n=2

phte?
xyyee

pe¥
2

) iB(s, €)

Fed

whenee
< XK E < K
1 z‘ !

where X ig absolute, and this gives (3.13).

Combining (3.12) and (3.3), we obtain

(3.14) 76, €,9) = T(s,%;7) H L(s, 2",
in which the T (s, €; y) (and any products thereof) are regular and uni-
formly bounded for o 2> 3/4, and the exponents o(%,y; z) are given by

(3.15) a(®, y; z) = y(¥)L(€)/hs(¥).

Formula (3.14) applies at any point to the right of any poles or zeros
of the L{s, y). It is well known that the L(s, y) extend to meromorphic
funetions in the complex s-plane, and that, for y 5 x,, L*'(s, g} is regular
near 8 =1, while L(s, 5,) has & simple pole at s = 1. This shows that
fl8, €, y) hag a gingularity of the type (s —~1) "M g% § ~ 1.

4. Behaviour and growth of L-functions near g = 1. Now let ¥ be
a genus character. We consider the problem of estimating the contour
integral
o-kico
1 o
~— (8, y)ds,

i 82
o—ioo

(4.1) I(y) =

where o is large, and ¢>1. I{y) will occur when estnnatihg M (x). More
precisely, we shall need to consider what happens to I{y) as both !
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and & — oo in some suitably related way. In view of (3.14}, we need some
bounds for |L(s, y)|** on abscissae near 1, in terms of D = |d|, and also
some information on the location of the zeros of L(s, ). If ¢ is a non-real
character we can use egtimates of Lmndan [11] and FFogels [7], namely:

Gy -

—— é Lo :].'
logh TR
(4.3) 1LY e, )l < elogiD(loglogD)* << glogtD

(4.2) Lo, 1) < e logrD  for

¢
for 1-— 'lﬂiﬁjﬁ E KA
(4.4) I4 (o, )| < o,logD (2 +17)
in a region
(4.5) % <

e _€ o
logD (2 -+ %)

{which contains no zeros of L).

In the above, and in all later analysis, wo use ¢, to denote a positive
abgolute constant.

When y iz a real character, then it must in fact be a genuy character
(zsing Ganss’s duplication theorem). Im that cage, if the prime ideal
PAT, 2(P) = 521 (Ap) == 5, (1) or %, (1%) i8 & quadratic residue symbol (Kron-
ecker symbol) of I or 12, with regpect to some conductor dividing d. We have
the following regults:

(4.2) also holds for y real, non-prineipal, whils, when
have: ' :

{4.6) ls~1)L(s, x| < ey for O0<o<
(4.7)  Li(s, x) has all its zeros (with one possible exception) o the left of
the region & defined in (4.8); the estimate (4.4) holds for [t =2, for all
churasters x, real or complew (sec Davenport (4], Ch. 14);
(4.8) ~ If x s real, y == yo, then. '
1Ly 1)) = e(s)D™*
(see Siegel [14] or Davenport [4], pp. 180—134) A similar estimate holds
for |L(s, yi| if |s—1| < ¢ ()0,

We now require an estimate for |L{s, x)|~* for » real and # near 1
We apply the following

Luwvma (Jutila [9], Lemma 3a). The number of zevos of L, x) (with
. X F %) n the square

(£.9) - 1-2legl < o<1, 1 <

"= Xy We

I bounded ;

- for all 8 >0

Af2 IogD
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with 1< 1 < g.logD, is af most
(4.10) 0.60294-+6.829 < 4+7.

We sghall apply this with 2 = ¢logD, in the following way: using
the Hadamard factorization of L(s, y), we have

L@,y L _ 11
L(2, %) B L, ) —;('2—__—9— 8—-@)+0(]‘)’

(see Davenport [4], p. 83), if s # any zero o" of L(s, ), where g runs
through all zeros, it being assumed that [f| < o,. Since L'(2, x)/L(2, y)
is absolutely bounded, we find

(4.11)

L', 1) (s—2)
(4.22) m)— . Q.,Z m l-|—0(1)

We wish to a.pply (4.12} in the interseetion of £2 with the square (4.9).
We divide the sum over p into two parts, the first over those in the square
(4.9), and the second over all remaining g. The latter sum is ‘

< ¢ D) 12—el ™ < glogD,
all ¢ ‘

by [4], p. 91. If we ensure that |3 —g| = a*(s)D

the other sum over p is

(4.14) < ™ (&) D'logD < e#(s)p"

Integration over a,ny path of length 0(1) ylelds

(4.13)

* for all g, we find that
(Ve > 0).

(4.15)  |logL(s, x)| < o,D* on paths of 1engfh O(l) in 90(4.9),

if |s—ol = e*(e)l’)““' for all zeros p and all & on the path. In particular,
we find tha‘a .

(4.16) \L(s, x) 7" < exp(e.D*) (1 7 %o)s

therc. This estimate could no doubt be improved at the cost of some
extra work, but will suffice for our requirements. We note also that (4.16)
holds even if y = y,, since the pole at 8 = 1L can be absorbed into the
gum over zerog if jg—1| = o*(a)D7°,

5. Decomposition of I(y). We now consider the problem of giving
an upper bound for I(y) when y # o (It will turn out that I(y,) is of a
laxger order of magnitude than the other I(y).) We first deform the vertieal
contour from ¢—ioco to ¢-Ficointo || &;, where _'Z’l congists of the pair

174
of antiparallel line segments T = - 0’ (D%, 1~} (¢ <1, &
'11)”" Py consmts of the

consists of the semicirele o= 1, |§—1| = §6'(s
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line joining 1—3¢(s) D" +4ie' (8> D" to 1—e;flogD(2+6;/4) +ic,/2,
and its mirror image in ¢t = 0, while &, consists of the two infinite arcs
[t] = 6,/2, o = 1—¢;/logD(2+1). The orientations are chosen to malke
the union USfj homotopic’ to the original vertical contour. It follows

from Uﬂ.uchys theorem that I(y) = 2 Ij(y), where

- 1 ! 5
(5.1) Liy) = %-«p(s, y)ds

It turng out that I,(y,) dominates all other terms I,(y), as we shall see
later. Let us now take y # x, and estimate the I;(y) for j =1, 2,8, 4,
in that order. For this we need bounds for g(s, y) on the appropriate
contours, and it iy convenient to separate the cases into individual para-
graphs.

6. Estimation of I(y),y 7 . We must first estimate ¢(s,y) on
%4, and, in view of (3.5) and (3.10), we have, for y # y,,

@ (8, 7)< enolL(s, )12 [ ] 11 —F7" (2, €55 %),
jed ’
while (3.14) gives, in con;]unetmn with the estimates of § 4, a.nd on ehoosmg
o guitable J with HJ < ¢y logh,
Saloglllogh)
e £y,

-lfp(sgr)l 012(6) (€aloga D) 180 |5 —1 | ~e1leNM ox ( A

Since {by Siegel’s theorem [14] on class-numbers of imaginary guadratic
tields, and the relation between clags-numbers of related orders (see [3],
P. 138)) loghjlogD — % as D - co, we have ‘

(6.1) (8, ¥)| < 019(¢) (01ogt DY 15182 |g —1 (~rstoBhih  gp g ‘1-.
But -
wl '
Ll < @ [ 15 ple, )|,
2 '

80 we obtain

. 01,‘103]}

- : '—'l-k-»-—r' .
(6.2) . [Liy) < 015(8) (05log® DY 1% g (log ) _  {y # )
gince - ' ‘ '

o r S y dogh_, -
(6.3) [ amvyoewnay — 1 (1—~fl-h—g-) (logz) * .
b o DA .
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7. Estimation of I,(y), y # x. It i3 easily seen that (6.1) is also

satistied on ;. We put s = 1+*, 0 < 0 < w, wherer = }e¢'(s)a~' D",
Then

i
(7.1) La(o)| < o0 (6.1)arie"d)

< 0 15 1"'“"?1“'“14103"'”‘013(3) (Gslbgal))cls]ogD
< 0@t wlFHR Dol IosD (if gan 5 = 1/10),
8. Estimation of I,(y), y # 7. Using (4.16), and noting that
8 ___1I—cmloghlh < ‘(aal(s)Dr)culoghlh on %, .
we find that
‘ ‘ . o
- ey=logD sieploghih 633(5)1) a
(8.1)  Ii(y) < 6g5(e){cylog3D)o1s (021 (E)D) 1418 QXPT f «"da,
L5t

where o, < o, are the values of ¢ = Res at the end-points of 5?,.'81ﬁc€

2 ~lewp—1
f wdo<a 't (logs)™,
0'1 .
we find
L g D"
(8.2) ()] < eaqle) eslogeDyss2 = 7 (loga)~

9. Estimation of I,(y), ¥ # y,. The estimate {4.4) readlly yields the
bound

(9.1) pls, ) <

On breaking the t-interval [o,/3, oo) into the two parts, [e,/2, D]
and [, eo), and estimating the integrals separately, we obtain the estimate

(9.2) Ty < 0y =352 (log D) 258"

10. Estimates for I,(y,). As we have mentioned before, it iz the
IEHE con‘mbutlon whiech dominates any linear combination of the
integrals I{y). We shall aim to produce good wpper and lower bmmds
for I (x,). We note first from (3.5) and (3.10) that

(10.1)  gls, z) = G(s, %WV Lls, 1) H fL—f"(s, €,, 1)}
(85 2V 2(8) ﬂ fL—f

where &, i similar tio €, and the domain of validity of (10.1) can be extended
into_ suitable zero-free regions of the Z(s, ). Now, in view of (3.14), the

czs(lqu(2+t2))“-ﬂﬁl°“"‘ on 4%,.

(a:;l),

v%o}
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f~*s, ;, %0) have zeros at s =1, of (fractional) orders {he{#))”". On &,
we have . :

(10.2) I s, 5, zoll < I8 s —1 [ oy log® D.

We divide &, into two parts, £,, on which |o—1| < g = 03 (log Dy~ cs:losD
and %, the remainder. On %;,, we see from (10.2) that the product
(10.3) [ —F7"(3; %15 20)! > o
i

It follows readily that, with obvious notation,

1
a” -
(10.4) . Wiyl > 63 f‘o‘_?(l"’ﬂ')dlzdo' > o w(loga)™,
L 1I—p
provided
(10.5) logn({log D)™ 8280 > ¢,
The integral I,, {along #,,) is bounded by
_
tyr{log D)0, (e) D° f w°do,
1 {6) D"
giving a bound
- egalogD
(10.6) sl < 041(IOgD)c4210EDw1-cal(logJ)) cgalos. (logm)_1.
This is < je,@(logs)™? provided
(10.7) (log Dy*#i%s? < o, log .

It is now clear that, for x, D constrained by (10.5) and (10.7),

(10.8) en(logw)™ ' < |I,| < Ow(logw)™,

where ¢, ¢ are positive absolute constanty.

11. Esumates for 1;(,), j # 1. It remains now to estimato thoe I;(x)
for § =% 1, in order to complete our investigation of the I (¥} 'E‘wst, 10 deal
with I,(y), we use the bound

lp{s, xo)l < 046(10gD)°‘71a8'D|3 1|7

for [s L} = 1 == }o’(s) D2, obtainable by simple modifications of tho
arguments of § 7 and §10. This gives
- ezl <

(11.1) 0yy{log D)7 8Pg 1 g, (e) ' (log D)esd D,
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For I,(y,), we imitate § 8, the only change being the use of the estimate
ls—1"" < oq(e)D, on .

We arrive at a bound of the same form as (8.2). In analogoug manner,
the argument of § 9 is easily modified to cover I,(x,).

12. The loewer hound for .#(»). Let s reeall that
(12.1) = 31,

med
mese

with .# defined as in § 3. Uing (3.1), we have

e-tico
ms
(12.2) det E logwjm f o M (s)ds,
= ™ i

by Mellin inversion. Using (3.5),
+

(12.3) #(z) = g”lZJ—J( o f P8 Y)ds = 9“‘27(11‘)1(?),

where ¢, the number of genera, divides 8. As a 1‘@81{113 of §§ 6-11, we find
that
(12.4) N (3) > em(logw)™1?,

provided that D and @ are chosen o as to make I,(x,) the dominant
term, and certainly, therefore, if we impose the condition

(12.5) (log D538 < logw
for some suitably large o,;. Also, by § 10, we have
(12.6) A (2 7) < gy (log w)” 2,

subject fo (12.5). It is now eclear that

log ol (z) = E loga/m = e {loge)™ ",
g <Ly
med
g0 that
(12.7) M () =

Theorem 2 follows immediately.

o5 (logm) ™.

13. The proof of Theorem 3. In the notation of the introduction,
we congider # = F,,O0F pup, Where po< p < ¢, Po < p*< ¢*, and the
ordered pairs (p, g) and (p*, g*) are distinet. We want a suitable upper
bound, for card # n {1, «]. For this, we first put @ = —4p3¢?, d* = —4p**¢g*®.
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An integer m, prime to dd*, is properly represented by some forms of each

d a .
diseriminant it and only if (-?;) == (7) =1, and this happens for

a &
squarefree such # if and only if (T) == (T) =1 for all primes In,

W2pgp=g*. : e
Let I = KE* be the compositum of the fields I = Q('l/d) and
B = Q(]/t?’). Tf the prime § does not divide the discriminant of I, the

%

condition (%) = (%w) =1 is precisely the econdition that ! split a8 a

product of two prime ideals in both K and K*, or equally that ¥ split
ag a produect of four distinet prime ideals in I, it being clear that [L: Q] == 4,
ginee d == d*. Let #* be the set of all positive squarefree integers composed
entirely of rational primes unramified in I, which split completely in L.
It is clear that #* = &, and that

det

(13.1) B = Y= ] a1

hes Taplit

{o>1).

If £,(s) is the Dedekind zeta-function of I, then ([131, p. 79, §7 ) it i
clear that, for o> 1,

(13.2)

[] @@=t =Gals)tz(s),

isplit

where @2(s) is regular and absolutely bounded for o> 3/4. It follows
that

(13.3) H*(3) = Go(8)EZ* (),

where G&*(s) is regular and absolutely bounded for ¢z 3/4. It is. cleax
that (13.3) provides an analytic continuation for H*(s) into a region
to the left of o == 1, frec of zeros of £, (s). This zeta-funetion can be ex-
pressed as the product of the Riemann zeta-funetion and threo Divichloet
I-series with real characeters, of conductors dividing 4 = dd*. We may

nse the estimates of § 4, replacing D by 4,and we can then imitate the

analysis of §10 and §12, obfaining

(13.4) oy (8) 47w (loga)™*# < 2 1 < og4{8) (log )5t (log )™+,
'hrfa)';‘

provided

(13:5) (log A)'s1°% < logm,

and this immediately gives Theorem 3,
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14. Conclusion of the proof of Theorem 1. We now substitute into (0.2}
the results of Theorems 2 and 3, smmming over pairs (p, ¢) of primes
with pe<p < g<y(x), and obtaining '

(14.1)  eard #n {1, a] = egx(loge) ™ 2 1—

Po<p<gsy(z)
—UO59' (loga)~** 2 (log 4)°ee,
7 (p,@)#(0%a%)
provided that (12.5) and (13.5) hold. Now it is clear (from weak vergions
of the prime nnmber theorem) that :

(12.2) 12 ¢ (yilogy),

Dy<p<gsy

and thab

(14.3) (log 4)%0 < o (logy)°es(y logy)* << ogsy* (logy) et
' (p @)= (p%a") B
Tf we were not constrained by {12.5) and (13.5), the largest availabley = y(x)
would yield the best lower bound in (14.1), The optimal value of y would
nearly be o

y = (loga)* (loglogu)~°,
and we ghould obtain

(14.4)

Unfortunately, (12.5) and (13.5) prevent such a choice of y; in fact we
are forced to choose ' -
(14.6)

The best realisable bound in Theorem 1 will occur wlen equaﬂity holds
in (14.8), and thiz is equivalent to ' :

card #nil, ] > o w(logx) /*{logloga)™e.

(logy )8 L log &,

logloglog]egm) )
(14.7) y =c¢xp (cﬂloglogm/loglnglogw (1 “F.O (moglogm

{ < (loga)® for any &> 0).
Substituting this into (14.1), we obfain Theorem 1.
15. Coneluding remarks. Af some further cost in complexity, one
could attemypt to handle forms I, = mi®--n%?, with m and » having
soveral prime divigors (ap to some funetion of @). It is not clear how mueh

jmprovement could be made to Theorem 1 by this method.
Wo remark that, in proving Theorem 1, we have made no attempt

to assign numerieal values to the constants ¢,. In many cases this could

be done, but it is important to remembor that no ¢ffective lower bounds
for |L(1, x)! with y real, x # xo, are yet known, so that the constants
o,(¢) and o(g), ¢'(e), o*(e), arising at various points in our analysis, are
not known. functions of e. ' -

+
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On Linnik’s constant
by
H. GraumaM (Pagadena, Calif.)

Let ¢ be a large positive integer, (a,q) =1; and p(g, ) the least
prime p == a(modg). The celebrated theorem of Linnik ([12], [13]) states
that there oxists an absolute constant ¢ such that p(g, a) < ¢¢ forg
sufficiently large. The first to obtain an explicit value for ¢ was Pan [16],
who proved that 0 < 5448, This wag subvsequently improved to 770 ([2]), 550
([107), 168 ({31}, 80 ([11]), and 36 ([5]). In this paper, we show that one
may take O = 20, ,

TusoREM 1. If ¢ is sufficiently large and (a, q) = 1, then there is o
prime p = a(mod q) such that p < g*.

Our proof depends on several results concerning zeros of L-funetions.
Let p = p-+iy denote a generic zero of L(s, y), where y is a character
mod q. Miech [14] has shown that [] L{s, x) has at most one zero in the
region ]

.05
) ! loggflyl+2) sp<d
Schoenteld has informed me that the constant .05 may be replaced by
,10367. However, the following two theorems are superior for our purposes.

Tunorem 2. For » =1, 2, let

&, .
Oy = lniog'qPT_ + 2y,

bo @ zevo of L(s,y,), where y, s a character modg, |y, <7, c-a_ml T= 1
Suppose that if gy =y then gy # gay 07 #f 4 = Ta then o, # 02, If q 4%
suffictently large, then -

| £ 8E ¢
(2) £, _752 — (1_/._.£__?:J,_3)

and
(3) max(é, &) > 6/29.



