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p-adic T-numbers do exist
by
FIANS PETEE SCHTICKEWED (Freiburg)

1. Introduction. In 1932 XK. Mahler [3] gave a classification of the
real transcendental numbers, dividing them into three classes: 8-numbers,
T-pumbers and U-numbers. The existence of §- and U-numbers was eagily
seen, bub it was for a long time an open question, whether the class of
T-nurmbers i3 emphy or not. In 1968 W. M. Schmidt [6] was able to prove
the existence of real T'-numbers using a generalization of K. F. Roth’s
well known theorem by B. Wirsing.

In 1934 K. Mahler [4] introduced an amalogous eclassification of
the transcendental numbers in the field 0,, the completion of @ with
respect to & prime p. It iz the purpose of this paper to prove :
© TEwOREM 1. p-adic T-numbers do ewist.

In the proof of Theorem 1 we use a modified version of Schmidi’s -
method [6]. The main difficulty arises at a point, where Schmidt uses
the linear ordering of the real numbers, a property, which naturally does
not hold in @,. Another tool in the proof is the application of a theorem
about approximations to a p-adic algebraic number by p-adic algebraic
numbers of bounded degree, which is a consequence of my paper [B]:

2. Mahler’s and Koksma's classification. In the following p is a fixed
prime of @ and |...] denotes the ordinary absolute value of @, whereas |...[,
denotes the p-adic valuation. ‘ .

For the convenience of the reader we shall briefly recall Makler’s
classification of the p-adie numbers and introduce an analogue for the
p-adics to Koksma’s well known clagsification [27] of the reals.

Wo first deal with Mahler’s classfication. Tet

| - P(X) = a, X"+ ... +a, e Z[X]
and oall, as usual,
H(P) = max {|ayl, ..., [a,]}

* Written while the aufhor had a research fellowship &t_tlié Un'iversity of Colorado
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the height of P. For a p-adic number & and a natural # pub
o, (H, §) = min |P(’E)|;p

deg Psn
P)=F
5;

Put furthermore

0, (€) =§iﬁ( — (logw,(H, &) /logH)

and
(&) = iim 228
nra N

¥t w,{&) = oo for some n, then let u(£) be the smallesh such #; othe;-m
wise put u(&) = oo. £ is called an

u(§) = oo,

A-number it (&) =0,
- S-pumber i 0< w(E) < o0, #{g) = oo,
T-number 1 @(f) = oo, #(&) = oo,
U-pumber if  w(f) = oo, u(f) << co.

We now turn to the analogue of Koksma’s classification. For an algebraic

number o define the height H (e) as the height of the minimal polynomial -

of a, say P(X)e Z[X], where P is supposed to be normalized, such that
its coefficients are relatively prime. _
For a number ¢ € @, and a natural # put

Oh(H, §) = min |§=alp,

iy
furthermore
~logop(H, E))
M o3 = i (el
‘and
E]
w*(£) = lim —ED—'%—Q

Define w*(£) as being the smallest n, such that wh(&) = oo, if such
an # exists. Otherwise put p*(£) = oo, Now call a p-adic number & an
0 << 0%(§) < o0, p*(§) = oo,

p*(&) = o0,

p* () < 00!

S -number it
T number ~if w*(£) = o0,

U*-number it w*(f) =
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Notice that the definition of wy (&) iy slightly different from the usual
one in the real case, where one has

—log (Ha), (H, E))
logH
The reason, why (1) seems to be the more natural analogne will be explained

in the next section. _
Ag in the real case one shows that for both elasgifications respectively

wh(&) = lim

Hereo

" two numbers belonging to different classes are algebraically independent.

Moreover, every 8%, ™, U*number is an 8-, -, U-number respect-
ively. Therefore, in order to prove Theorem 1, it suffices to construct I™-
numbers, We shall prove

THEOREM 2. Let By, B,, ... be real numbers with

{2) : ' B, >9, B,>3"B,_ fori>1.
There ewist numbers & e Q, with
(3) o} (&) = (i =1,2,...).

Theorem 1 clearly iz a consequence of Theorem 2. The remainder
of the paper deals with the proof of Theorem 2. ‘
3. Approximation by algebraic numbers of hounded degreé.

TaroreM 3. Lei a be an algebraic number in Q. Then for any ¢ > 0
there are only finitely many algebraic numbers e Q, of degree < k, such
that the inequality

(4) ja— Bl < H(B)™*~"
i¢ satisfied.

Proof, We shall apply Theorem 1.1 of [B]. Let P be the mmlma.l
polynomial of f. Without loss of generality we may suppose that # and a
are not conjugates of each other. We then have

0 # Pla) = P(B)-+(a~—p)P (F)+(a—EYEP (A + ..
henco.
(B) 0 < |P(a)l, = la—BllP’ (B)+(a—BHEP" (B)+

Now if ja— 8|, <1, then the second factor on the right-hand gide of (5)
is <1, with & constant which depends only on.a. If (4) were satisfied for
infinitely many g, then by (5) the inequality

0<< 1P (a)l, < H(Py*'=e,

would be true for infinitely many polynomials P & Z[X] of degree < k
with relatively prime coefficients. This contradicts Theorem 1.1 of [5].

&
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Remark. If we have a formula similar to (5) in the reals, then 1
gecond faetor on the right-hand side can in general only be estimai
by H(B). That is the reason why in (1) we have the slight difference
compared to the usual Koksma classification.
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4. Copstruetion of special algebraic mumbers in €,. Tn this seeti
we shall congtruet a sequence {a,},.v of algebraic numbers with for e
n, a, € Q,, dega, = n. Morcover, the sequenco will have tho proper
that the height H(e,) is uniformly bounded, where the bound does
depend on #. .

Lmyma 1. (a) Let p be an odd prime and d be the smallest prime
the arithametic progression 1, p--1, 2p--1,

(iy If = 5 0 (modp), the polynomial X
and has o root in Q.

(i) If » = 0 (mod p), the polynomial X" —dX" 1.\ dX ~d iz @
ducible over Q amd has a voot in Q.

(b) If p = 2, then

(iil) If » is odd, the polynomial X"—3 is irreductble over Q and |
@ root in Oy,

{iv) If n 4s even, the polynomml Xt X2 Ay drreduoible over
and has a root in Q.

A proof may be found e.g. in [1] (Borollar, p. 59).
' Lemma 1 provides as for any fixed p with & sequence of algebr
numbers a, in @, with the desired property. We may even choose the
in such a way that

(6) - lagl, =1 for all m e N.

. 5. Outline of the proof of Theorem. 2. We shall proceed by an ind
tive method like that of W. M. Schinidt [6], and ¢onstruet positive consta

—d i8 drraduoidle over

(7) : . Ly ljns he
annuli :

Ay =
(8) P Ay D Ay

— ,A.a-l o} .A.ag b .&‘1.33,
and furthermore p-adie numbers

: &1
(9) . . . . 58]’ EQQ
' ' oy Sany Fae

] N A T T
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The numbers &, will be of the form

- a,
(10) Er,-n; == —5—{—0{,

/-4
where o; is an element of the gequence eonstracted in Section 4 and where
Gygy by ATC inbegers With (g, b) =1 and pfay,, piby. Hence by (6)
wo have [£yl, == 1. The integers ay, by will be guch that

(Jl) ] { CL;“ Obk‘: (15.;?:§ h, h = l, 2, ...)

with & constant ¢, which depends only on p. Finally, the b,; will satisfy
the inegualities

]< b1]<b21< bﬁ3< ba]< -

For the annuli 4,; we shall have: each number 5 € A, satisfties
(]

{12) 0 Eglp < b
and
§; 1 ]
(13) A<i<k)

|7 - figlp = TEG)

for all algebraic numbers §; of degree j with

(14) HG) <,
where _
1 BBy~ s
. T <
(15) i - {55, wIsH
bt for j > 4.

The K, occurring in (15) are congtants, which will be defined later on more
precisely.

Now our sequence of apnuli (8) defines a unique point £ e @, since
by (12) the dinmetors tend to zero. On the other hand we have by Lemmasa 1
god by (10) and (13) the relation

(16) H(b) » < b
where the congtant implied by <€ depends only on p. So it follows from (12)
and (16}, thab

whereas. (18) irnplios

B Anta Aviilmation WYITY o
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(For the lagt assertion notice that for fixed 4 the upper bound in. (14)
for the height of the algebraic numbers g;, which are admitted in (13),
tends to infinity.) '

Concluding, we obtain the desired result o7 (&) = B, for ¢ == 1,2,...

6. More properties of the comstruction. By Theorem 3, there are
positive constants K= 1 (i,§ =1,2,...) snch that

(17) g = Byl 2

1
Kyl (8"

for afl algebraic numbers f; of degree j with f; 5 ;. Thege are the constunts
which we had atready in (15). Hence if @ and b are relatively prime integers

with | =
b

=1 and 1< o< c¢(p)b we have
»

1
>
o Ky or(p)bsFH (B))¥

»

b
L.

(18) I%w—m .

®

for all algebraic numbers f; of degree j with §; = —g-- Oy

For k>1 let Ag, &g, am, b be respectively the predecessor of
Ay Egy Oy by i1 the sequences (8)—(10). Write furthermore g; for
the predeccssor of £ in the sequence fif, ), /), ..., where j is fixed
and k> 1.

Given an annulus .4 with center & defined by a™'< [§—7l, <™}
with certain naturals a, b, where pPa™' < b~ we pub

A= {n] a7 < gl < p7M 0T BT}

Now our gequences will have the following further properties:

(19) Epeds (B>1), é&u¢dy (b=1),

(20) W= # 1<ighk,

(21) Lp, > 8h(8+8pK )% # 1<j<k,

(22)  (BE LIRS < LB i j<i, <R,
(28) by > 20" (Am) i k>1,

where in formula (23) u(dj;) denotes the Haar measure on @, as defined
e.g. in [7] (. 661L)
" Moreover we shall have

|be— Byl 2 L/ (LyH (B5))

(24) 1<i<h)

icm
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for all numbers f§; of degree j with §; # &, and even

(25) Vs — Bylp = 2T, H (B)%)

if one of the conditions

1<ji<h

pow 1, =kordi>1orj<k
iy satisfied together with
{30)

Om the other hand for numbers f; of degree j with

Hg) > 2.

@n H)<B¥  @<j<h b>1)
the inequality ' '

(28) [&e— Byl = L[y

will hold. ' '

7. Construction of I; and A,;. We shall construct the sequence (7),
{8), (9) in the order

Ell! Ll: ’A’ll’

{29} Ea1y La, Az, Sy A,

‘We first choose ayy, by, With (4, by;) =1 and Py, Dby, Where by
has to be large enough such that (20) is satisfied for k =4 =7 =1

As for the comstruction of L; we proceed in precisely the same way

as 'W. M. Schmidt [6], p. 18. The same is true for the construction of 4,

Therefore we shall contend ourselves by indieating the defining inequalities

@

for A, I &y = -Ef‘-f— a;, then we put
k

Agg = g PP < b —nlp < b Pi}

Phen all the computations of Section 9 of [6] apply mutatts mutendis
also in our ease, and therefore we may omit them here. Notice that in [6]
the relation 1/4 < ay, /by, < 1 was pecessary to obtain in tho inequality
{60) of [6] & lower bound, which depends on b, but not on a,;. The corre-
sponding ineguality in our case is (18), and herc all is fine, since we have

{30)

D1 and Lt < 0(2) D
p .
8. Construction of £, Assume that k> 1 and that all clements of

the sequence (29) up to but exeluding &, have already been congtructed..

I
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TFor more convenience we shall write

bt =

b.’:i u b

We have to ensure that we may, find integers e and b such that all the
properties of Section 6 hold. II b > by is sufficiently large, then (20)
and (23) hold as well as (21) and (22), if numbers 4 are concerned, for
whlch L; is already counstructed. To guarantee the condition &, e Az,

e. (19), we will choose later on a in a snitable way. Remind, however,
thzw this is a firgt condition for the integer a.

Now write A = Agpy. Then if ¢ > 1 we have &' = k and ¢’ =4 -1,
whereas for 4 == 1 we have &' = k~1 and ¢ =k —L. Since &, e Az we
infer from (13) that (24) holds if H (ﬁj JE=S f and if 1<i<<¥. Bub
1< i<k and j > & is only possible if 4 =1 and 4 == k. In this chage the
truth of (24) is guaranteed by the construction of I, since here I; is
constructed afler &, = &, and even in guch & way that the stronger
condition (25) is true.

Hence we have only to worty about the question whether (28) is
true under the conditions H{f;) > f;f} with either ¢ > 1 or < %. In Dboth
cases we have in particular j< k'

Our aim ig to find sofficient conditions for e and b, such that (25)
holds. From (18) we infer that

a
at_—ﬂj

(s )Ki,b” H ()| = 2/ LH (B,

a
and therefore the trath of (28), if 8, # %5 = &y and

e, (p)E 0 H (8)% < LH (8™,
which moeans that
H(By) = (20, (p) K5/ Ly e =SB,

Oollecting the results obtained so far, 4o engure (25) we have only to study
thoge numbers f; whose height satisfies

(31) T8 < H(f)) < (2ey(0) K| Ly O 20520

and whose degree gatisfies degf; = j < k'.
Tor each number f; with (31) we define tho disk

‘ D) = {n e Q| 11— Byly < 2L, I (B)%).
Write

Dy= L) D(B)
A satisfles (81)
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and
i<k’

So far we did not yet take into consideration condition (28), which
takes care of numbers 8; with a comparatively small height. Associate
with each number 8; of degree j and with H(8;) < b'P/ the disk

E(ﬁj) m{"?EQpl M“‘ﬁj!p<1/b}:
and put
B, = B,

fiy satisfies (27)

E = U Ej,
1<k
and finally
F=Dul,

9. Esumate of the measure of ¥, Our claim is that the complement
of F in Af; has & measure of an order of size of the measure of Ag if b
iz large enough.

For j given the sum of the measures of the disks D(g,) is atb most

2 M
= >

J B8y satieties (31)

2
H(gy %< Eji S"’ H—ij(211+1 .

L (:f)
Bat

Hence we obbain

2058 i 6%
1Dy < I, (fi —1)~E= PL

it

(f(?') —(Byd—1) .

Using (2), (15) and (21) we get after some computations

1

where we have used moreover p(4%) > b,j,“ Bf . Bo finally we hfwe _
(32) | #(D) < hn(4f).

The meagure of the set B is quite easily estimated: For given § there are
< B numbers f; with (27). Therefore

u(By) <171
with constants, which depend only on p, But then
: :“( E) & kb-‘llS
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and so if b is large enough, we have

(33) p(B) < e (4).
Combining (32) and (33), we finally gob
(34) w1 < (A

if b is large enough. Put & = AT, Then by (34} and since p (A ,)
we ¢hlain

(35) u(@ »

10. Investigation of the set ¢. Wo first show that if wo chooso b
large enough, then there is a point y € @ such thati the whole digk {r]1 17—y
< b7} lies in 6. By (85) we can find ¢ points d;, ..., d,, Where ¢ > bbmwi’
such that 8, e Gford =1, ..., cand |8 — &, >b"" Jior i (L4, <<h).
We now consider the dis]-:s

01‘. == {77| ]6 77[}1 b-—.l}

By onr constroction the disks C‘i are mubually disjoint. Wo wa.n’b to show
that there is an ¢ with L4 < ¢, such that

(36) Ugﬂ.D ﬁj == Q ﬂrnd. G{ﬁE(ﬁj) m

for all disks D(f;) and E’(ﬁj) which were congidered in Scetion 8.

Assume that for each ¢ (1 < 4 < o) thereisa §; such that ;D (g) + @
or O;nE(B) + @. Then we have ¢; = D(f)) or D(f) = C; or C; = E(ﬁj)
or B{f;) < C;. The cases cD(ﬂj) or C; < () are excluded, since
the center 9§ of 0, lies in @. 8o we may assume that D(§)) = 0;or B{f) = ;.
By (31) for given j the number of disks
by (2) the total mumber of disks D (8;) with 1 < j = &' s < 557, Slmlla.rly for
given j the number of disks F(f;) s < B (rocall that in this case wo
have H(B)< ¥*™), and. therefore the total number of disks H(f;) with
1l is T B,

On the other hand we have » bbj B Qigks C;, and theso are mutnally
disjoint. TE we choose b large enough, then bb% B B Byt then there
is at least one digk, say Oy, for which (36) is satisfied.

We clearly have O = &, and so in partienlar @) < Ajz. We now
choose b as being a large prime, difterent from p, and determine the intiegor ¢
aceording o the inequality

» b,

1<i<e).

(37)

Thig is possible sinee by (6) wo have |a,l, = 1 for all » and henoe also
{d;[, = 1. Since moreover by our choice of b we have (bj, == 1, it follows

b*t'ﬂm

(.Bj) IH Q bJJ"U"'l)/(Bg“:U) hene(\ ‘

icm
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that any integer @ satisfying (37) has lal, = 1. If we write
a(b)
b = 2 bp*

with integers b, having 0< b, < p—1 and bopy 7 0, then (87) implies
that we may choose @ in such a way that

2{B)+1
<=1 Y g < g0
y=9{
o wo may also Fulfill the condition
(38) IL<a<<s(p)d.

Now the number —g-a,; satisfies in view of (37)

1
<

)
8, —— gy A

b

»

a
80 7% ey and therefore 5 %€ Az. Moreover, our construction implies

[4]
that 5 also satisfies (24), (25) and (28). We still have to guarantee
the condition (@, b) == 1. If this is not true, then we take instead of « the
integera’ = a+p"*+3. o’ certainly satisfies again (38), however if (a, b) # 1
then since b was chosen as a prime we have (a’, b) = 1.
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