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1. Introduction. For each prime p and each divisor ¢ of p —1 Gauss [7]
introduced two families of exponential sums, the cyclotomic periods and
the Gauss sums. His definitions have long since been extended to give
families of sums for each prime power ¢ = p* and each divisor e of g —1.
The definitions are given below.

We first study the period polynomials, whose roots are the cyclotomic
periods, and the modified period polynomials, whose roots are the Gauss
sums. In the case ¢ = p, these polynomials were shown by Gauss to be
irreducible over the rationals. In the more general case, we prove a theorem
on the number of factors of the polynomials, and we give necessary and
sufficient conditions for irreducibility.

In the cages ¢ = 2, 3, and 4, we derive explicit formulas for the period
polynomials, and produce a defailed account of their factorizations over
the rationals.

We then turn to the problem of the location of the Gauss sums.
Yo the case g = p, there is a celebrated result of Gauss when e = 2, and
a notoriously difficult problem when ¢ =3 or 4. The case ¢ = p°*, a> 1,
is often loss difficult, and a number of explicit determinations of Gauss
sums are given.

2. Notations, ' conventions, definitions. The following notations,
conventions, and definitions will be maintained throughout.

e and f are positive integers such that ef41 == p° =g iz a prime
power. F, is the ficld of ¢ elements, IF; ity multiplicative group, g & gener-
ator of ¥y . €y is the group of eth powers in ¥, and ity cosets are 0y, = g*C,,
E=0,1,...,6~1.

0 = exp(2ni/p) is o primitive complex pth root of unity.

Tr ig the frace map, Tr: F, —+ F,. C
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The cyclotomic periods #, are given by

e = 2 6(12'1':0,

mEUk

B=0,1,..,6—1.

The Gangs sums &, are given by

)

mell'u

ket
o ,

E=0,1,...,e—1.

It g is a chavacker on Fy of order d then the Lagrange resolvent
z(y) i3 given by

= D atw)6™e.

.
aell ¢

In the literature the term “Gauss sum? is nsed by gome authors to
mean &, and by others to mean z(yx). The terminology used in this paper
ig for convenience only; the author makes no claim of historical accuracy.

In this paper we are primarily concerned with the 7, and &,, and only
peripherally with the =(x).

If %> ¢ then the subseripts in Oy, #, and G4 are to be interpreted
{modulo e).

The period polynomisls ¢,(X) are given by

e-1 -
= n (& — ),

Fews

and the modified period polynomials F,(X) by

- [T,

Joe=0

8 = ged(e, (g —1)/(p —1)).
The elemems of the Galpis group of Q(6)/Q are denoted by o,
-1 2, .o, p—1, where o, (0) = 6%,

8. Well known facts. We gather in Proposition 1 a host of f&ebs

about our exponential sums which are well known or which follow divectly
from the definitions.

PROPOSI’.EION 1. (a) Gy = enmy+1.
. e—1
n;;m ~1,k§Gk=0, '
(0) Fe(x) == 68%((X_"1)/6)! ‘pa(x) =B—¢Fe(6~x+1)'
(d) =(7) = 2(~1)=(z).
(e) I=(x) = Vq.
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(f) If w 43 a primitive complex e-th root of unidy, and we define the
character x; by x;(g) = ', then

a—1 1 €—1
T(Zy) = Z jknk and e = ;2 w
s -
(g) o=0 . . F=0
! = lo"e i j o0,
= Yoy, Tl =%
F=1
-1 if j=0.

(h) If e = 2 and x is the quadratic characier then Gy = ©(z).

4. Factorization of the period polynomials. In this gection we prove
two theorems on the factorization.of the polynomials ¢, (X) and ¥,(X).
Proofs will be given only for ¢,(#); the results for F,(X) follow by Prop-
ogition 1 (e).

The effect of Gal(Q(0)/Q) on =, is given by the following lemma.

Levwa 2. If a e Fon Oy, then 0,{%m) = Ny s-

Proot. From n, — Z 67" we get

%EC,
0, (M) == 2 geTrz ZBTrrm —

welly, aelly,

S 6

#eQp, 4 3e

From this it follows that the period polynomlals have integer coef-
ticients.

THEOREM 3. ¢, (X) e Z[X, F,(X)eZ[X]

Proot. Given any cyclotomic period, Lemma 2 shows that its con-
jugates are all periods, and that each conjugate ocenrs equally often
among the periods. Thus ¢,{X) ig a product of powers of the minimalk
irreducible polynomials for the #,. The 7, are algebraic integers, so ¢, (X)
e Z[X]

In the cage ¢ = p, Gauss showed that the period polynomials are
irreducible over the rationals. Thig is not always true in our more general
setting., More precisely, we have

ToworEM 4. ¢, (X) and F,(X) split over the rationals into & factors
of degree ¢/8. Bach of these factors is irreducible or a power of an wreducv,bla
polynomial.

We must firat egtablish a lemma.

LuvmA B, F,n0, is non-empty if, and only if, k.

Proof. Since & = ged(e, (g—1)/(p —1)), there exist integers m and s
guch that m(g—1)/(p —1)—es =k if, and only if, §jk. Now observe that .

gm(a—l),'(p'-l) — g"g"’ e Fpﬁck-
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Proof of Theorem 4. Lot ™ (X) = (X — (X —pps) » (X ~ppps)-
By Lemmas 2 and 5, the roots of ¢ (X) are the conjugates of #;, each
distinet conjugate oceurring equally often. Thus cp"‘”)(X)_ls in Z[X] and
is irreducible or a power of an irreducible polynomial. Now ¢,(X)
G
= [T 9" (X), proving the theorem.

Joum (b

By way of an exa,mpie, we take e = 8, f == 3, 80 ¢ == 26 = B We
can realize F,, as Fy(®) = {az-+b: ja| <2, [b] €2}, where 2® = 2, and
we can take g = m+2 Then

Co = {1, —23+2, 20+2},
Cp = {—e+1,5+1, -2},
C, ={—20-2, —1, 282},
Co=1{2,0-1, —a—1},

0y = {02, —20, 52},

U = {—w, =221, —20+1},

O = {~+2, —0—2, 20},
= {2 —1, ®, 200 41} .

The eonjugate of ax--b over F, iy —az+b, thus Tr(am--b) == 2b. Let
f = exp(2=i/6), Then

Mo = B4+28  m =144 B g = 428, Ny = 1Bt + 8,
s =26+ 5, s =L+ p+phy g = 200, gy == l”l"ﬁz“*“ﬂa:
and

Po{X} = [(X — 1) (X — ) (X =1, ) (X —0g) II(&X — )X — ) I[(X —75) ¥
X(X —n)] = (X*+3X°+ 09X 47X +11)(X* — X —1)5.
Also,
Py(X) = 8%,{(X ~1)/8)
= (X4 20X 4 510X2 + 2500X + 42026) (X? —~10.X —B5)?,
When & == 1, Theorem 4 shows that ¢,(X) and F,(X) arve irreducible

or a power ol an frreducible polynomial. In fact, in thiy case thege
polynomials are always irreducible, as we now prove.

TogorEM 6. ¢,(X) and F,(X) are irreducible over the rationals df,
and only if, 8 =

Proof. The neeessity of the condition 8 =1 iz evident from The-
orem 4. To prove sufficiency, we note that the cocfficient of X' in
a1
the first of another polynomial, ence, 1f d == 1 then ¢,(X) and B, (X)
gre irreducible,

== 1. Therefore ¢,(X) can not be & power higher than
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OCoROLLARY 7. The following are equivalent.

(a) @ (X) 45 drreducible.

(b} F,(X) s irreducible.

(c) 6 =1.

(d) p =1 (mod &) and (a,6) = 1.

Proof. The only part not already proved is the equivalence fo (¢)
and (d), which is an clementary calculation.

5. Cyclotomy and the cases ¢ = 2, 3, 4. The first explicit formulag
for the polynomials @(X) and F(X) date baek to Gauss and his contem-
poraries. These formulas cover the cases with ¢ — p and 6 = 2, 3, or 4.
They were derived via Gauss’ theory of cyclotomy for F,.

The theory of cyclotomy has been extended to the flelds ar We
present the relevant details, referring the reader to [15] for proofs, and
we apply the extended theory to finding formulas for p(X) and F(X)
in the cases with g = p* and ¢ = 2, 3, or 4.

DupmvirioN. The eyclotomic constant (k, &) is the number of elements s
in O, sueh that 1-+s is in C,. The oyelotomic matriz M® is the matrix
whose entry in position (%, k) is the constant (&, &).

The coustants (k, &) depend on our parameters e and T aleo, a different
choice of generator g, by permmiing the cosets ¢, will permute the con-
stants (&, B). Their relevance fo our disenssion of period polynomials
stems from the following proposition:

Prorogrtion 8. We have

g=1
T = Z (k, 71')?7m+71.+f%k1
. h=0
where 0y, 8 defined by

Wo =1 4f  pf is even,
By =1 i pf is odd,
i =0 an @il other cases.

This is the corollary to Lemma 8 of [15].

Since the coeificients of @(z) == JT(X ~u;) are all sums of products
of periods, repeatod application of Proposition 8 will enable us to find
these coetficients, provided we know the comstants (k, ). The constants
are given, in the cnses ¢ = 2, 3, and 4, by the following propositions.

Proeogrrron 9. Let ¢ = 2.

If f is even, then

o (A B

B B)’ where 44 :q%fi, 4B = gq—1.

4 -~ Acta Arvithmetlca XXXIK, 3
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If f iz odd, then

j ﬁ), where 44 = g—3, 4B = gq-+-1.

ProposITION 10. Let 6 = 3. Let ¢ and d be defined by 4q — ¢*--27d7,
¢ =1 (mod 3), and, if p =1 (mod3), then (¢, p) =1; these restrictions
determine ¢ wniquely, and @ up to sign. Then

94 = ¢—8-+o,
o ﬁ g g , 188 = 24 —0—9d,
H = ; where
o ¢DBR ' 180 = 29 —4 —o--9d,
9D = g-+1+0.

ProrposITION 11. Let ¢ = 4. Let s and 1 be defined by g = §*--4f%,

s =1 (mod 4), and, if p =1 (mod4), then (s,p)=1; these conditions

determine s uniguely, and { up fo sign.
If f ie even, then

M = (

164 = ¢g-—11—6s,

4 B _% 3 168 = ¢ —3 28 8¢,
W = g 1,5 o gl where 160 =q—3+2s,
168 = g+1+2s.
If f iz odd, then
16A = Q'—T'I"z'gy
4 E %g 16B = g-+1 -2 - 8t,
MW = ﬁ w4 gl where 160 = ¢+1—6s,

16F = ¢ 3 —2s.

These propositions are Leramas 6, 7, 19, and 19 of [15]. The case
¢ = 2 dates back to Dickson ([6], p. 48).
. We now present formulag for ¢, (X) and I, (X).
Taworem 12. If f is even, then

po(X) = X2 X —(g—1)4 anmd Fy(X) = X' —q.
If f is odd, then
P (X) =X +X+(g-+1)/4  and  Fy(X) = X* |q.

TerorEM 13. Let 0 be as defined im Proposition 10. Then
o (X) = X0+ X —((g —1)/3) X —((¢+8) g —1)/27,
Fy(X) = X°~3¢X —¢q.
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THEOREM 14. L6t 8 be as defined in Proposition 11.
If f is even, then
1
PlX) = X4 X0 — 2 (3 —-8) X2+ m((zs—a)q—z—l) 256 (-
— (452 —8s +6)g-+-1),
Fy(X) = (X* —q)* —4g(X — o).
If f is odd, then
lX) = X+ X+ —(q-{ 3) X“+—w—((2s+1)q+1)x+m(992
—(45* —8s —2)q +1),
Fy(X) = (X 3¢ —4g(X —s)*.

The proofs are all straightforward caleulations. We illustrate with
the case ¢ = 3.

Proof of Theorem 13. We have ¢u(X) = (X — ) (X — 5 )X —n,)
= X*—TLX*-- MX —N, where L = o+ 81+ 7ey M = ngp+ 11+ o2y
N = nypm,. By Propogition 1(b), L = —1.

By Propositions 8 and 10 we have

M = (137704“0771‘1'1)772)*}"(Dﬂo+.3’?1+a’?s)+(0970‘5'1)’71‘{“16’72)
= {B+-0+D)yn+(B+C+ D)+ (B+O+DYyy, = —(B+04+ D),

Then 18M = —(184 +18B+180) = —(6¢—6), and M = —{(g—1)/3).
Finally, ¥' = (9gm;)ns = (Bno+ Ony -+ D) 17 = Koo+ Ky + Koma -+
+fL, where Ky = K, = BC4CD+BD, K, = B*+(* +AD. Substituting
the values of 4, B, 0, D) from Proposition 10 yields 27K, = 27K, = 27K,
= r 3, 2TfD == (g —1){(¢-+1+¢), Then 27N = —(g2-—3¢—e)-+
+(g—-1){g+1L+¢) = (e+3)¢g~1, as asserted.
We find Fy(X) from Fo(X) = 27q,{(X —1}/3).

6. Factorizations; ¢ = 2, 3, 4. We now give a compleie description
of the factorizations of the period polynomials over the rationals in the
caes ¢ = 2, 3, and 4. By Proposition 1(c) it suffices to study the poly-
nomials F,(X), and these are more convenient to study than the ¢,(X),
gince they have simpler formulas.

TaroreM 15, (a) If a = 2y then Fy(X) = (X

(b) If a is odd then Fy(X) ds drreducible.

Proof. If a =2y then ¢ = p* =1 (mod 4); thus f I8 even, and
the factorization is immediate from Theorem 12. If a is 0dd the irreducibility
is immediate from Oorollary 7.

—2%) (X +2%).
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THEOREM 16. (a) If p == 2 (mod 3) and g = p* then

(X2 X =t i

x y i8 even,
W= E Xy i

¥ is odd.

(b) If p =1 (mod 3), and 3T a, then Fy(X) 48 drreducible,
(¢) If p ==1(mod 3), and ¢ = p*, thon

Ty(X) == (X —oup?) (X 44 (011 9d,) p7) (X -1 (0, —94,) p?)

where o, ond d, are given by 4p” = ¢ -F274F, ¢, =1 (mod 3), (¢, p) -+ 1.

Proot. (a) I p =2 (mod 8), wnd q =3p* =1 (mod 3) then o is
even;let a == 2y, Under these hypotheses, if 4 = ¢* 4-27d% then ¢ = L2p".
To insure ¢ = 1 (mod 3) we take ¢ == —2p%if y is even, ¢ = 2p¥ if ¥ iz odd.
Then Fy(X) = X° —3p™X --2p¥ if v iy even, Fy(X) = X —3p** X —2p»
if ¢ is odd, and the factorizations are immediate.

(1) The irreducibility is immedinte from Corollary 7.

(e} With ¢; and d; a8 given, (efine

¢ = (¢ —81le,@)/4, d = (3}d, —27d}) /4.

Direct caleulation shows ¢4-27d% = 4g. We huve ¢ =1 (mod 3),
ginee oy =1 (mod 3). From ¢ = (& —8ledi)/d — ¢(p? —108d3)/4 and
(¢ ) = (dy, p) =1 we infer (¢, p) = 1. Thus the ¢ we have defined iy
the ¢ in the formula for Fy(X). Vorvification of

(X =0y p"} (X + $(01+9d1) p¥) (X + F(er = 9d,)p?) = X°— 3pM X —p™o
is now a straightforward caleulation.
TaEoREM 17. (a) If p =3 (mod 4), and ¢ = p*, then

F(X) = (X+38p" (X —p")*  if y is even,
T @ e (X oy is 0dd.

(b) If p =1 (mod 4), and a is odd, then F,(X) is irreducible.
(¢) If p =1 (mod 4), g = p*, and y 8 odd, then
FyX) = (X +2p"X —p'7 —2p¥s)( X* —2p¥X —p¥ -|- 2p"5),
the gquadratics being irreducible,
() If p =1 (mod 4) and g = p*, then
F(X) = (X -+ p +2p%81) (X -0V —29%8,) (X — p™ -+ dp1) (X — p™ — dp™t,),
where s, and ¥, are given by pV = g}4-44%, 8, =1 (mod 4), (s;,p) =

Proof. (a) T p =38 (mod 4) and g = p* =1 (mod 4} then o is
even; let @ = 2y. Since ¢ ==p* =1 (mod 8), f is even. Under these hy-
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potheses, if ¢ = s*-4#° then s = 4p7. To insure s =1 (mod 4) we take
g =p" it yis even s = —p” if y i3 odd. We have P, (X} = (X% —p¥) —
—4p™ (X —p*y it ¥ i3 even, F (X) = (XZ—p™) —4p™ (X +p7) if y is
odd, and the factorizations are immediate.

(b) The irreducibility iz immediate from Corollary 7.

{e) Here f is sven, and I, (X) factors ag a difference of two sqUares,

Fy(X) = (X4 20" X ~p* —2p7s) (X° 20" X —p¥ - 2p"3).

Let A(X) stand for either guadratic factor. Then p*~74 (p¥—VAX)
ig Higonstein, hence irreducible. Thus, the original quadratics are irreducible.
(@) Again, f is even. The roots of F,(X) are

s

—P7 kYR ), pTLpVE(pT —s).

We claim s = s]—447. Indeed, by diveet caclulation, g — (s?—42)2 +
-+ 4(28,1))% Clearly, 57 —4#] =1 (mod 4). And s —4# = p® — 88 is prime
to p since ¢ is, establishing the claim. It follows that p¥ +s = (s + 442 4
+ (s} —4t]) = 2s], ¥ —s =8¢}, and the roots of F,(X) are as given
in the theorem. ' '

7. Location of the Gauss sums. Having the Gauss sums G4, and the
polynomials F,(X) of which they are the roots, it is natural to ask, which
snm corresponds to which root? Im particular, if we single out the sum
Gy = 3 exp((2niTrac) fp), which of the roots of F,(X) will this be? This
iy the notorious problem of the loeation of the Gauss sums.

When I, (X) is irreducible over the rationals (and 6his ineludes the
clagsical cage, where g = p), the answer is known only in the quadratic
(¢ = 2) case. The location of the quadratic Gauss sum, in the case ¢ = p,
ie a celebrated result of Gaugs’, which generalizes easily to ¢ = p* via
the theorcm of Davenport—Hasse. We quote the result below. The cubic
(e == 3) and biquadratie (¢ = 4) eases are unsolved; there arve interesting
conjectures due To Oassely [4], MeGettrick [13], amd Loxton [11].
Lhe author understands that recent work, ag yet. unpublished, of Patterson
and Heuth-Brown, has settled a number of the outstanding conjectures
in the enubie cwse. Their xesults concern the average behavior of the sums.
over & range of values of p, while in this paper we are concerned with sums.
for individual values of p.

When 7, (X) ig not ivreducible over the rationals, it is often possible
to identify among its irreducibie factors the one containing &4 . In particu-
lar, when F,(X) splits completely over the rationals, it is often possible
to identily &, among its roots. In this section we bring together the many
puch results we have found the literature, and some results which we
believe to be new.
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A ngeful tool in this research is o theorem of Davenport and Hasse [5],
which we quote. Proofs have appearcd in [8], [9], [12], and clsewhere.

ProPOSITION 18. Let x be o multiplicative character on F,. Define
a multiplicative characler ¥ on F, by x“ () = x(Na), where N denotes
the norm, N:F,—F,. Then

T(4®) = (=1 e ().
We now congider the guadratic case.
Prorogyeron 19. Let ¢ = 2. Then G,

—i  if  p =38 (mod 4) and o =3 (mod 4),
h3 if p =3 (mod 4) and « = 2 {(mod 4),

. or if p =1{(mod 4) and « és odd,
AR if  p=23(mod4) and ¢ =1 (mod 4),
—1 i p =3 (mod4) and a = 0 (mod 4),

or if p =1 (mod 4) and o is cven.

= i*Vq, where i* is given by

Proof If ¢ =9 and y iz the qufa.drdtic character Gauss showed

=Vp if p =1 (mod 4) and 7(y) = i¥p if p =3 (mnod 4). Proofs can

be found in [1], pp. 195199, [8], pp 469478, [10], Pp. 8890, and elge-

where. The proposition follows from Dmvenpori&ﬂfmssc and the obsel vation
{Proposition 1{h})} that @y = z(x).

Before proceeding to the cubic and biguadratic cages we prosent

“two results eoncerning what have come to be kunown in the literature

of coding theory as the semiprimitive case and the gquadratic residue

case.

" PROPOSITION 20. Asswme there ewisls a positive inbeger j such that

p! = —1 (mod ¢), and assume j is the least such. Let g = p* with o = 2jy.
Then the Gauss sums ave given by

() If v, 2, and (p? 1) /e are oll odd, then G,y = (6 —1)p’, Gy == —p?
Jor k 5= e/2;

(b) In all other cases, Go== —( —1)(e~1)p¥, G,= (—1Y'p" for & # 0.

Proof. In essence the resull goes back to Stickelberger ([14], 3.6
and 3.10); see algo (2], p. 168. In thesc sources the regulty are stated for
the sums z(yg) rather than G, but the translation, via Propogition 1(f)
and (g), is simple.

ProposITION 21, Assume &> 3 i8 prime, e == 3 (mod 4), and assume
p generates the quadratic residucs (rode). Let b = (¢ --1)/2, and let ¢ -~ p°
= p". Define the integer m by

e~1

= Sl

@1,
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Define the integers 4, and B, by

470 = 421 0B,

(4,,9) =1, p™A, = —2 (mod¢),

and A, B, > 0;
this determines A, and B, uniquely. Then the Gauss sums are given by
26, = (e —1) A p™

. k
ZGIc = (Bye—Ar)Pmy "’f (?) =1,

26, = (—B,e—4,)p™ if («-;2) = ~1.

Proof. This result, stated in terms of the v(y) and #, is proved
in [3].

We now return to the problem of the location of the cubic Gauss
gums. In Theorem 18 we made a subdivision into three cases. Oage (a),
in which p =2 (mod 8), is covered by the semiprimitive case, Prop-
osition 20. Cage (b), in which p =1 (mod 3), ¢ = p°, 8{e, is the irreducible
case; it includes the classical ease, and there is no progress. Case (¢) is
gettled by the following theorem.

THEOREM 22. Let ¢ = 3, lei p =1 (mod 3), let ¢ = p*. Let ¢, and
d; be as in Theorem 16 (c). Then

Gy =cp* and {Gy, Ga} = { —(e,+94,)p7 /2, (e, —94d,)p" 2}

First proof. Let w ¢ 0,. Since « is not a cube in Fy, [Fy: F,(w)]
is not divisible by three. Thus [F,(«): F,], which equals the number
of distinot conjugates of x, is divisible by 3. These conjugates are all in 0y,
since, for every &, X s in ¢ ,ca.nd p*¥ =1 (mod 3). Then 7, = 2 672 is

divisible by 3. By the same argument, 3|n;. Thus, 5, =1, (mod 3) and
@, =0, (mod 9). Now from Theorem 16(c) we see the roots of F3(X) are
congruent to ¢,p”, —6,2”/2, and —eyp” /2 (mod 9), and the theorem follows.

Second proof. Let y be a cubic character (modp), and define
the cubie character x® on F, by () = y(Nw), where N denotes
the norm. from F, to F,. Then %(yx) = pw, where = = (c+dl/ ~27)/2,
4p = 0*+4-27d% ¢ = 1 (mod 3) (see [8] or [9]). We have &y = 7 18 L7 (4B7)
by Proposition 1(g), thus G = (¥ --7(x"") by Proposition 1(d),
thus Gy == (-—-1)3”'“( 7 (x) 1% (x)} by Davenport-Hasse, and, finally,

= (—=1)pY(of +@").  To  show Gy = ¢,p” it suffices to show
( 1)”* ¥ e (6 +dyV —27)/2. Let { =1yt = (—=1y*{(e+dV —27/2)")
= (0~ DV —27)/2. Then (* +27D* = 4n"%* = 4p*, and it is easily checked
that (¢, p) =1, and 0 =1 (mod 3). Thus ¢ = ¢; and we have evaluated
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G,. Now &, and @, can be obtained from Theorem 16(¢), or we can keep
the proof independent of that theorem, finding &; from Gy = 7(3*")w--
4o {g¥) @2, where o = 1, ete.

Finally, we consider the location of the biguadratic Guouss sums.
In Theorem 17 we introdueed a subdivision into four cagses. Case (a),
in which p =3 (mod 4), i5 covered by the semiprimitive case, Prop-
osition 20. Oase (b) is the irreducible ¢ase, which includes the elassionl cago.
Here it is well-known that ¢, ean be determined up to a single ambiguity
of sign.

ProrosIrToN 23. Let e =4, p ==1(modd), ¢=9% a odd. If
p =1 (mod 8) then Gy is & root of X>—2VgX —g-+2Vqs. If p =0 (mod 8)
then Gy 48 a root of X*—2VgX 1 3¢ 4-21/&"“9. Here ¢ is as in Propesition 11.

Proof. We give the proof in the cage p =1 (mnod 8); the adjustments
needed when p =5 (mod 8) are minor and obviens, By Theorem 14,
@, is aroot of (X* —g)* —4¢(X —s)*, hence either of X* —2V¢X —g+2V¢s
or of X* +2|/ g_X —g Zl/gs Using superscripts to denote the values of e,
we have G0 6 = 260; by Proposition 18, 62 = Vg, Thus, ¢ |-G
=g, GV LGP = ——21/&; and the result follows.

In enses (o) and (d) the Gauss suns can be located without any armbi-
guity. - :
T}IDOREM

24, Leﬁ 6 == 4, p == I(mOd 4), ¢ = 9™, v odd. Then G‘,,

Prooi In this proof x. wﬂl denote a 1)1(111.1;(11&10 c}mmctm, Kequod
will denote the quadratic o haracter, and supm,soupia O ¥y Xgunas 0 Gy
will indicate the degree of the field. Thus, G¥ is the biguadratic Ganss
g in the field of p* clements.

By Proposition 1(g), G = g (1) 4 g (5O }—r(ﬁ;ﬂml) Since
. g =1 (mod 8); we have 7B —1) = 1, ~and () v (™). With
r(xﬁﬁi‘;a) = wl/g given by Proposition 19, we have

i

GG == (™) (1) = g

By Duavenport—ITasse, (@) - ~72 (5"}, 50

() G = ) —a ) Y.
‘We now continuve the proof on tho hypo’ohoais P =1 {mod 8), und agnin

leave to the reader the ‘1,(1]11%111@11173 necessary when p s b (mml 8)a
‘We have

Ggy) - r(x“’)) + (g™ + v (1)
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from Proposition 1(g), and
G = V' LV 297 —2sVp"

from Proposition 23; also, 7( xg’(}&d I/p” from Proposition 19, Combining,,
and noting 7(x7) = g —1)7(z™) = 7(x™), we have

Vo 2y = ) T
Squaring both sides, applying Proposition 1(e), and eancelling, yields
~28Vp" = () + ("),

Now comparison with () yields the theorem. _

TurorEM 25. Let 6 =4, p =1 (mod 4), ¢ = p¥. Let s, and 1, be
as given in Theorem 17(d). Then G, = —p™ —28,p%, Gy = —p* 5,97,
and {G, G5} = {p* L 44,p"}.

Proof. (Compare with the first proof of Theorem 22.) Let 2 be in
Oy, B 0. Since @ is not a fourth power in F,, [Fy(z): F,]is even. The
conjugates of @ are thus even in numnber. Moreover, they are all in C..
Thug #, is even for & = 1, 2, 3. By Proposition 1(b), 7, is odd. By Prop-
ogition 1(a), we have @y =5 (inod 8), G4 =&, =G, =1 (mod 8},

Inspection of the roots of F,(X), given in Theorem 17(d), shows.
that only —p* —2s,p” is congruent to 5 (mod 8). Thus, G, = —p* ~25,p"..
Now Gy--@, is twice a quadratic Gauss sum, equal by Proposition 19:
to —2p*, 8o @, = —p*-}-28,9", proving the theorem.

A second proof can be constructed along the lines of the second proof:
of Theorem 22. One needs to know that if y is a biquadratic character on
F, then +'(y) =pn’, where = =s-+2if, p =s +41°, s =1 {mod4}

(see [81).

Addod in Proof, June 1981. Considerable progress has recently been made-
on the problem of tho location of the Gausy sum in the elassical case. See D. R.Heath-
Brown and 8. J. Patterson, The distribution of Kummer sums ab prime arguments,
J. Reine Angew, Math. 310 (1679), pp. 111-130; C. R. Matthews, Gaunss sums and'
elliptic functions T. The Rummer s, Tnv. Math. 52 (1078}, pp. 163-185; and C. R, Mat-
thewn, Gauss sums and olliptio funclions 11, The guartic swm, Inv. Math. 54 (1978),.
pp. 28462,

References

[1] T. M. Apoetol, Tntroduction lo analylic nuwmber theory, Springer-Verlag 1976..

19] L. D. Baumert and R. J. McElieco, Weights of drreducible oyelio codes, Infor-
mation and Control 20 (1972), pp. 158-175.

[8] L.D.Baumert and J. Mylkkeltvoit, Weight distributions of soma irreducible
oyclic codes, DBN Progress Report 18 (1973), pp. 128-131. (Published by Jeb
Propulsion Laboratory, Pasadens, California.)



264

[4]
f5]
(6]
[7]
(8]
(4]

{10]
{11]

[12]
{13]
[14]

[15]

G. Myergon

J. W. 8. Caspols, On Hummer sums, Proe. London Math. Soe. (3) 21 (1970),
Pp. 19-27.

H. Davenport und H. Hasse, Die Nullsiellen der Kongruenseetafunkiionen
in gewissen ayklischen Fdllen, J, Reine Angew. Math., 172 (1934/5), pp. 151-182,
L. E. Dickson, Linear groups, Dover 1058.

C. F. Gauss, Disquisitiones arithwmeticas, Yale 1986.

H. Hasse, Vorlesungen wber Zahlentheorie, 2nd ed,, Springer-Verlag, 1004,
]% Ireland and M. I. Rogen, Blements of number theory, Bogden and Quigley,
1972.

8. Lang, Adlgebraic number theory, Addison-Wesley, 1970.

J. H. Loxton, Some conjectures concerning Gauss sums, J. Reine Angow, Math,
207 (1978), pp. 153-158.

R. J. McRBliccs and J. Rumesey, Jr., Buler produats, cyclotomy, and coding,
J. Number Theory 4 (1972), pp. 302-311.

A, D. MceGetitrick, On the biguadratic Gouss sum, Proo Camb. Philos. Soo.
21 (1972), pp. 79-83.

L. Btickelberger, Uber sine Verallgomeinerung der Kreistheilumg, Math.
Ann. 37 (1890), pp. 321-867.

T. Btorer, Oyclotomy and difference sets, Markham, 1967.

Reocsived on 19. 9. 1978 {1103)

icm

ACTA ARITHMETICA
XXXIX (1981)

On the theorem of Jarnik and Besicovitch
by
R. Kavemaw (Urbana, Ill.)

1. Let ¢ > 0 be fized in all that follows and F{a) be the set of real
numbers 2 such that the inequality |zl <#™'~* has arbitrarily large
integer solutions #. {As usual || is the distance from ! to the nearest
integer.) We recall the clagsieal theorem of Jarnfk [3] and Besicoviteh [1].

I. E(«) has Hausdorff dimension 2(2-+a)"'.

We ghall obtain for E{a) a sironger property:

II. There exists a positive measure p whose support is a compact
subset of I(a), whose Fourier-Stieltjes transform obeys the relation

aluy = o(loglu|) [+, ju| - +oo.

By a theorem of Beurling [3, III], the closed support of wx (or a.ny
Borel set of positive y-measure) must have dimension at least 2(2 4+ a)” s
however the property of E(a) is not shared by certain sets of positive
Lebesgue measure, so that II could not be dednced from I (see [4], D. 351).

2, In this paragraph we define some auxiliary functions, and obtain
an inequality on Fourier coefficients, more or less equivalent to the main
regult II. Rirst of all we construct the function Fp(z), 0 < K<< 1/4,

35(82) KT (B ",  IwI< R,

T@=Y,  m<uwl<ip.

to & periodic funchion and expand it in a Fourier

w) - Zaﬁﬂaﬂrﬁmm’

e < 1 |ai® < mTA R

Then we oxtend Fj
gorics

af® =1,
In the construction below M iz a large positive integer and
R= (4M)™1"%; we write ¢,(2)} = E*FR px), where Z means that the

gum is extended over primes p 1n the interval M <P = 2M We also



