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1. Introduction. Let & == 27 for a natural number +. If » is a (nonzero)
2"1th power residue modulo an odd prime ¢, one defines the rational

residue symbol (%) of order ¥ by
k
(fn, B {1, it n i3 a k-th power residue (mod g),
¢!, 1—1, otherwise.

This is the Legendre symbol (%) in the cage v = 1. In. 1969, Burde [2]
proved that if p = a?-+b% and ¢ = 4*+ B” arc odd primes with (%) =1,
24 ad, then

0 ()

Burde’s law is independent of the choice of signs for e, b, 4, B. Other
proofs may be found in [3], {7], [13]. An analogous rational octic law
was obtained independently by Willlams (12] and Wu [14]. In 1877,
Leonard and Williams [9] proved a rational bioctic law. For a discussion
of these and related reciprocity laws, see an article of E. Lehmer [8].

In this paper, we obtain systematically 2"-th power rational reci-
procity laws for each » = 2, in terms of parameters (defined in § 3) which
are solutions of certain Diopbantine equations and congruences. The par-
ameters oceurring in the laws for 7 < B are explicitly exhibited in § 4.
T § 5, a general reciprocity law (akin to & quartio law of Burde [3], (2.16))
is proved and the rational 2'-th power reciprocity laws follow (Corollary 7).
These lwws ave explicitly presented for r = 2, 3, and 4, in § 8. Our law
for v = 4 is different from that given in [9], Theorem 3, because we do
not incorporate the paramebers in 9], (1.4). A gencral 2’-th power reci-
procity law less explicit than ours was proved in 1958 by Furuta {47,
who used clags-field theory. '

Tor supplementary theorems to the 2"th power rational reciprocity
laws, goe the papers [3A7, [4A]).
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2. Notation and preliminary lemxmas. The following notation will
be used throughout this paper. Let b = 2%, where 2 <8< 7. Write §,
= exp(2ni/h), 2, = Z[8,]. I § is odd, define g; & Gal (Q(ﬁ,s Q) by o8,

= pi.Let p be aprime =1 (mod 2). For a nontrivial character 2 (modyp),
define the Jacobi sum

Edy= > i(l—n) (ﬁ)
n(mod ») P
and the Gaunss sum
G{A) == A (m) g
n{modp)
Since p = 1 (mod 4), we have the well-known result of Gauss that
(2) @) =Vp, when A has order 2.

Morcover, for a eharacter A, (mod ) of order k, we have ([1], Theorems 2.2
and 2.5),

(3) (3P = p,

(4) Oy lixes T (4,),

and S : '

(8) LAV E(7) = G (A)IG(H) = D Min(l—n)).

n{modyp)
LoymA 1. For o character A, (mod p) of order h,

(6) K (2,) = ~1 {mod 2(1 —3,))
and
(7} ' ReX (4,) —1 =ImK(4,) = 0 (mod 2),
Proof. We have
K@) = —p+ 2 (la(lwn)——l)((—l;) -—1) = —p = ~1 (mod 2(1 —8,)),
#i{modn)

since 2 ((11:-) —1) and. (1 —B,)|{4,(1 —n) —1) unlegs » =0 or 1 {mod p).
This proves (6). By (),

K (2g) + K (25108 '
- 3 e wpef2)

u(mod p)
=2 LitnQ—n) =2-+2 > 3{n(—n).
n(mod 7) nwz 1(modp)
(5 = (52
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Since the transformation % —1 —n leaves 2(4n(l-n)) unchanged and
gince n # (L —n) (mod p) when » £ 27 Y{mod ), it follows that

K ()} + KM =2 (mod 4). '

By (4), K(A*™) = E(7,), so consequently ReE (4,) =

1 (mod 2). Thus (7)
follows, with the aid of (6

LeEvma 2. Let A, be a character (mod p) of order h, with § = 3. Then
8) E(l) =do+ Y GBI+ +i > B+,
l<j<h/a 1gi<h/a
joven Fodd

where dy, dy, ...
for 5> 0.

Proof. LetJ ={jeZ: 1 —hf4 <j<hfd}. Az {B]: je J}is anintegral
bagis for Q(f,) over Q, there are integers ¢; such that

K(k) = Dlefi.

2 Bg e imtegers satisfying dy = —1 (mod 4) cmd 2|d;

et
By (4),
20 = ZqﬂJ—Z_wmmﬂ=Z%4AWWﬂ
jeJ jet Jeg
Thus ¢, =0 and ¢ = (—1Ye_; for |j| < h{4.
Consequently,
Ky =cot+ D olBi+B)+ D o(fi—F),
IS f<hid I=j<h/4
jeven jodd
and {8) tollows with
Q- o) it 2|3,
! Chiterg 1 if 2'!’.?- .

Now {fI_;: 1 —h/8 < j< h/8} iz an integral basis for Q(B,_,)over Q.
Sinee Rol(4,)—1 = 0(mod 2) by (7), it follows from (B8) that d, i8 odd
and d; is oven for 1 < j << b4, 2|, Binailarly, since f*Im I {#*) = 0 (mod 2)
by (7), ib Jfollows thm d; is even for 1< j < h/4, 21). It Tomains to prove
that d, == —1 (mod 4). If 1< j< h/4, then ﬁ’—l B = 0 (mod L —f,), so
& (3 |-r,5§, 22 0 (mod 2(1 —pB,)). Thus, by (8), H(d,) mdo(mod2(] A
Therefore, by (6), dy = —1L (mod 2(1L—4f,)), 80 dy = —1 (mod 4).

Given any prime {ideal) factor P, of p£,, the factorization of pL,
into distinet primes is given by

(9) pQ, = [] o(P).
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Let xp, denote the standard residue class character of order i defined on
Q,P,, 80 yxp, can be viewed a8 the character (mod p) of order b for which
Zey (M) = - Vitmod P,) for ali #{mod p). The following lemma gives the
prime factorization of the ideal Q.K (yp ).

Lmwa 3. Let P, be a prime factor of pQ,. Then
(10} QK (3p) == o] (P

Ll
Jod

Proof. This result is due to Stickelberger [11]; see also Lang’s
book [6], p. 98

Tomma 4. Let P,_,, P, be prime factors of pQ,_y, pL2,, respeciively,
such that Py, = Py Then Py 2, = Pyoya. 1 (Fy).

Proof. Since P,_, = P,, we have

Py = oy (Fam1) € Oppaga (Do)

Hence P, and oyp.,,(F,) are prime factors of P, ,8,. Moreover, these
are the only prime factors, since |@(f,): Q(fy-1)| ==

Luymma B. If all the algebraic conjugates of a € Q, have absolute value 1,
then o is a power of f,.

Proof. By [10], Lemina 10.10, ¢ is a root of unity. It follows easily
from [5], Oorolla,ry, P, 204, that the only roots of unity in £, are powoers

of 8,.

3. Specification of parameters. For each fixed #, the 2™th power
reciprocity law iz expressed in terms of integers a, b (called “parameters
of level 27} and integers d,(s) (ealled “parameters oflevel s”) with 3 < s <,
0 < § < h/4. We specify these parameters in this section, beginning with «
and b. The formulation is rather complex, so the reader is advised to rofer
to the concrete examples provided in § 4.

Set
(11a) s @i,
where (@, b) is @ fixed one of the four golubions to p == o’+b*, 2[b. Rince
y7y =p, it follows from (9) that Ly, is some prime factor P, of ply,
s0 by Lemma 3,

(11b) Qyyy = Py = -QE-K(xPn)'

Thus y, = uK(yp,) where u' =1. Since 4 is odd and since ReX (4p)
is 0dd by Lemma 1, x = -1, Thus

(11c) va = K (zp,).
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For the rest of this section, unless otherwise stated, assume that
3 < s < r with » fixed. Write

Ve = do(8)k > BB+ D G(s) (BI+F)-
oy i

In order to specify the parameters of level s +1, we need to define certain
integers (B! --34),(mod p) for 1< j< hf4, which in turn are defined in
terms of the parameters of level << 5. We proceed to do this.

Suppose that for each » with 2 < »< s, the parameters of level »
have been specified in such a way that |y,® = p and

(12)

(13) {Yas Vo cr Bl = B,
for prime factors P, of p@, satisfying
(14 PocPe...chl,.

(This supposition will be justified later by induction.) Suppose moreover
that for each mumber fI_,+pI_, (1< j< h/8), a corresponding integer
(Bi-1+p_1)p has been defined in terms of the parameters of level <s
in such a way that

(15) (Bi_,+F) = 1~|—B’_, (mod P,_,).

Then for odd ¢ with 1 <t <h/4, mductwely define (BL+ BL),
integer (mod ») for which

(16) (Bi+B) = (BB (Imy,)a/b)* [(Rey,)* (mod p),

where an asberisk attached to an expregsion indieates that it is to be
written in the form -

to be the

Zy+
1<j<hf8 .
for gome integers Z;(mod p) and then each (BI_,-F1_,) is to be replaced
by (Bl -+Fi-1),- We now show that ( (Bi+BY), is & well-defined number
patisEying

(Bt Bica)

(17) (B 4-Be)p = By -+BL (mod Py).
y (1B},
{18) (Rey,)" == (Rﬁyﬂ) {mod P,_,).

Sinee 9., = p, it follows from (9) and (13) that ¥, ¢ Py. Thus

(19) Rey, ¢ Py, .

80 by (14), (18), and (19), (Rey,)* % 0 (mod p). This shows that the left
side of (16} is well-defined. Moreover, by (10) and (16),

(20) (Re?s)(ﬁf.c’}"lgs = ﬁs“i"lgs)(:[m?a)“lb (mod P, ).



286 R. J. Evans

Since by (13) and (14), _ _
v, = Rey, —(Imyg)afb = 0 (mod F,),

(17) follows from (19) and (20).

We are now ready to gpecify y, (i.e., to gpecify the parameters of level g)
for 3 < s < . Assume that for each v with 2 <v<s, 7, has already been
specified such that |y,* = p and such that there are prime factors P,

of pQ, satisfying
(21) PycPye ...

cPy and  {ys ..., mr el

Thig assumption ig valid for ¢ =3, We specify a fixed choice of y, such
that

(22} . ViVs = P
and for each odd ¢ with 1<<#<C hi4,
(23} (Rey, Reg,(y,) +Imy,Imoy(y,))* = 0 (mod p},

where the asterisk weans the same as in (16). We proceed to show that
such choices of ¥, exist and that moreover for any such choice of y,, there
is a prime factor P, of pL, satisfying

(24) - PoePic ... Py, and  {ys, Vayoers Vol © Dy

By Lemma 4, there is a prime factor P, of p&, such that

(25) PR, = P;a;,,zﬂ(P;).

Mo show that choices of y, exist, we show that if one were to put y, = K (xP,s),

then the conditions (22) and (23) would be satisfied. ¥or the moment,
pub 9, =K(xp,). By (8}, 9, = K(xp,) has the form reguired by (12).
8 a

By (3), (22) holds. By (10), o,(y,) == 0 (mod P;) for 1 < ¢ < h/4, 2tt Thus

Reoy(p,) = —iTma{y,) (modPy)

and
Roy, 5= —ilmy, (modP,).

Mualtiplying, we have
Rey,Roo,(y,) -+ Imy,Ima,(y,) = 0 (mod. ;).

Applying (15), we conclude that (23) holds. This completes the proof
that choices of y, exist. Wo now drop the stipulation y, = K(y,) and

. . . . 8 ,
consider any y, satisfying (22). Since 4,7, = p € P,, exactly one of P,
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and P, contains y,, by (9). As ay,_; fixes y, by (12), exactly one of P,

and oy, (P,) containg y, . Define P, to be the one of these which contains y, .

By (28), P,_, =« P,, 50 (24) follows from the assumption (21). We have

thus shown by induction that (24) holds for 2 < s < #, in view of (11b).
‘We next prove that

(26) Cpy = £ (zp).
By (15) and (23),
(27) Rey,Reo,(y,) +Imy,Tma,(y,) = 0 (mod P,)

for 1 << << hl4, 24%. Congruence (27) algo holds for ¢ = 1, by (22). By (19)
and (24),

0 # Rey, = —ilmy, (mod F,).
It thus follows from (27) that

olys) = 0 (mod Py) for 1<t<<hf4, 211,

As oy fixes y, by (12), we have o;(y,) = o3p—y(p,). Thus
oy =0 (mod P) for 1<<i<<h/2, 241,
By (10}, this proves that

Ly, = QBK(XPs)y
so for some 7 e £,

(28) Yo = (1p,).

By Lemma 5, there is an integer j such that

(29) n =B,

Since oy.., fixes y, and K (xp ), it follows from (28) and (29) that -
(30) N = Oppr(n) = (~L)7.

Thuy 7 <= 5* =1, g0 2|7 because s3> 3. Therefore (30) implies that
7 = 41, and (26) follows from (28). ‘
Since Pyngdy_y== Py, we have g = xp . Hence, by (26) and (1lc),

(31) E(p, ") = v

We remark that once 9., v, vy 75—y have been fixed, there are
exnetly fonr distinet wayr of specifying ¢,. For, {22) and (23) hold with
ey, oF 17, in place of ¢, 8o there are ot least four distinet choices of .
On the other hand, by (26), there are no more than four possible choices
of y,, becauge there are only two posgible choices of Py (by definition
of P,).

@<,

§ — Acta Arithmetica XXXIX, 8
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Observe that if y, is specified as in (1la) with the additional

2 ; ;

condition that « = *(__») (mod 4), and that if for 3<<e<r, 9, I8
»

specified by (22) and (23) and in addition by the congruence dy(s)
= —1 (mod 4), then by [1], Theorem 3.9, and Lemma 2, we¢ have
ys = K(yp,) for 287, that is, the plus sign may be taken in (26)
and (31).

To summarize, wo have given an algorithm (call it A) for successively
specifying yg, ..., ¥, (of the form given in (1la) and (12)) in such & way
that there exists o charactor y(mod p) of order % (mamely x == xp ) for
which y, = K (") for cach & (2 < 8 < ). The specification is necomplivhed
by a system of Diophantine egnations (those in (22)) and Diophtntine

2
congruences (those in (23) together with the congruences e =5 — (1;») (mod 4)

and dy(s) = —1 (mod 4) (3 < ¢ = ). Of course two persons can sepavately
apply Algorithm A and end up with different values of y, (or equivalently,
different characters y). This situation could oceur, for exarple, if one
pergon starts with a parameter b which is the negative of the other’s.
The rational reciprocity law (46) will turn out the same for each person’s
st of parameters beeause the proofy of (42) and (46) are based on no more
specitie information about the parameters than that they are specified

§)

2
by Algorithm A. (The resirictions a = -—(—ib-) {mod 4) and dy(8) = —1

(mod 4) are in fact irrelevant for the purposes of this puper. Ilowever,
they are quitie necessary in [3A], where Algorithm A is used to obtain
an unambiguons supplementary theorem to the genoeral rational reci-
procity law.)

4. Explicit characterization of the parameters of level < 3. Wo hegin
by expressing the condition ¢,7, =p in a more explicit faghion, for
gencral . Write k == 27, Take § == in (12), formally multiply the right
pide of (12) by ity complex conjugate, and then simplify using the fact
that

B B s (Bl g BRI

to obtain

(32) P = vy = mo(r) -+ ) my(n) (B -REY),
Lt ffo

where

(33) | mo(r) = d(r)+2 D' @r)

Lgi<bia
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and where the m,(r) are integral quadratic forms in the &;{r). Now, {f¥:
|7] << %/8} is a linearly independent set over @, so by (32) and (33),

(34a) p=din+2 3 &)
1< <kfd
and
(34b) my(r) =0 for 1<t Rf8.

We can view (34) ag a system of k/8 Diophantine equations in integer
variables dy(r), ..., dyy_y (r), namely, the gquadratic partition of p given
by (340) together with the “side conditions” in (34b). To gay the system
(34) has the solution (dy(r), ..., dy,—:(r)} i3 equivalent to paying p = »,7,.

We proceed to explicitly characterize y,, v,, and y; (v, wasg charac-
terized in (11a)). To simplify notiation, write ¢, d for dy(3), d.(3); write
z, w, v, % for d,(4),..., ds(4); and write ¢, ..., &; for dys(B}), ..., d;(B).

The cage v =3. For 8 =r =3, the condition (22) is equivalent

to (34a), which states that p = ¢*--2d2% Thug 9, = ¢+ diV'2 where (¢, d)
is a fixed one of the four solutions to p = ¢*--2d%

The case r = 4. In order to specify y,, we must first define (£; +5s), -
By (16) with 8 = 3,

(35} (Bs-+Bs), = 2ad[be = —ac/bd (mod p).
Thus, ‘

¥y = @084 F) +iw (B, 4 B, +iu (B )
=& vV§+ qiwaZ —H@—l— @'@51/2 —-1/5,
where {2, v, %, w) I8 any fixed one of the four solutions of the system
(36a)
(36b)
(36c)

P = @24 + 20t 2w,
w2 —2uw —w? —200 = 0,
bd (5 —20%) = ac(u? -+ 2uw —w?) (mod p).

Here (360) and (36b) come from (34a) and (34b), respectively, and (36c)
comes from (23) and (38), since

0a(va) == @ — V3 iV 2 +V2 — iV 2 V2.

The case r = 5. In order to specity y,, we must first define (8, + ﬂ,‘)z'_,
and (63+4),. By (16), '

2bdw — .
(bulym 2ERE S S0, gy
and
Qubd — -
Gt B, = ERA el ) g ).

b(bdx —aev)
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Simpler versions of these congruences have been given by . Lehmer
(written communication) as follows. By (10) and (26), oa(y,) =9,
= 0 (mod P,). Using the formulas for ¢, and o;(y,) given in the previous
case r = 4, we dedunce that

@ — {8y + Fi) + 1w (B + ) —iw (B4 F1) =0 (nod Py)

and

@+ v (65 + Fad - 0w (B + Bo) +dw (B -+ F1) = 0 (mod P,).
Adding, we have

2 = d(w—w) (B3 -+F5) — 4 (w -+ ) (BB, (mod ).

Multiplying by B, -+ 75, and by 8- 5}, we have xespectively

BBy = — o™ u( B} B0 -+ (w )} (mod Py)
and

Bi+B = —ia™ aw (B +F) -+ (u —w)) (mod Py).
Thus, by (17), (24), and (35),

aow — bd (2w - %)

(37) A +ﬂ4;)p T adw - (mod p)

and

(38) (B = 0T, (1nog ),

Thusg

(39) Vi =6 O g(BlHA)+i Y 6B+,
§=2,4,6 F=1,3,5,7

where (g, 61, ..., &) is any fixed onc of the four solutions of the sysbem

(40a) = 6+2 Z o,
Funl
(40b) 67—~ 6] == 224 Gileyn;
. =0
{40¢) 05— 6F = 2608, + 6165+ 0,0}~ Eyly -1+ 6,63 — gey)
(40d) € — 85 = 2 (0405~ €107 -+ 030, + 6,6; — 0,6, — 6,0,),
8
(40¢) Sy D) (BB, =0(modp) for t=3,5,7,

i=1

where (40e) results from expanding in (23); (40a) comeg from. (34a); and
- (40b), (40¢), (40d) come from (34b). In (40e), the (8]-+ ) are given ex-

icm

Rational -reoi_pracity laws 291

plicitly by (35), (37}, and (38), and the d; are computed with the aid of
the facts that o3(y;), o5(ys), and o, (y;) are obtained from the right side of
(89) by replacing (e, ..., 6,) bY (eq, €5, —05, —t1, —6,, 67, 6, €s)y (€0 —Cg5
Oy 61y —y) €1y —0ay &)y ANA (8, €7y —6, —&, 0, 6, —6;, —6;), Tespect-
ively. For example,

Bgy = €2 (€16, + €36, 66, — 616, — 6}),
b1p = 67— 6] + 26565+ 608, — 856 + 26,6,
O = €368 — 6 —e2 L6t —¢
Oag = €5 — 65 + 26,8, + 668, - 685 — 2648, .

As a numerical example, note that for p = 97, the parameters may
by specified by:

(a}b) = (‘“91 _4)5
and.

2
s — 26,8,

(0, @) = (—5,6); (w,0,w,u) =(7, —2, —4, —2);

(8y ooy &) = (=B, —4, 2, ;2:2:210: —2}.

5. The 2'-th power reciprocity laws. Let 2 <<s<7, k =27. Let p
and g be distinet primes == 1 (mod k). The symbols a, b, ¢, d, @, », u, w,
e;y d;(8), P,, and Xp, have been defined in terms of p. We denote the cor-
regponding symbols defined in terms of ¢ by 4, B, ¢, D, X, V¥, U, W,
E;, Dyis), @, and Yo, Let (ys)y =a—b4/B (modyg), and for s33,
let (y,)g be the integer (mod ¢) obtained from the right side of (12) by
replacing & by —A[B and by replacing each §+35 by (BI+Fl),. For
example, (7); =¢—d0/D (mod ¢). By the g-analogue of (17), we have
for 2,

(4’1) (ya)q E.'ys (mod Qé)'

TamorEM 6. Let p and q be distinet primes = 1 (mod k), where & = 2
= 4. Then '

IS

xp, (@) %0,(P) = T, (n (s~ 1)-

o=

(42)

Proof. By the binomial theorem,

o) = D) 28, (mE™P = 7o, (9)6(7,) (mod g),
n(rmodp)
g0 '
(43) G (tp,) =Tp,(q) (mod g).
Using (b) for 2< e v and alio (2), we have
(44) *(5p,) = H ;A7 A

fre=d
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By (43) and (44),

r (g— 1Nk
Tp,(4) = pa i \n K(ngr:s)ﬂ'll (mod q).

g=

Therefore, by (31) and (41),

r
=1 .
(45) T (1) = x@rw)x@,( [Ty )(mod ?,)-
8 =2
Since both members of (45) are kth roots of unity, the moembers must
in fact bo equal, so (42) follows. m
The rational veciproeity law is given in the following corollary, which
is a direct congequence of the preceding theorem,

CoroLLARY 7. Let p and ¢ be distinct primes =1 (mod k), where
b =2">= 4. Suppose that (»21) = (g—) == 1. Then
9y 2
17 a2
a/q
(46) (ﬁ) (,.q_) o 122,
4/e\Px 4 Kl

6. Examples of the rational reciprecity laws for r < 4.
The cage ¢ = 2. Here (46) clearly becomes

[, -5 - =) -
IAVIE g g 7 ¢ I
This can be pimplified to yield (1}, as follows. Since 4 i3 odd by (7),
() - ) - (%) - () -
"R AN \) AR U VI B UV 1)

)55 - ool oo

The case r =3. Here (46) becomoy

(), - 50 - (= )=)

This con also be simplified to yield

) - ()

80
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. B
ginee mgm w= 1 (see [12]) and
4

[7) - () =[5 = () ==

where D' ig the largest odd factor of D.
The cage r = 4. Here (46) becomes

2)(2) - ('(«/z)qm)z) ()
4 1\ P 16 q AN

Tsing the g-unalogues of (35), (37), and (38), we can rewrite this as

( _21) (_g _ ((a—bA/B)(e—dO/D)ﬂ X(BDL, —ACL,)
q /1 P)m a q )s( q )’
where
Ly = Xo+ Ww+ Uu+ Ow —uW
and
Ly o= TwA-uWL+0X.
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Corps cubiques de diseriminant donné
par
P, Baret (Cacn)

Introduction. Soit @ ¢ —3 un digeriminant de ecorps quadratique
imaginaire et ¢ 7+ 2, 3 un nombre premier. On sait ([2], [3], [4] par exemple)

d .
que la congruence ¢ == (WE) mod 3 est une condition nécessaire pour

_que dg? goit un diseriminant de corps cubique, et que cette condition
et sutfisante si 3 ne divise pas le nombre de classes de Q(ﬁ). Ilexemple
d = —23 ot q =B montre que cette congruence n'est plus suifisante
Jorsque 3 Givise le nombro de clasees do Q(Vd): en effet, on a § = (—éi)
mod3 mails —93-5% = —B75 nlest pas un diseriminant de corps
cubique. Depuis le mémoire de Hasse [2], la question suivante est
done posée: soit d un diseriminant de corps quadratique imaginaire dont
le nombro de classes est divisible par 3; quels sont les nombres premiers ¢
tels que dg® est discriminant d'un corps eubigue? Nous répondons iei a
cotte question (théordme du § 4): 81 & egt 1o diseriminant du corps Q(V —3d),
il exisbe un ensemble fini de formes quadratiques binaires de digeriminant
378, aveo # == 0, 2 ou 4, telles que dg* est un discriminant de corps cubique

d
gi ob senloment gi Pon a q = (E) mod 3 et si g est représenté par 'une

do ces formes. Dans lo cas 4 = —23 par cxemple, nous montrons gue
el engemble do formes pout &tre réduit & la forme X2 -3XY —153Y*; aing
—23¢% eyt un diseriminant de corps cubique &l et seulement i ¢ est congru E:

-5 X
(m»-é-i-) mod 3 et cxt do lan forme a2 3wy —1B3y* avec & et y entiers
radionnels.

Notations. Soit % un corps quadratique imaginaive de diseriminant
d # —3 ot g un nombre premisr différent do 2 et 3. On désigne par J,
J g les groupes das idéles des corps & et Q (oh @ est le corpa des rationneld),
par W, le sous groupe de J formé des idales dont les composantes en toutes.
les places finies sont des unités, et par W, le sous groupe de ‘W, formé



