Conspectus materiae tomi XXXIX, fasciculi 4
Pagina
Vmce, Period of a linear recurrence . . . . e e 4 e e s e . B303-311
L. Yucas, Quadratic forms and radicals of ﬁelds P . s . 313-322
. Pfeuffer, Komposition und Klagsenzahlen binfrer quadmtmcher
FOTEH « « v « s ¢ o s o s s 2 5 « 5 5+ » 5 e e e e e e . 323337
D, Cohen, Value sots of functions over finite fields . . . .+ . . . 339-359
Mallik, New formulations of the class number one problem . . , 361-364
Bounding L-functions by clags numbers. . . . . « . . . . 365-368
. Sehertz, Tiher die Klassenzahl einfach reeller kubischer Zahlkorper 369-379
. 8. Williams, On the clags number on(V )modulo 16, for p =1 (mod.8)
E 03 w01 SN I N PR 381398
. C. Baker, On the distribution modulo 1 of the sequence an3+ ﬁn2~+~yn 399-405

il

= Fl’éﬂl?*i'ﬁ

La revue est consacrée & la Théorie des Nombres |

The journal publishes papers on the Theory of Numbers
Die Zeitschrift vertffentlicht Arbeiten aus der Zahlentheorie
Hypuan nocRAGIEH TeOPNI YHCEIT

I’adresse de Address of the Die Adresse der Anpec pemaKnuR
la Rédaction Editorial Board Schriftleitung und u xEurootmena
ot de Péchange and of the exchange des Austause

ACTA ARITAMETICA
ul, Sniadeckich 8, 00-950 Warszawa

Les auteurs sont priés denvoyer leurs manuscrits en deux exemplaires
The authors are requested to submit papers in two copies

Trie Autorenr sind gebeten um Zusendung von 2 Exemplaren jeder Arbeit
-Pywomucyr erateldl PENARIKA NPOCHT NPEAIAraTh B ABYX BKBOMIIADAX

© Copyright by Padstwowe Wydawnictwo Nankewe, Warszawa 1981

ISBN 83-01-01616-7 ISEN 0065-1036

PRINTED IN POLAND

WROCELAWSKA D RTUTE A RNIANATUERKO W A

icm

[FFRE

ot b

e

oy LA

ACTA ARITHMETICA
XXXIX (1981)

Period of a linear recurrence
by
A. Vines {Ann Arbor, Miech.)

1. Introduction. There is a long history of research involving the period
of repeating sequences of integers. The period of decimal fractions was the
snbject of early investigation by Leibnitz and Gauss. The period modulo «
of sequence like {aw, ax?,...} is important in the context of Lehmer’s
frequently utilized congruential method for computer generation of
pseudo-random numbers ([2], [4]). Imeas was a major figure among
roany investigators into divisibility properties of the IMibonacci and other
second order recurrences — and these properties are related to the period
of such sequences modulo » [5].

In this article we investigate the period of repetition in a general
setting. We first note that the repeating seqguences mentioned above fall
within the following framework: Let & be an algebraic number field and
A itg ring of integers. Let T be an N x N matrix and X, an N-column
vector, both with entries in 4. Define the sequence X,, .X,,... by the
linear recurrence

X=X, m=0,1,2,..

Let a be an idealin A. Since A /a is finite, the sequence must, after a perhaps
erratic initial segment, repeat periodically modulo . Define v = »(T, X,
A /a) to be this period. That is, v is the least positive integer for which there
is an m, giving X, ., = X, for all m = m,. Hquality here means coordi-
natewise equality in the ring 4 [a. As an example, consider

01 o 0 »y

00 v O @y
1.1 T=1]........ y X, =

00 1

Oy -1 --- & TN

Then v (T, X,, 4/a) is the period (moda) of the general Nth order linear
recurrence defined by

By = APy F A Bynt oo T Oy

T is often referred to as the companion matriz of this recurrence.
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By looking at the remainders wpon. division, it is ensy to verify that the
period of the decimal yepresentation of 1/p for p prime is #([107, [1], Z/pZ).
‘When p is not 2 or 5, this is just the multiplicative order of the element 10
in the ficld Z/pZ of regidnes modp. The general situation for a prime ideal
p is analogous, By our Theorem 1, v (7, Xy, A/p) is essentially determined
by the multiplicative orders of specinl clements in a finite extension
field of the residue class field 4 /p. This will enable ug to make some now
estimates of the value of v and to unify known results, many otherwise
proved by eomplicated recurrcnce identities,

In Bection 2 the problem of determining » is reduced to the case
where q is a prime idesl and Section 3 deals with a prime. In Section 4
these results are applied to certain second and third order reewrrences.

2. Preliminavy results, The' sequence {X,.} is called simply periodic
it X, = X,, le. X, is the first term to repeat. In this case it is apparent
that X, = X, if and only if m is a multiple of ».

LevwA 1. If detT is not a zero divisor of Afp then {X,} is simply
periodic. '

Proof. For some integer m, I"X, = X, ., =X, =T™X. Whon
detT == 0 thiy hmplies that X, = X,. m

The next lemma reduces the problem of determining v(a) = »(7, X,,
A /a) to the case where o is a power of a prime ideal.

Lmana 2. Let o = p7l-pi2... pie be the factorization of a dnto prime
ideals. Then

v(a) = LCM[v(p4), v(p32), ..., v(pls}].

Proof. The proof is immediate since, for any column vectors X and ¥,
we have X = ¥ (moda) if and only if X = ¥ (modp}) for alli. m

In considering a power of a prime a = p¥, regard T a8 o linear trans-
formation on XY, the vector space of N-tuples of elements of the number
field K. Suppose that the minimal polynomial (o) of T is irreducible over
K. Let I be the splitting field of ¥'(#) over X and let O be the integral
closure of 4 in L. Now regard 7 as a linear transformation on IN. Since
the roots of the minimal polymomial are distinet, there iz a diagomal
matrix D and an invertible matrix H such that D = HTH™'. It iy casily
seen that the entries of H can be ehogen o0 lie in 0; we do go. Let 2, denote
any coordinate of HAX, and let N.X, be the norm of &, congidered ag an
_element of /K. A short matrix ealculation suffices to show that the eoordi-
nates of HX, are conjugate and therefore ¥.X is independent of the choice
of #y. Finally let p be the rational prime over which p lies, i.e. the charac-
teristic of .4 /p, and let e be the ramification index of p over p. Lot ¢ denote
the greatest positive integer such that »(p*) = v({p).
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Lemuya 3. If (1) the minimal polynomial for T is irreducible over K,
(2) neither NX, nor detT is divisible by p, (3) det H is not divisible by p0,
(4) e<<s{p—1), then v(p") = pMw(p) where M 4s the least non-negaiive
integer greater than or equal lo (r—g)fe.

It i3 not always true that ¢ = 1. Take, for example,

11:[2;], Xﬂzm and  p — (3).

The assumptions of Lemma 3 are satistied yeb o(Z/277) =0(Z/9Z)
= v{Z[3%Z) = 8. Though the hypotheses of the lemmma are numerous, note
that (2) and (3) ean fail for at most a finite number of primes.

Proof of Lemma 3. Consider {¥,} as a sequence in 4 /p™ To avoid
confugion let = (modp™) signify equaliby in the ring 4/p" and = (modp™ Q)
equality in the ring C/p*C. Since detT is assumed not divigible by p, {X,.}
is simply periedic by Lemma 1. Hence there ig a positive integer m such
that ™ = I'(modp™); let |T| denote the least such integer. We firgt show
that o(T, X,, A/p™) = |T|. One direction is cagy:

T = I (modp™) = X,, = T* X, = Xy(modp™).

Conversely assume that X, = X,(modyp™). Then we have the following
implications:

"Xy =X, =X,»D"HX, = HI"X, = BX; = D" = I(modp”™().

The last implication is due to that fact that ¥N.X, not divisible by p implies
that each cocrdinate of HX, is relatively prime te p*C. Furthermore

D" =T = HI™ =D"H =H = B(T"_I) = 0(modp*0).

Letting H be the matrix such that HH = (det H)1 we have (det H) (1™ — I)
= AH(T"—I) = 0(modp"(). Becanse detH is mot divisible by vC,
™ = I (modp™).

Let v = o(T, X,, A{p). By the hypotheses of the lemma T = I +p°U
where not all entries in the matrix U are divisible by p. A simply calen-
lation using the binpmial expansion then substantiates that (I4-p° U)”M
== I (modp”) and B3 is the least integer for which this iz true. That v(p)]
o(p") and o) |p™o(p) and v(p" W pM T o(p) imply that o (p") = p™e(p). =

3. The period modulo a prime. In this section we are interested in
determining »(T', X,, A/p) where p iz a prime ideal in A, Tet E=A4/p
and now let F(2) be the minimal polynomial for T considered as a linear
transformation on. K7, Then we can write

B o= () (F32) ... (Fr)

where each F, is irreducible over K. The value of v is highly dependent
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on thig factorization. In order to concigely state the results, we introduce
some notation. Within some algebraically closed field containing K let
a; be any root of F, and let ord(c,) denote the multiplicative order of
a; in the extension field K(e,). For any integer b with 0 < b < ¢; let H,(w, k)
= F(@)[(F,(2)}% . Then define k, to be the least integer % for which
H, (T, )X, = 0. Finally if A; > 0 let s; be the unique integer such that
Pz h, > p* . Here p is the characteristic of the ficld XK. Intuitively,
the h, meagare certain “cancellations” due to the initial veetor X,. The
maximum possible value of o(T, X,, .4/p) is the order of the matrix T
Loosely speaking, the smaller the values of the h;, the greater the variation
of o(T, X, Afp) from this maximunl. Theorem 1 and its corollaries will
make thege notions more precise. The proofs follow the statements of the
theorem and corollaries.

TusorEM 1. With nolation as above,

1 4 op=0o0rh =0,

(T, X, Afp) = LCM[v,] where 1, = .
(F Zo; A17) (2] pitord(e;)  otherwise.

‘When F({z) is irreducible we have the immediate gimplification.

OororraryY 1. If detT £ 0, X, £ 0 and the minimal polynomial
F(z) is irreducible over K, then o(T, X,, A]p) = ord(a) where a is any
rogt of F(z)

In the case where T is the companion matrix of a linear recurrence
we can define a norm map: N: E¥ —~ K. The norm NX, of the initial vector
X, is significant in assessing the effect of X, on the period of the sequence
{X,.} (modp). To define this norm let L/K be the splitting field of F(z);
let ey, ¢y, ..., a, be all the roots of F(z) in L; and let G, (z) = F(@)/{z— a,).
Now consider 7T as a linear transformation on L¥. For a matrix of the form
C(1.1), &(T) is a transformation of rank 1. 8¢ there ig, for each 4, a fixed
veetor ¥, and a Hoear functional g; on LV such that G,(T)X = ¢,(X) ¥
If we express X as an .N-tuple X o= @y, #ay +0 0y %y) then the g, may be

Written in the form g,(X 2, o,y where the ¢; are constants in £, Now
]m (X) is o homogeneous polynomml in the variables @y, ¥y, ..., Ty
G

and is well defined up to a non-zero multiplicative constant in I. Tt is
posgible to choose this multiplicative constant so that the coefficients of
this homogeneous polynomial lie in K. Letting ¢(X) be this form with
coefficients in K (well defined up to a non-zero constant in K) define
the norm ag a mapping N: BV~ K given by X—g(X). In practice, the
norm ig eagily ealoulated. For exawmple, consider '

01
Tm[a, b]’
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the companion matrix of the second order recurrence ®,, = ba,,_, + ad,_,
over the integers. For X = (»,y) a short computation yields NX
= (#f —0,2) (¥ — %) = y*— awy — bz®. The next corollary states a gufficient
condition for » to take its maximum possible value.

COROLLARY 2. If det? £ 0 and NX, # 0, then

o(T, X, Afp) = p*LOM [ord (a,)]

where 8 is the unique integer such that p° > maxe; > p* ',

The next two corollaries give estimates of . Since K iy a tinite field,
its ovder is a power of p; say |K| = g. Let f; be the degree of the poly-
nomial F; in the factorization of the minimal polynomial F, and let b; he
the congtant term of F;. Let z; denote the multiplicative order of (b;)( —1)"
in the field X.

CorROLLARY 3. v(p)lp*LOM [z;(g"~1)/(g~1)] where s is the unique
integer satisfying p° > maxe, > p*~

CoROLLARY 4. Assume that by #= 0, detT #0 and ¥|(g%—1)/(g—1)
Sfor some integer u. Then <% v(p).

Proof of Theorem 1. In L the polynomial F{x) can be factored
Fw n {#—a;)* where the o, are distinct. If ¥, denotes the kernel

of (T —ca)"1 then IV =V, @V,®... @V, and T is the direet sum of
the transformations 7', induced by T restrieted to the subspace V;. Let
X; be the projection of X, on the subspace V,. It is then apparent that

(3.1) o(T, X,y K) = LCM[v(T;, Xj, L)].

In order to determine »(T,, X¢, L) let w, be the least integer such that
(L) X§ =0 but (T —a " Xi 0. If w, =0 or a; = 0, then triv-
ially o(T;, X{, ) =1. Otherwise a, + 0 implies that T, is invertible
on V, and hence »(T;, X}, L) is the least integer m such that T™ X} = Xi.
To simplify the notation we drop the subseripts and let « be any of the a;
and let ¥V, w, n and X be the corresponding ¥, w;, #; and Xi. Then the
condition on m gtated above is equivalent to

(™ —1) X - (T) aﬂL~I(T-a)X—}— cee (w?ﬁl) am—-w+1(11___a)wmlx

=[e+(T—a)"X~X = "X —X = 0.

A short induction using this equation suffices to show that the following
conditions must be satisfied: '
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where p is the charaeteristic of K. For the validity of the set of congruences
it is necessary and sufficient that p‘im where ¢ 15 the unique integer such

that p'> w > p. Restating equation (3.1) we have o(T, X,, K)
= LMQO{2,] where
1 if a =0 or w; =0,
Uy .
pliord(e)  otherwise

and #, iz the unigue integer such that Pz w, > it To complete the
proof we have only to show that if , and gy #re TO0TY uf the same factor
fl&) of F(a), irreducible over K, thon (1) ord(e;) == ord(e) and (2) w;
= w; = h where we reca:ll that A is the least integer for which H(Z, h).X,
= 0 where H (@, h) = F'(2)/(f(2))°"". These facts follow easily from the
axistence of an ISOIl'lOlphISl‘tl of K (a;) onto K (a;) taking a; to a; and leaving
the clements of K fixed. We omit the details.

Proot of Corollary 2. DetT # 0 inguves that «, #£ 0 for all 4
Now agsume that NX, = 0. Using the notation G (I with the same mean-
ing as in the definition of the norm, we have &, (IN.X, == 0 for all i.
Ag in the proof of the theorem, this implies # (7, ¢;—1) = 0, which is
equivalent to h; — ¢;. The result now follows from Theorem 1. m

Proof of Corollary 8. The norm N of an element y of K(g) is
defined as the product of the conjugates of y. Then N: K ()K"
is a surjective homomorphism of the multiplicative subgroup of K(a)
onto the multiplicative subgroup of K. Let U, be the kernel of this homo-
morphism; then |U,j = (¢%—1)/(¢—1). Since Na; = (—1)%b;, we have
af & U,. Therefore ord (a;)|[7; (¢ —1)/(g—1)]. The corollary then follows
from Theorem 1. &

Proof of Oorollary 4. The group K(«)* of invertible elements
of K(a,) is cyclic; let ¢ be a generator. Then ¢?! is a gencerator of U, the
kernel of the norm map N: K(a;)"— K. Let m be the exponent such that
a; = g™ By definition ¢™% == gt ¢ U. Therefore we have the congruence
mz; = j(g—1) (mod ¢"—1) for some integer j. So there must exist an
integer J such that m = J(g—1)/v;. In addition we claim that (J, z;)
= 1. Otherwise we would have

a"f/(-’:"i) — gmril(JJTi) - g(a"l)‘”(']’r‘&') e U

which. contradicts the fact that v; iy the ovder of Ne,. By Theoremn L wo
have 1 = o = ¢™ = /@M% which implies that ¢%—1v-J(g-1 /1:
This in turn implies that ¥t |»J and Corollary 4 follows. m

4. Examples. To illugtrate the theory let

[t x-[]

icm
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and let n be a positive integer. Consider v{n) = o(T, X,, Z/n%). We
choose this as our first example because v(n) is the period of the Fibonacci
sequence (@,.; = &y, +o, ; with 2, = 0 and #, =1), and there iz an
extensive literature on this subject (f11, [3], [8], [9]). The following
theorem is a direct consequenee of Lemmas 2 and 3 and Oorollaries § and 4.
The usnal proof is hased on lengthy Fibonacei identities.

THmOREM 2. (i) If n = p]1piz.

v(n) = LOM [v{p]), ..., v{p})]-
¥ such that v(p®) =

. it then

(i) If s is the greatest mteger
v(p") = 2" v(p)

(i) If p = £3 (mod 10) then »(p)|2(p+1) and v(p)¥p+1. If p
= 1 (mod 10) then »(p)|p —1 and 2|v(p).

= v(p)}, then
for anmy prime p.

In part (i) it is often, but not always, true that «(p) = 2(p +1)
or #{p} = p—1. For example »(47} = 32 and ¢(101) = 50, In Section 2
we gave an example of a matrix for which »(p*) = v(p). For the Fibonacei
matrix, however, it hag been an unsolved conjecture for at Ieast 18 years
{8] that v(p®} = v(p). This would imply that always s = 1 in part (ii).
Penny and Pomerance [6] have verified it by computer for all p < 17 7409.
By the methods of this paper, the conjecture is equivalent to a1l 1
{mod p*B} where B is the set of algebraic integers in @ ]/5 and ¢ = (1
+V 5)/2. A gimilar congruence 2777 =t 1 (mod % hag been gtudied exten-
sively. The first counterexample is » = 1093. The analogy between the
two congrueneces makes the existence of a large counterexample to v(p?)
= 7(p) seem likely. Finally we note that for arbitrary initial vector ¥,

‘we do not necessarily have ¢(¥,) = (g) For example » (i) =5 while

0
P (1) = 10, However, it can be shown via Theorem 1 that either ¢(X,)

= @(g) or o{¥) = fo (2)

As a second example consider the sequence of integers o, o, ...
defined by the integral second order recurrence

By = amm-{-b =11 &y = 0; #, =1.

Iistorically more attention has been foeused on the rank than on the period.
The rank p(n) of an integer n is defined ag the least positive integer m
such that # divides a,,. We will assume that the reeurrence is non-dege-
nerate, i.e. a, b = 0 (mod «). Then for a prime p

0

Iy . 1 s == 0
u{p) =v{8, Xy, Z/pZ) where 8 == [ 1 — /b)] a.ndX[,—-[l].
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(We leave the proof to the reader.) The following theorem has occured in
the literature in various forms. It is a gpecial case of our Corollary 3. Here

(; ) denotes the Legendre symbol.

TornoREM 3. Let p be an odd prime. If a24-4b = 0 (mod p) then u(p)
=p. If a®+4b £ 0 (mod p) then

2
w(p)p—1  when (“ ;‘“’)=1
and

pip)p+1  when = -1,

(aﬂ -|—4b)
»
Ag a final example congider the recurrence @, = @, 1+ ®yop + e
with the initial values @y = @, = 0 and #, = 1. Thig is a likely third order
generalization of the Fibonacei sequence. The companion matrix is

1L00 0
U=|010 and X, = |0
111 1

The minimal polynomial for U over Z/pZ for any prime p is F(z) = a® —
—#*— g —1. Modulo Lemmas 2 and 3, the determination of v (U, Xy, Z/nZ)
ig reduced to the case of # prime. The Newton formuias can be used to
calculate the discriminant of F(z): d(F) = —44. Hence the only primes
for whieh F(») hag a multiple root arc 2 and 11. Tor all other primes we
apply a long known criteria for the factorability of cubies mod p and Cox-
oltary 3 to derive the following theorem. ®(p) means (U, X,, Z/pZ).

THEOREM 4. Assume that p is o prime other than 2 or 11,
p\ _ .
If (11) =1 then
l'v(p)lﬁwp +1
v(p)lp—1
If fl) = —1 then v(p)|p*—1.

if B (w) is drreduoible mod p,
otherwise.,
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