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1. Introduction and general results. Let F be a finite field of order ¢
and characteristic p. Where necessary adjoin oo to # as a possible value
of a variable or function in the obvicus way (see [2], § 4). For any rational
function f = fy/f, in F(x), where f, and f, are co-prime polynomials, define
V(f) to be the set of values taken by fin ¥ and degf, the degree of f, to
be max (deg f,, deg f5).

Our chief objeet in thig paper ig to discuss the extent to which a fune-
tion f of bounded degree is determined by V(f). More precisely, we consider
when V{g) & V(f) can hold for two functions f and g:. In fact, we selve
the problem completely for functions f of degree not exceeding 4. For
details of the results see § 2.

The remainder of this section is devoted 0 a summary of the various
general results which bring together and extend work discussed by the
aunthor in [1] and [2] and by M. Fried in [6], [8] and [10] and which form
the abstract background Ifrom which the specifie functions of §2 will
emerge.

Accordingly, let h{z, ¥) be a polynomial in & with coefficients in F{y).
We shall say that b is o-soluble (in F) if, for every y in P, h(w,y) = 0 is
soloble with 2 in #. For the application to value sets we shall get h(x, )
= fi(#) — g (@) fa(z), where f = f,/f, and g are rational functions in F ().
(We shall frequently abuse notation and write f(z)—g(y) for this poly-
nomial or even for the numerator of the rational funetion f{z)—g(y).)

Returning o the case of & general A, which need not even be irredu-
cible, we oufline a proof of the following result.

Propogrrion 1.1. Let h(z,y) be a separable polynomial of degree m
in @ with coefficients in F(y) of degree <n. Let him,y) = 0 have reots
@1y oo, By, 0 Splitting field K over F(y). Let F denote the algebraic closure
of Fin K and G (K, F(y)), ete., the subset of the galois group G(K,F(y))
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of K over I'(y) comprising automorphisms whose restrivtions to F fiz pre-
cisoly It If

m
(1.1) @, Piy) = &K, Py, y),
thew h is @-soluble. Conversely, if ¢ > o(m, n} and b is g-soluble, then (1.1)
holds.

Proof. We can assume that & is square-free. Tor brevity, put @
=GE,F(y), =K, Fy), @) =K, Fla, ), ¢ =1, ..., m,

&7 = {J G*(¢). Also, for any g, in T, let A(y,) denote the conjugacy class
=1

in @ which hag the defining propexty of the Frobenivug automorphism of
some prime in K dividing y —y,. Certainly A (y,) existy; it is uniquely
detined if y — g, is unramified in each F(w;, y), Lo, if h(z, ¥,) is square-free.
Then, in fact, 4 (y,) = & and indeed, if y —y, is unramified, then 4{y,)
< G} it and only if k(z, y,) = 0 is soluble in ¥ (see Lowma 3 of [1] and
[2]). Moreover, even if ¥ —y, 18 ramified, then % (z, ¥,) = 0 is soluble in 7
provided A (y,) < G5 ([2], p. 55, or [10], . 223). Hence, (1.1) impliey that
h is x-goluble. Conversely, if % ig m-goluble, then, by the funetion field
analogue of the Cebotarey density theorem ([2], Lemma 2, [10], Prop-
osition 2), for large ¢, ¢* = @7 and (1.1) holds.

Actually, in the lagh sentence of the above proof, it suffices te assume
that b is w-goluble with, at moss, k¢®, say, exceptions where 0 <6< 1
(see [2], p. 59). Oonsequently, the hypothesis of the second part can be
weakened ag in the following theorem.

TomoreM 1.2. In the situation of Proposition 1.1, suppose thai b is
w-soluble except for at most ko’ values of y in F, where k> 0 and 0 < 6 < 1.
If q>e(m,n, &%), then (1.1) holds and actually Rk is z-soluble in I. In
particular, if f and g are functions of degree < m, m, respectively and ¢ > ¢,
then |V (gINV(f)| < kg’ implies that V (g} < V(f).

The final assertion of Theorem 1.2 completely resolves a conjecture
and & conditional result of Fried ([5], Conjecture 2, [8], Corollary 2).
It should have been proved in [2] but was obscured there by our not
teking T(w, y) = f@)—g(y); in fact, the discussion was equivalent to
putting h(z, y) = (f(@)~y){g®)~y) so that values y, of y for which
g(®) —y, were not aguare-free had. to be left out of the congiderations.

In diseunssing possible occurences of (1.1), it may be econvenient to-

separate the cases in. which h is irreducible (in F[w, y]) or reducible,
respectively. Alternative conditions for am irreducible % to be z-goluble
are provided in the next result (cf. [2], Lemma, 4 and Theorem 8, [8],
Propogition 1).

Proros1iioN 1.3. In the situation of Proposition 1.1, let h be irveducible
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in Flw,y). Suppose that ¢ > ¢(m, n). Then the following are equivalent:

(i} % 48 @-soluble in F;

({i) Az, y) = 0 has a wnique solution ® 1 F for all y in I for which
the diseriminant of h (as a polynomial in x) is non-zero;

(itl) Alz,y) 48 absolulely irreducible in F (%, y) but has no absolutely
irreducible fadtors ewcept (x—2) in F(z, y,2), where h(z,y) = 0.

Indeed, for any g, (iii) implies (i) and (ii).

Proof. We uge the notation employed in proving Proposition 1.1.
Note that the condition that %(z, y) be absolutely irreducible in F[z, y]
is equivalent to the condition that F(w, y)nF =F for all 1 =1,...,m
{ef. (4.10) of [2]). Hence, Lemma 4 of [2] shows tha# (iii) is equivalent to
each of (a) G* = @7, and (b) the G*(¢) are pairwise disjoint. By Proposition
1.1, (i) and (iii) are eguivalent as required, while it follows from Theorem
1.2 that (ii)=(i). Finally, suppose (i) holds. Then (a) and (b) are true.
Hence every member of 4 (y,) belongs o precizely one ¢*(i). By [1], Lem-
ma B, if Bi(x, ¥,) s square-iree, then #(z,y,) = 0 hag a unique solntion
in F. Thiz completes the proof.

Note. It will follow from the examples of Theorem 2.1 (IT) below that
the exceptional y in (ii) may definitely give rise to multiple solutions of
hiz,y) =0 in P. (Thug some modification appears to be necessary in
statement (2.12) of [8].)

Condition (1.1) for & to be a-soluble is, at first sight, a very restrictive
one. Indeed, it implies that ¢ = G(K, F(y)) is admissible in the following
sense: & can be represented as a permutation group on (1,...,m) and
ig a cyclic extension of a normal subgroup &; moreover, if G* is the subset
n
H G*(8),
G* (i) denotes the stabilizer of ¢ in G*. Indeed, for % to be irreducible (and.
s0 absolutely irreduncible, by Proposition 1.3 (iif)), an admissible & hag
additionally to be transitive, and, since I 3 F, the cyclic extension G/&
mugt be non-trivial. (In the irreducible case, Fried, {111, p. 183, hag
given o deseription of an admissible & corresponding to Proposition 1.3.)

Accordingly, in erder to find all #-soluble h of given degree m in =,
itr is first necessary to find all admisgible G contained in the symmetric
group §,,. This is straightforward for m < 4; there are two non-trivial
possibilities with ¢ transitive and one with & infransitive; in effect, these
are dealt with in §§ 5-7 below. More generally, the known examples of
permutation polynomials, namely cyclic and Chebychev polynomials (see
[9]), indicate that & may be a cyclic or metacyclic group. But there are
other possibilities even when & is transitive. Indeed, ¢ need not even be
soluble, as shown by the following examnple pointed oub to the author

of G every member of which generates G/#, then & = ‘where
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by J. Saxl, in which m = 28. Take @ == PIL(2, 8), G = PGL(2,8) so
that |§| = 1512, ¢ is simple and G/ is cyelic of order 3. As for the intransi-
tive (reducible) case, Fried ([10], pp. 211, 227) has announced exampleg
(with k{z, ¥) = f@)—g(y) [, ¢ pelynomials) which imply the existence of
admisgible @ with @/& trivial {so that F = ),

Having found an admissible &, we would next like to find all & (if
any) for which @ = @ (K, F(y)) (in the obvious correspondence). In the
frreducible case, this includes what Fried [11] has ecalled the “general
Schur preblem” and is very difficult. For general b we give a solution only
in the case that the total degree of b (in w and y) does not oxceed 8 (§ 8).
However, i A, y) is of the form f(#)—y(y), we can invoke properties
of the discriminant and, in this way, obtain a complete golution provided
deg f < 4. These are the results listed in § 2 and proved in §§ 8-7.

Finally, in §9, we shall consider some non-trivial examples of sety
of functions {f;} which cover ¥, i.e. for which | JV(f;) =

2. Results on value sets. We describe here our main results on the exist-
ence of pairs of function f(#), ¢(«) in F(x) for which V(g) < V(f).

Detine a permutation function P over F to be one for which V(P)
= K. Then, trivially, V{g) € V(P) for any function g. Now obviously
a pon-gingular, linear fractional transformation L in F(w) is a permuta-
tion function. However, there are others, e.g. the monomials 2™ provided
{n, g—1) =1 and the Chebychev polynomials T, for certain values of n,
see [9]. These can be included in a more general class of functions of the
form f = F(Q) for which V{(f) = V¥ (}). The main result, which follows,
shows that, in addition to such functions, there are some interesting
pairs of functions (f, g) with deg f< 4 for which V(g) = V(f). In its sta-
tement and throughout we use the following notation. I denotes a non-
singular linear fractional transformation; P is a permutation function;
4 i an arbitrary non-square in F; F* denotes the field of order ¢'.

TamornM 2.1, Let f, g be rational functions in F (). Then V(g) < V(f)
if either (L) or (IL) below holds.

). f =F§(Q), g =F (R) for some f, Q, R in Fa) with
(2.1) V(@) = V().
In partioular, (2.1) is satisfied whonever § is o permutation function and f
s any function.

(L. p (= ch'arrl")/ 3 and f = Lof olf, g = Log*oR, where I, P
and B are in I (z) and f* and g* are one of the following pairs:

(i) f*(m) = a®~8w42, g*(z) = 4/(3Ax?+1);
() f*(@) = 2® -3z,

(2.2) g*(@) = 24 {a (v +A)+2pim][f(a? - A) +2an],
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where {a, §) is a chosm pagr in B X F for which (—31){a*— Ap%) is a4 non-zero
sguare in I
(iii} ¢ =1 (mod 3) and

JH{®) = (o -+-40%) (82 —4),

where w 98 any non-cube in I';
(iv) f*(z) = a*-+4a®,

108um® [(usw® —1)*,  4f
108 (22 +3)[w(m-+V —8)F —» (@ —V —8)3F,  if
¢ = —1 (mod 3),

g* (@) = uz®

g =1 (mod 3),
g* (@) =

where p is any non-cube in F and v is any non-cube in F* whose conjugate

over ' is vt o

(v) a 0, +, 1 and f*(@) = [(#*+3a—3)%/4 (20 +3)]+3a -1,

i (u2eb +a®)fux®, if g =1{mod3),
ol = la-”” (e -+V =845~ (o =V —8) )@ 18P, if
= —1 (mod 3),

where p is any non-cube in F and v is o non-cube in I whese conjugate over F
i v~ or —»"! according as a is, or is not, a square in F, respeqt@ve@.
Conversely, suppose that degf< 4, degg<\n and that g > o{n) with
p > 3. Then V{g) & V(f) implies that either (I) or (1I) holds.
“7 Remarks. (a) That (I) implies V {g) & ¥ (f) is obvious. The sufficiency
of (II) will emerge during the demonstration of the converse which, of course,
is the harder task. (Note that, if degf< 4, then, in (II}, we must have
P =1,.) Aetually, the case in which f and g are cubic polynomials wag
partially considered by MeCann and Williams [14] who showed. that, if
g =p>"1, then V(f) = V(g) implied that g = f(L) or f = P.
‘ (b) For some values of g we can explicitly simplify the form: of the
funetion g* in (ii). For if —3 or —1 is a square in ¥ we may choosge (a, f)
= (1, 0) or (0, 1), Tespectively. Thus we may take for (2.2)

) A(wz*’rﬂ-)/ﬂ'f'; ¥ g= —1 (11’10(1 3,
P = larojercy, g =1(mod1n),

(c) The g* of (iv) and (v) are in F{z) despite the fact that, it g=
= ~1 (mod 3), then V —3 and » lie in F*\F. In (iv), for example, v could
algo be descnberl as one of the §(g-41) non-cubes in F* which are 2(g +1)- th
roots of unity in 72
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(d) Aetually, in the cxeluded cages ¢ = 0, 1, (v) remains valid but (after
suitable linear transformations) reduces to (iii) and (iv), respectively.

(8) Ag regards (iil), sinee g can be any non-eube in ¥, we also have
Viug*) = V(f*). Indeed, we have
(2.3) V(") = V(uw®)u V{u2n?).

In particular [V (f*)] = 3¢/4, |V (9%)] = (g-+2)/3.

(f} In case (II), the containments V (g} & V(f) are all proper. This is
apparent from (2.3} in case {ili). Otherwise, in cases (1) and (ii) we have, ap-
proximately, |V(f)l = 2¢/3, |V(g*)| = $¢, while in cases (iv), (v}, [V(F")]
= 5¢[8, |V{g")| = ig.

(g) If the degree of f is allowed to exceed 4, it remaing to describe what
other exceptional cages require to be added to (II). Certainly, if f(w)—
—¢(y) is reducible then, as mentioned in §1, Fried [10] has asserted
that there are algebiwic number fields IT and polynomials f and g, defined,
over K and not linearly related such that V(f(mod p)} = V(g (mod p))
for almost all prime ideals p of K. On the other hand, if f(z)—g(y) is ir-
reducible, thon, although there are additional admissible possibilities (in
the sense of § 1) for the galois group of A(z, y), these may never be realised
by h of the form f(a)—g(y).

Of course an explicit clagsification of all functiony satisfying (I) is
{lesirable. We provide such for deg f < 4. First we describe the permutation.
functions. We show that the only non-trivial ones are of degree 8. {(Of course,
the non-existence of permutation polynomials of -degrees 2 and 4 iy well
known.) In particular, we show that there is a elags of permutation functions
of degree 3 which includes no polynomials.

TemorEM 2.2, Let f be a permutation function of degree < 4. Suppose
that g > ¢ (absolute) and p > 3. Then f = L or f = L,of 0 L,, where

2*, if g = —1(mod3),

o) = (2" +800)/ 3024y, if

=21 (mod 3).

Next, we show that () may hold with @ = P even when H{f)<
It is e:uough to suppose that g = f so that V{fy = V(g.

Tlmom*m 2.3. Suppose that deg f< 4 and deg g << n. If ¢ > o(n) and
=3, then V(f) = V(g) if and only if g =f(P) or f==Lof'ol,, g¢
= Log*cP whore f* and g* are one of the following pairs:

( f:( =a', g*(#) = 2? and g = —1 (mod 4);

(}}) ey = fG‘—i-ﬂ)/m“, g* (@ ) = (&%--4) fw;

(i) f*(@) = (22-- )2 (e* —Az), g*(m) = (2°--2)/o.

3. Awxiliary results. When % has degree < 4 (in @) some of the results
of §1 can be rephrased in a manner involving its discriminent. In fact, it
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@, ) = f(®)—g{y), we shall find that, by considering the shape of the
dlscrmunamt the functions f and g can be normalized, thereby greatly
gimplifying the argument.

Accordingly, let h(x, y) be a square-free polynomial of degree m (= 2)
with coefficients in F(y) and zeros oy, ..., &, in a splitting field. Let Dy (y)
denote the diseriminant o* 2 [T (#,—a;) of k, where a = a(y) is its leading

L]

coefficient. Further, for any f i1]1 F(»), we shall also, withont fear of ambi-
guity, use D(y) to denote the polynomial Dy, p0)(¥) {in F[y]), where
Ffl@) = fi(®)/fo(x) and f, and f, are co-prime polynomials with f; monic.
We summarise some relevant properties of D, which are due essentially
to the fact that the extension F(x, y) of F(y}, where f(x) = y, has genus 0.
They are actually valid for any field 7 whoge characteristic = m. In our
Gilge, LEsUMe p > m, '

Sup-

In the firgt place, deglD,< 2m—2. Put r, = 2m—2 — degD,.

a
poge that D, has prime deecomposition « [[ 2% in F[y] where a (7 0) el
. .1
and the 2, are monie irreducibles, Formally adjoin a linear polynomial de-
a
noted (temporarily) by 2, which vanishes at oo and pub @, = (] ﬁ‘?‘).@r
=1

Relfer to the set of ordered pairs of the form (deg#,r) (with multiplici-
ties) as included in the raméfication doata of f over F. Ity significance is as
follows. Let y be any root of Z;(y) = 0 in F, the algebraic closure of F.
Let the zeros of f, —vf, in F have multiplicities e, e, ..., with the con-
vention that, if e, = m—degf, is non-zero, then e, is included. Then, of
course, D'e; = m, but in fact, we also 112Ne2(e ~1) = r;. The collections
B(#) = {61,860y ...} complete the ramification data of f. Note that [B(2;)|
= m —r,. Since F(y) F{L(y)) for any L in F(z) and y in F (adjoining co
to F, if necessary), it is clear from the above interpretation of the ramifi-
cation data, that it is preserved under compositions of the form Lo folL,
with I,, L, in F{z). Further, if the pair (1,r) is included in the ramifi-
cation data, then by replacing f by L{(f) for appropriate L, we can assume
that &7, appears in. &, so that f, has prime decomposition of the form f,
= fPUI% ... (¢;> 0) where 3 (g;—1) < +. In this situation, if deg ¥, =1,
we ean replace f by f(I) and agsume that degf, = m-—e;.

To complete the preliminaries we state a vital lemma, which follows
immediately from a more general result of the author [3].

Laspinea 3.1. Suppose that v = 2 or 3 and p > 3. Let A and B be rational
fumstions in F(w) with A not an r-th power in F(x). Suppose that A.(B)
is an r-th power in Flx). If r = 2, then A = QA3, where 4, € F(x) and @
8 o polynomial of degr ee L 2dn Flz]. If r =3, ﬂww A = LAY, where L,
A e F(m).
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An explicit description of these 4, B for which 4 (B) is an rth power
(for any ) is given in [3].

4. The quadratic case. If deg f = 1 then, of course, the results of § 2
are trivial. The case degf = 2 is dispesed of in the following theorem.
TuworeM 4.1. Lot B(w, y) in F(w,y) have degree 2 in 2 and degree n
i g, Suppose g > ¢(n) and p > 2. Then b is z-soluble in I if and only 4f it é¢
redugible in F (%, y). In particular, suppose f and g are fumctions in F(w)
with deg f = 2, degg = n. Then the following are squivalent:
{iy Vg = V{f);

(ii) g = f(R) for some B in B(x).

If also degy = 2, then the following are each equivalent to (i) or (i),

{ti) ¥V(g) = V{f);

(iv) ¢ = f(L);

(v) Dy(y) = Dy(y)o*{y), where v(y) e FPly). _

Proof. Condition (iii) of Proposition 1.3 ein never hold if m = 2
and the first part is clear. If R(z, y) = f(2)—g(y), then reduecibility of h
is equivalent to (i) so that (i) and (ii) are equivalent. Finally, suppose
that degg = 2. The following implications are obvious: (i)e(iv)=-(iii)
= (i)=-(ii). Hence (i)~(iv) are equivalent. Morcover, (iv)=-(v) while (v)= (iii)
is an easy property of the discriminant,

5, Functions of degree 3. In the cubic case we use Proposition 1.3 in
the following form.

PROPOSITION 8.1. Swuppose, in Proposition 1.3, that h is a cubic in =z
and p > 3. Then the following can be added to the list of equivalent conditions
{i)—(iii):
(6.1)  (iv)  Dyly) = Iv*(y), where v(y) e F(y).

Proof. For a given y in F, h(2, ) has a unique zero (of multiplicity 1)
in I if and only if Dy (y) is & non-square in F. Thus (iv)= (i) while (ii) = (iv)
(for large g) follows from & result of Perel'muter [18],

We now take h(w@,y) = f(#) —¢(y) and proceed to prove the results
of §1 with degf = 3. Trivially, in this case, (I) of Theorem 2.1 occurs
if and only if @ =I. We can agsume } irreducible.

Buppose therefore that V(g) < V(f). This property clesrly survives
the operation of replacing f and ¢ by LofoL, and Logo Ly, respectively.
By Proposition 5.1, AD,(g(%)) is a square in F(y). Hence, by Lemmu 3.1,
AD;(y) is a square apart from o factor of degree at most 2. If deg (Dy(y))
> 2, then .D,(y) must have a square factor, while if deg (D () = 2, then
certainly 7, divides @;, where now %, denotes the infinite linear fuctor

2, of § 3. Hence, in either case, &, has a square factor. We use &, %,, &,
to denote distinet linear polynomials (possibly %,.) and 2 to denote an
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irredncible guadratic polynomial in F[y] and consider the three possibi-
lities for @y,

(3) @, = Lo¥E. As in §3, we may assume that, in fact, £, = .2
and that f is a polynomial. Indeed, by lincar transformations we may
take Z:(y) = y* whenee Lofol, = % So assume f(z) = a2 Then D.(y)
= —27%? and hence —3 i3 a non-square in F (i.e. ¢ = —1 (mod 3))
and fis a permutation polynomial.

(b) @, = 2% In thiz case we may asswme that 2(y) = yr—i Tt
follows that, if f = fi/f;, then

F1(@) VA () = (ay+Vhas) (v, () V20, (2)2,

where a,, a, € F' and v, and v, are linear or constant polynomials in F{xz].
Thus, replacing f by LofolL;, where L'(2) = (a;@+ Aws){{as®+ ay),
L7t =, [v,, we obtain

Fu @) +Vafu (@) = (@--V ),

whence f(z) = (2®-+34x)/(322--1). Accordingly, Dly) = —108i(y2—A)%
—3 is a square in F and ¢ =1 (mod 3). Moreover, by Proposition 4.1,
this f is & permutation funetion.

(¢} 9, = P22, %, or £22. As before we may assume that & =2,
and indeed that f is a polynomial. In fact, by a linear transformation of «,
we may take f(z) = 4*—3nw, where 4 =1 or . Put g{y) = 2n1. Then
Dy(2nu) = —108x(u?—v). Hence ( —82)(u*-—7) is a square in F(y) and
{6.2) Vigys 8: = {2na: (—34)(a®—n) is a square in F} = V(f).
Now, for the moment suppose = 1 and pub g,(y) = 4(3Ay*+1)"1—2.
Then D, (2y) = (—124)(y—1)/(y +1) and evidently V{gs) = 8. Hence

Vighs V() = V(g = Vg = g = 90{R),

for some R in F{x), by Theorem 4.1 (ii). The necessity and sufficiency of (i)
of Theorern 2.1 (IT) follows.

Next suppose that n == 1 and that ¢ and § in F are such that
{—38A){e2—25?) iz a non-zero square in F. Put

(5.3) goly) = 24[a(y*+2) +282y]{[B(y* -+ 4) +2ay].

Then D, (y) (24y)/( =~32) (y*—24) is & square in F(y). By comparing this
with (5.2) and using the argument of the n = 1 case, we see that V(g)
S V(f) < g = go{R). To complete the proof, it remains to show that,
if g* is also given by (5.3) with another pair (a, ), then g* = g,(F). By
Theorem 4.1 (iii)—(v), this is so.

®
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6. Functions of degree 4, the irreducible case. We sappose now that
4

hizm,y) = > bt (b, % 0) i3 a quartic polynomial in # with coefficients
=0

in Fy). Tts clagsical eubic resolvent, namely
@ = T 1% -+ (R by —dhg) @ — hy2hy 4Ry Fug — B2,

where & == h;/h,, will be denoted by %, (w, ¥). In the first instance wo
suppose that A is irveducible; thus, for example, Proposition 1.3 is appli-
eable. Reeall that T denotes the field of order ¢°.

Proporraon 6.1, In the situation of Proposition 1.1, suppose that h
has degree 4 in » and i8 drreducible over F(m, y) and thal p > 8. Then h is
w-soluble in I if and (when g > ¢(n)) only if %, (0, y) i¢ irreducible in F(w, )
but reducible in (@, y). In pariicular, 4f h is z-soluble in B and ¢ > ¢(n),
then

{1y h is w-soluble in I'* and _

(ii) Dy(y) =k Dg, (y) is a square in F(y).

Proof. We use the notation of Proposition 1.1, Suppose k is w-soluble
in F, Since b ig irredueible, then ¥ 5 F and |G{K, F(y))| is divisible by 4.
Indeed, by Proposition 1.3 (iii), |G(K , Fly) i is algo divigible by 3. In
fact, since G (K, F(y)) is a cyclic extension of ¢(K, F(y)), we must have
G(E, F(y)) = 4, and G{E, F(y)) =V: = {1, (12)(34), (13)(24), {14)(23}}.
Thus F = F3, Accordingly (ii) holds and (i) follows from Proposition 1.3
(iii). Moreover, by [13], Theorem 43, &, is irreducible in F(x, y) bub re-
ducible in ¥*(x,y). Conversely, if this last fact holds then G[K, F(y))
=4, and G{K,Fg(y)) = V. But 4 —V comprises only 3-cycles and #o
(2.1) is satisfied and consequently % is z-soluble. This completes the proof.

From Proposition 6.1, the x-solubility of » depends on the reducibility
of the cubic &,. Accordingly, we need a result which follows easily from
“Oardan’s formulas” for the solution of a cubie equation (seo [12], . 208).

LeMMA 6.2, Let % (5) = ©°-- an -+ § where a, B (not both zero) belong to
a field Q of characteristic > 3. Suppose that the discriminant D of 4 is a square
in &, Then A{x) = 0 has one (and so all) solutions in O if and only if for
ome choice of the square root V.D,

0 = | ~Mp+VTBT-FTp

belongs to Q(l/—:—S)\{O}.

We now gpecialise to the cage hiz, ¥} = flo)—g(y), where f has degree
4, but still assume f irreducible, As far as the results of § 2 are concerned,
we now ghow that ¥{g) < V(f) if and only if f and g are given by one of
(iii)~{v) of Theorem 2.1 (II}. :

(6.1)
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Agsume then that Vig) = V(f). By Proposition 6.1, Dy(g(y)) is a square
in I (y) and so, by Lemua 3.1, De(y) (which has degree << 8) is also a gquare
apart from a factor of degree at mogt 2. Indeed, a quick survey of the
various possibilitics reveals that actnally @, is a square apart from a factor
of degroe at most 2. We congider the various possibilitics according to the
factorigation of Py, using %, %,,....,2,2,,...,%, for distinet linear,
quadratic and cubie irreducibles, respectively. As in §5, we pass freely
from f and g to equivalent pairs Lofol, and Logol,. Some preliminary
obgervations are helpful. FPhwt, it @ divides 2, with, in the notation of
§8, r =1y w2, then H{@) can be cither {1, 3} or {2,2}. Again it %,
and &, both divide 2, and H(#,) wnd B(&#,) arve cither {2, 2} or {4} (al-
though possibly unequal), then replacing f by LofoL, as appropriate, we
got f = aff, where H(fy) = 2, so that for any g, certainly |G (K, F ()]
< 8 which is imposgible, granted that we are discugsing only the irredueible
case meantime.

(a) ) 8 divides @,. Using the ideas of § 3 (as already employed in § 5),
wo may aggumoe that & = .# and, indeed, that f is a polynomial with
By = L3, 2%, Applying a linear transformation to # and multiplying
by & suitable constont, we may assume oven that flu) = &t -4xt, Put
# = g(y). The cubie regolvent of f@)—w is

Bw) == 08 --dup 160,
Moreover, sinee Dp(u) =2 Dg(u) = --256u?(u-+27) is a square in F(y),

then # = -- B2—27 where R(y) € F(y). By Lemma 6.2, £ (2} is reducible

in (o, y) bub not in F(ez,y) if and only if

6.2) (&Y <B){(R--V =27)(R24-2T)}"  Dbelongs to |

(Y =8, yNF(V =38, y).

Suppose, for the moment that ¢ == 1 {mod 3) 8o that Y =3 e F. Then

evidently (6.2) hokls if and only if

(6.8) (R—V <9V [(BV —27) = p?,

where g ik o non-enbe in & and § € ¥(y). Mowover (6.3) is equivalent to

(6.4) 1 e VT (0 ) (a8 —1).

of Theorem 2.1 (IT) (with ¢ = 1 (mod 8)). o
Alternadively supposge that ¢ = —1 (mod 3) so thab PV =38) = .

We roquire (6.3) to held with 4 & non-cube in F* and § in F*(y) but B
(given Ly (6.4)) in F(y). This oceurs if and only if the product of !*‘83_

&) Actually, oase (1) can he treatod along with cose (c).
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and ;@_5, its conjugate over F(y), iz 1. In fact, we must have pus®
= §(T +]/N~?§)3/(T—l/:‘3)3, where 6 it a non-cube in F* such that
88 = 8" =1 and T e #(y). This leads to

gly) = 1088(T*-8)2/(3(L +V =3)? 1’—1/:75)3)2
(T AV =8P =y T~V =3,

where »? = § and v is as described in (iv) of Theorern 2.1 (IT); in particular
2 & % gince 87 = 1. Henee ¢(y) == ¢ (T( y)), as roquired. Since the steps
are revergible, this completes the proof in this case.

(b) &, and %, divide D, with B (Z,) = B(F,) = {I, 3}. In the usual
way take &, =%, and degf, == 1. A linear transformation in » and
multiplication by a congtant enablo w3 to concentrate our attention on the
funetion f{w) = (2*-+42%) /{42 +a), where (e F) % 0,16 (otherwise f is
not in its lowest terms). Put g(y) = » and let #{x) bo the resolvent ecubic
of f(z) ~u. We have

{8.5)

= 108(T* 3}

Z(2) = 0*+4 (o —%)uz +16u{a—u)

and
Dp(u) = Dylu) == 2862 —2T(a—u)2—u{a—4}] = 206324 (u),

gay. Moreover, taking # as the polynemial (6.5) in Lemma 6.2, we have

(6.6) y+V QG

Now @ (u) has a repeated factor (in F(w)) if and only i o= -2 4
or 16. However, a == 16 has been excluded. Moreover, if a = 4 and ]/m
i taken to be ¥ —27 (4 —u), then, in fact, @ = 2[2u (1 —4)]'%. Bat Lemma
3.1 with r = 3 implies that 2u(u-—4) can never be a cube in F*(y) for any
g and go, by Lemma 6.2 and Proposition 6.1, we cannot have V(g) = V(f).
Next, putting ¢ = —2, we obtain Q(w) = —27 (u——Z)‘d. Since .Dy(u) is
@ Bguare in I’(u) we must then have V' —3 & P, ie. ¢ = 1L (mod 3), IMurther,
taking ]/Q =V =27 —27(w—2) in (6.6), we require (—32%)"® to bo in I3 (y)
but not in F (¥). Olearly, this is the case if and only if v = 2uR? for some
B in F(y) and non-eube 4 in F, ie. if and only if % = 2g* (R}, whore g
ig given by (iil) of Theorem 2.1 (II). Conversely, for f* and g* ag given
there, the above argument shows that V{g*) = V(™) for any g (with
P > 3) and that actually, 2. = FL¥L¥;, where H(Z,) = B(¥,) = {1, 3}
and B(%,) = {2, 2} (since o +42° —8p -4 = (@20 —2)%).

To conclude this case, it suffices to show that Q (u) cannot be square-
free. For suppose @{u) = —27(u — a)(u—»), where a, b € F* with a ).
Then (4 —a)/{(u—b) = v, where v ¢ F(y). Thus % = (bv*—a)/(v?—1) and

0 = —2(ul(a—u uf] =27y
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we may take }/(_Qm)_/m———éﬂ = {b ~a)o/(v2—1). From (6.6} it follows that
(6.7) B = ~2{[(bo® —a){(a—b) v+ a—aj] j{v —1) (v +-1)2}

belongs to T(y). If 2a # a-+b, the rational funetion in braces in (6.7)
is in its lowest terms and so hagno cube root in 7 (y) for any v () by Lemma
3.1. Indeed, oven if 2a = a+-b, then a 20 and we would require
(bv:—a){(v-+1)? to have & cube root in F°(y) which again contradicts
Lemma 3.1 since a 5= b. Heneo Q@ (u) is not square—free.

c) Ly, &y divide D, with () ={2,2}, B = {1, 3}, Taking
Py = Lo, and. procesding with the ugual normzbhza.mon Process we may
aggame that

Flw) = (0*+3a-~3)2/4(20+3),
whore « (e J) =  (otherwise f is not in its lowest terms). Put 4 = g(y).
When o i8 veplaced by »--2u—2 in the cubic resolvent of f(#)—u, we
obtain
(@) =

@* 48 (u — (a—1)*) 5 —64 (w2 +3(a —1)u —2 (e —1)%).

Thus
Dy(w)
gay. Now, il « = 0, we have caso (b) again. So assume that ¢ % 0, thus
Q(u) i squaredree. Put % = R7'(Ri+e?)—(3z—1). Then Q(u)
= (R%— a2k If 0 ig given by (6.1} with Z = S and I/Q (u) = (R*—a®)/R,
we find that

(6.8)

= Do) = —27.2%u2[(u+-3a—1)2 —40®] = -—-27.212020Q (%),

0 = 4(R—a*) R,

HBuppoge that g = 1 (mod 3) so that V3 e¥. We require 6 & F3{y)\
F(y) and u, VJW e I'(y), whence B = p&3, where 4 is a non-cube in F
and 8 e F(y). Thug f and ¢ are determined by (v) of Theorem 2.1 (II).

Alternatively, suppose that ¢ = —1 (mod 3). For % and ]/m to
e in F(y) wo require B in #%(y) and BR = a® (where R is the conjugate
of B ovar 1'()). Pogether with the fact that ¢ (g:ven by (6.8)) is in F(y)\
Ia(y), thiv implics that B == »a®*(§--V —8)/(8 —V —3)%, where § & F(y)
and » iy a non-cabe in I with »% == 1 if ]/a elf‘ and ¥ = =1 if ]/Eqélf".
This gives the second part of (v} of Theorem 2.1 (1X), Once again the steps
are revordible.

Note finally in this cose that
,fug.fs.ﬁ &t
oieia if

Va el
Zye = Vagr.

B SR ———

M1 g e 1, then By == .'Z'l-(c.u‘sd (a)y.

4 — acta Arithmetica 53,4
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(1) 2, = #2292 By Proposition 6.1 (i), even in F¥ we luve V(g)
< V(f). Moreover, in F'2, @, = £2#1%7, say. So, by (b) und (c), there exist

L, Ly, L, in F(x) such that, if () = (a*+4a%) /(8 —4) (where g is & non-
cube in F2) and g*(z) = #°% then

(6.9) f = Lof oLy,
Now f, g, uf* and g* arc actually in F(w). Consequently, (6.9) yiclds

(6.10) f*=Tro(ap~")f*o I,
where ¥ = L 'o L, I¥ == Lo L% i = 1,2 and, typieally, I is the conju-
gate of I over F(#). It tollows from (6.10) that, in ¥, V(g*) = V{L*(g*)).
However, || =1 (mod 3) and so g*(#) (=2} is not a pormutation
polynomial in 7%, For large g, the only other possibility pemnitted by Tho-
orem 2.1 (with m = 8) is that L* (2%) == (Ly(x))® tor some Ly in 7% Clearly
thig implies that L* (#) = fx or 1/fs for some non-zero f in . But then,
from (6.10) again, either f* = pf* (L) or f* = Ljyf*(L7), wheve ¢ = Bui~"
Tt is a mimple exersige to show that the latter alternativoe is impossible for
any L¥ and the former implics that L is the identity and ¢ = 1. Thus
L, and I, (where L,(2) = L (@/p)) are actually in F(2). However, by (6.9),
f = Lo (uf*)o L, which implies that over F, f and uf* have the same rami-
fication data which by case (b) contradicty the agsumption that &, = F2%
Hence this form is irpogsible, _

(e} @y = AL F, or 2;2,. Using Proposition 6.2 (ii) to work in I,
we have @, = FiL1F.F,, where necesparily (%) = B(Z,) = {1, 8}.
But this is impossible by case (c).

(f) @, = %% We must have B{%) = {1, 3}. Replace F' by ¥ so that
now V=3 e I and @, = LLLF%, B(L) ={1,8}, i =1,2,8. Then al-
though ¥{i = F{f) will now be false, we still must have ]/.'Df(u) {whore
w = g(y)) in F(y). Further, as in case (b), f = Lof oL, where f*(x)
e (0408 [ (de + ) and 0 {given by (6.6)) is in F(y). The avgument of
cage (b) forces g == —2, Bub then H{ZLy) (say) must boe {2, 2} and we have
a contradietion.

This exhansts the possibilities for 2, Henee the digenssion of Theorem
2.1 for deg f == 4 ig complete in the “irreducible case”.

¢ = Log*cly.

g* = L'og*c Ly,

7. Punctions of degrec 4, the reducible case. We may suppose that
h(m, ¥) has degree 4 in o and ix reducible yebi does not have o lincar Eactor.
Thus » must be the produet of two irredusible quadratics. 'We ure Prop-
ogition 1.1 in the following form.

Prorosrrion 7.1, Suppose that, in the siluation of Proposition 1.1,
b = by by, where both by ond h, are irreducible guadratics in @ over I'y).
Then (1.1} holds if and only if Dy (y)/Dy,(y) s a wnon-sguare im I itself.
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Proof. Here (1.1) is equivalent to the fact that by and h, have differ-
ent splitting fields over F(y) bubt the same splitting field over F*(y).
The result follows.

Now take %{x, y) = f{a)—g(y). In our situation the next assertion
is not hard to see and, in any cage, follows from a result of Fried (Prop-
osition 2 of [7]). It is that there exist rational functions f, 7, fi, g in F{w)
gneh that f :f_'h( i)y g = glg) f(w)—gf(y) i algso the produet of two ir-
reducible factors in F(x, y) and the splitting field of fA(w)-t over I7(t)
(where t iz an indeterminate) is the same as that of §(w)—¢ over F(1).
Tearly, deg f = 2 or 4, We congider each ease in turn and determine pre-
efsely when (1.1) or ity equivalent in Proposition 7.1 ia satisfied.

{a) deg f z= 2. Clearly, § = f (R) for some R in F (»). Replacing g, by
R(g:) we may agsume that § == f.mIt‘urther, replacing f, by Lof;o L, and j‘
by F(L~%) for appropriate L, L in F'(«), we may takef, (z) = a* or (22— 1) /o,
where, as always, 4 is a non-square in F. Indeed, we may then replace f by
Lz(f), say, and agsurme that ﬂw) =gt or (cel orftm) == (%) [2(x+ §)
(¢, B F, not both 0 and f?#a). However, if, for instance,
fl®) = @¥4-an, fi(w) == 2% then

F(@) —g(y) = (@8~ g (1)} (#*+ (3) + a)
and clearly, by Proposition 7.1, (1.1) can hold enly if ¢ = ¢ and VZ1e¢r,
i.e. g == —1 (mod 4). In this way, it is o straightforward exercise to reduce
the poasibilities to one of the following (i)-(iv).
(i) flw) = % = fu(#), ¢ = —1 (mod 4). Here
f@)—g() = (#*~ gz +9: (%))
and (1.1) holds for any g, by Proposition 7.1. Moreover, V(g) = V(J)
if and only if for all  in F, either g, (¥) = @ or g;(y) = —*is soluble for y
in #, I.e. if and only it g, = P.
(ii) flo) = (a*--4)fz, fule) = 2° Hero
' flo)— gy = (22— (1)) (82 0u) — 2},
giving rise (as in (1)) to the pair (i) of Theorem 2.3.
(iif) f(m) s (024 A) (23, fi(w) = (@2 —A)[2x. Here
Pl —gly) = (w2g:(9) —220 —Ag1(y)) (o ~22g: () — 2],
the firgt quadratic having discriminant 42(gi -+ 1) and the second (g} + A).
This leads to pair (iii) of Theorem 2.3. Further, V(g) = V(f) if and only
if for all # in F either g, (y) = 24@/{@?— 2} or g, (y) == («*— A}{2& is soluble.
But, casily,
V(Zﬁm/(mﬂ—A))uV((mZ—A)/.‘zm) =F
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so V(g) = V(f) if and only if ¢, = P.
(iv) f(w) = 2%, fy(&) = (@*— A){w. Here
f(@)—g(y) — ) (@* -+ gy () — 2}

the two factors having identical discriminants so that Proposition 7.1
cannot be satisfied. )

(b} deg f == 4, Here f; = Land we may assume, in fact, that f == f, Let K
be the commeon aplitting field of f{a) —¢ and §(z) —¢ over &(¢) with cor-
responding isomorphie galois groups G(f), @(g), vespectively. Let y be
a zero of g(w)—1t and put v = g,(¥). Thus §(v) = ¢ and 50 v & I, By Prop-
osition 7.1, [K(y):F(y)] =4 (although [K{y): F2(y)] = 2). By the
theorem of natural irrationalities, » is divisible by 4. But |G{¢)] = rH(§)
where r|(ﬂ (§y—1)!. On the other hand, |G(f)||24. The only consistent
conclugion iy that * = 4, degg = 6 and G{f) = §,, the symmetric group.
Thus @(g) must be a transitive subgroup of §; isomorphic to §,. The
gituation just deseribed seems unlikely; nevertheless there are circum-
stances where it would ocour save for the assumption that f(x)—g(y)
be reducible, namely when g(») is #(z?), where # is the cubic resolvent
of f. However, the additional hypothesis that f(w)—g(y) be reducible
enables us to reach a contradiction as follows. Consider the subgroup V
of G{f) whose members fix a preseribed root of f(n) ={ Then V == §,.
Regarding V' as a subgroup of ¢(§) and using the fact that f(z)—f(v)
is reducible, we see that for suitable numbering of the roots of §(x) =
we have

V = {(123)(456), (132)(465), (12)(34), (13)(46), (23)(5

= (02— g, (y)

b (L)}

Howaever, there is no way ¥ could be one of precisely four conjugate sub-
groups of any transitive subgroup of §,. So this case iy, atter all, impossible.

It may be helpful to peint cut that, in the above, the known exampla
[4] of a pair (f, ¢) with f{®)—g(¥) reducible and deg f =4 {namely, f{»)
= (g2 -1}, g{w) = —4w¥(w?—1)) iz climinated by the demand that
[K(y): F(y)] = 4.

8. p-soluble polynomials of total degree 3. Ior general polynomials
h{w,y) of degree 3 or 4 in x, the normalisation procedure achicved in
§§ 5-6 for the case h(z, y) = f(a) —g(y) is not available. However, we can
characterise those polynomials A of tofal degrec 3 in ¥[z, y] which are
m-soluble, thus extending work of Mordell [15]. We use Propomtlon 5.1
in. the following form.

Lmnza 8.1. Suppose that in Proposition 5.1, h has the form

(8.1) Mo, 9) = 65+ hy (1o +holy), By 0.
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Then (5.1) holds if and only if ¢ = —1 (mod 3) and h, = 0 or

by = —3(4%4-3AB%), . hy = 24(A24+31BY,
where A, B (£ 0) e F{y).
_ Proof. If hy = 0, then D) == —27h{ and (5.1) holds if and only if

V —8 ¢ F.

It By #0, put A, = —2k; A/3. Then

Dy (y) = 12h1(—4hy — 42)

and (5.1) holds if and only if —}hy — 4% = 3182 The result follows.

Before gtating our theorem, we note that if & is @-soluble, then so ia
(8.2) iz, y) = ah(betoy+-ad, ey +1), abe #0,
and we say that b and h, are z-equivalent.

TonorEM 8.2, Let & (v, y) in Flwx, y] be o polynomial of total degree 3
and suppose that g > ¢, (absolute) and p > 3. Then b is x-soluble if end only
if it has a factor Vinear in x or is z-equivalent to o polynomial of one of the
following types:

L w®—g(y), . :

I (m+y+1)3—27wy,}mm g =~ 1 (mod 3),
IIT. 8 +8qm -y (322 + 1), L pith » — {1, if ¢ = —1 (mod 3),
IV. o8 +8n(y+1)a+yldat +qly+1), 7 |4, if ¢ =1 (mod 3),
V. o®— (32 —2) (3Ay2+1).

Remark. Actually, apart from IL, all the above z-goluble % derive
from functions of the form fle)—g(y). For esgentially IIT ia
[(> —I—'ﬁ)/(m—l/n 12— (y ——]/17 fymH/—, the transformation o—z/(y-+1),
y—+19|(y 1) sends TIT onto IV and V is (Lof oLl)(m) L{g*()), where f*
and g* are given by (i} of Theorem 2.1 (I1), L = dfx and I,{z) = —2/o.

Proof, Supposc that h(x, y) I8 w-soluble. Flom Theorem 4.1 we may
assume that b iy irvedueible of degree 3 in # and so is #-equivalent to a poly-
nomial of the form (8.1) also of total degree 3. By Lemma 8.1, cither A Is
g-oquivalent to T for some g or is w-equivalent to
(8.3) 3 —-307 (A% 3B @ +-2.407° (4% --34B),
whore 4, B, € and the coefficients of (8.3} are all non-zerc polynomials
in Fly]. We may suppose alse that 4, ¢ and B = A*--3AB* are co-prime.
Sinee 0% H, thon 4 and ¢ are co-prime and so C2|H. However, A and B

arc also co-prime, for, if not, we would have A linear and both AB?
and ¢ in F. But then

ATPCN(AC s, y) = 0 —3aw-+2a, @ =1+B3lA:B2eF,
which has diseriminant 2(18B8/4)? and so'is reducible, whence h is reduecible,
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Now write (8.3) as a®—306x 124G, where ¢ and €: = 078 e Fy)
and deg( -+ deg@ < 2, degd--degt < 3. We consider the varions pos-
sibilities for € and @. Let F be the algebraio closnre of I' and put & = Ty
in F.

(n) deg@ = 0. Thus degC = 1 or 2 and deg ¥l = 3 or 6. Binee 4 and B
are co-prime, then so are A 1-68 and 4 éB. Thercfore, in By, A 488
= ¢ where €, divides . But then, since G e I, h(a, g) has o factor In
Fla,y] of @4-G¥0, 06", (by Cardan’s horlnulm) which contradicts
the fnct that & is absolutely irredueible (Proposition 1.2 (lii)).

(b) deg( = deg@ == 1. This case iy impossible for it would imply
that B hag degree 4 yet iy divigible by O

(¢) degC == 0, deg@ ==1. For this degd = <'lOWB s dogl = 1 go
that 6 e ¥, ie. ¢ = —1 (mod §). Replacing o by O 'e any 4 by cm_;ilb
for suitable @ (=% 0), b in ¥, we may take A(y) =y, B( ) == (g L)Y ]/ —38,
50 that B is a-equivalent to 8-+ (3z —2¢)(2y +1). Now the transformation
g —Hw+y +1), y+—k(y-+1) shows that & is w-equivalent to Ll

(d) degC = 0, deg@ = 2. Then dogl =2 and dogA < 1. It «100
= degB = 1, then, a8 in (c), we may set A{y) =y, B(y) ==y +L and h
b :v-equimlenﬁ o

w8 -3 (8 --3A(y +1) e +2y (y2+3A(y +1)¢) .
A further transtormation s—»+-y indicates that h iz z-cquivalent to IV
but with 5 = —3i(= 6. To get » =1 in the cage g == —1 (mod3),
apply the extra transformation a-- 8z, 14 (y -+-1) —

A gimilar digeusgion revealy that if degd =1, degB := 0, then b s
g-equivalent to ITI, while if degA = 0, degB = 1, then k iy s-equivalent
to V.

The sufficiency of I-V ig obvious from the above and Lomm(u A1,
Thus the proof is complete.

From Theorem 8.2, it is eagy to guess which cubics & are both a-soluble
and y-goluble in 7. Formzul verification of Mordell’s result [16] (statod
below) is indeed possible from this starting point and probably representy
a shorter and less intricato method than {that of Mordell. Novertliolesy,
the proof is not actually immediate and, fox breviby, is omitted.

TemoreM 8.3 (Mordell), Let h(z, ) in Fiz,y] have tolal dogree 3.
Suppose that q > g, and p > 8. Then h is both w-soluble and y-soluble in ¥
if and only if b has a factor lineor in o and a factor (possibly the same) lincor
in y or one of h{z,y) and h(y, ) s of the form (8.2) with ¢ = 0, whare hy
is one of I-1X1 in Theorem 8.2 with ¢ (y) =y or y*--1 in L.

9. Covering sets. We shall call a st of functions {fy(e)} i F(w) u co-
vering set it |} V(f;) = F. Xere are some simple exanrples.

7 .
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1) {fi}, f; =P for some 4.

(i) {&", ya", ..., " '@}, where r|(g—1) and ¥ in F iy a non dth
power for any divisor 4 of r with d > 1.

(i) {(o*—A)/22, 2Ap/(x? 1)} (see § 7).

Tging exponential sums, Mordell [16], [17], has constructed a non-
trivial covering set comiprising & function of degree 4 and a function of
degres 3. However, the natarsl approach to covering sets may be o use
the following result which follows immediately from Proposition 1.1.
(For related work on the more general problem V(f) = UV (fy), see [5],
[07, §4.) ;

ProposIIIoN 9.1, In the situation of Proposition 1.1, lel

ki

W, y) = [ [(fita)~y).

1=1

Suppose that
& (&, Piy) = (UG E, Fi),
Teal oy
where the inner union is over all rools a; of fi(
set for I,
Using Proposition 9.1 and previous results in this paper, we can
demonstrate some cxamples of covering sets valid for any F with p > 3,
{iv) Mordell’s covering seb

{1y fo} 1= {&" +aa? - ba, (2°+200°% —adz—b)/da}, b £ 0,

follows casily from Proposition 9.1 sinee fy(w) —y is the cubic regolvent
of fi(®)—wy. Another covering set arising in this way is

{(o* + aw +B) fo*, m—(a®|(@® —~4b))}, @b #0.
(v) From (i) of Theorem 2.1 (II) (ef. Theorem 8.2 (v)), we get the pair

@) = 4. Then {f;} is & covering

({00 —304-9) (30 —2), 302}
{vi) Trowm (i) of Theorem 2.1 (TI) we got the pair

i fa} = { ot +da®) {(8s —4), @’}
However, although this is o covering set for all ¢, the manner of the cover-
ing depends on g¢. For, of course, if ¢ = —1 (mod 3), then f, = P and

wo have a trivial covering seb 0[ type (i).
g =1 (mod 8), then |F{fiinV(fi)l = ¢/12.

(vii) Finally, we exhibit a non- trmul covering set of three funchions.
Put

On the other hand, if

{Fis far I} = { 2, ~dat(@® 1), §lo—1)*/(@*+1)}.
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(As noted earlier (§7), fila)—f2(y) is reducible.) Then the roots of fi()
—=y,i =1, 2, 3, can be written as {a;, —ay, 0z, — 2}, {f1; —F1, for —faby
{y, y~1}, respectively, where f; = ¥(a-=a,), ¢ =1, 2, and

y = —(2y ——1)'"1(1 —2a, ay(al —1)).

Moreover, @ {K, F(y)} is the whole galois group @, say, and has order 8.
If the rooty of each f;(») =y are numbered in the order given, then the
action of G as a permutation of thege rooty is as follows:

.f1 ol fﬂ - f3
(1) 1y
(12) | (14) (28) | (12)
(34) | (13) (24) | (12)
(12) (34) | (12) (34) | (1)
(13) (24) 34y | 12
(14) (23) (12) | (12)
(1423) 1824) | (1)
(1324) (1423) | (1)

Thus {f1, f2, fo} is a covering set by Proposition 9.1.

References

[1}] 8. D. Cohen, The distribution of poelynoemials over finite fields, Acta Axith. 17
{1970), pp. 2565-271.
£21 — The distribution of polynomials over finite fields, IX, ibid. 20 {1972), pp. H3~62.
[3] — Composite rational functions which are powers, Proc. R. Boc. Kdinburgh A,
83 A (1979), pp. 11-16,
[4} H. Davenport, D. J. Lewis and A.' 8clinzel, Houaiions of the form [{x)
= g (¥}, Quart. J. Math: Oxford (2) 12 (1961), pp. 304-312.
[61 M. Friod, Arithmetical properties of value sets of polynomdals, Acta Arith. 15
(1969), pp. 91-125.
[8] — On o conjecture of Schur, Michigan Math, J. 17 (1.970), pp. 41-55.
[7] =~ The field of definition of function flelds and o problem in the reduvibilily of
polynomiale 4n twe variables, Ulinois J. Math. L7 {(1078), pp. 128-1446,
[81 — On a iheorem of MacCluer, Acla Arith. 25 (1974), pp. 121326,
191 — Arithmetical properties of function fields, II; The generaliced Schur problom,
© ibid. 25 (1974), pp. 225-268.
[10] — On Hilbert's irvedueibility theorem, J. Number Theory 6 (1974), pp. 211-231.
1] — Galois groups and complew multiplication, Trans, Amer. Math, Soe. 235
(1978), pp. 141183,
[12] N. Jacobson, Basic algebre I, Freeman, San Francisco 1974.
- [13] L Kaplansky, Fielde and rings, Chicago lectures in Mathemalics, Chicago
1969,

icm

Value sele of functions over finite fields 35%

[14] K. Mc¢Cann and K. 8. Williama, Oubie polynomials with the same vesidues
(modp), Proc. Cambridge Phil. Soc. 84 (1968), pp. 655-658.

[16] L. J. Mordell, Cubic polynomials with the some residues (modp), Proe. London
Math. Soc. (3) 21 (1870), pp. 129-144,

[16] - Rational funciions represeniing all residues modp, J. London Math. Sac..
5 (1972), pp. 166-108.
(171 — Rabional funclions represeuting all vesidues modp, II, Proc. Amer. Math..

SBoc. 35 (1972), pp. 411-412.

[18] . 1. Perel’muter, On cerlain sums of characlers, Uspekhi Matem, Nank
18 (1963), pp. 145-149.

UNIVERSITY OF GLANGOW
Gaagow G12 QW
Seotland

Received on 30.8.1978

and in revised form om 5.11.1978 {1097



