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New formulations of the class number one problem
Ty

A, Marnig (Port Fareourt, Nigerin)

1. Introduction. Lot k(D) be the clags number of the guadratic field
O(VID) for a fundamental diseriminant D < 0. Around 1800 Gauss [l
conjeetured that the only negative fundamental diseriminants with h(D}
== 1 are; —38, —4, -7, —8, —11, —19, —43, —67, —163. Only recently-
however, hag this conjeeture been confirmed by Baker [1] and Stark {81 (¥),

We shall give here two results concerning the restrictions placed on .D
rogalting frow limiting the class number to be unity. Thus it we could
ghow that these restrictions on D imply that |D| < 4, for some effecti-
vely eomputable constant A, then we would have a new effective proof
of Gangs’ conjeeture. We remark that both our results can be extended
to cover other values of the class number, but we have only stated the
resulls for h(D) == 1, since this iy the simplest case.

Wao stinte our results as:

THROREM L. Let h{D) be the class number of the quadratic field belonging
o the fundarmenial diseriminant D << 0.

If B(D) == 1, then we have

cRHTYE (DN o -ty D
W it .ﬁ(.aé) - O{| D1~ 10" t] exp (1] — =¥/ 1DI)),

where t satisfios, ©(k-1-48) == 0.

The equation is remarkable in that the right-hand side is a function.
of [ but The left-hand side iz not. Hlowever we are still unable to prove (1)
false for (0| mfficiently large.

() As pointed by my referce, we should in fairness not forget Heegner [5],
who had found o sofution (though in a somewhat unintelligible form) in 1952. For
further details soe also Stack (7] Yet another solution has also been given by
Douring [3]. .
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THEOREM 2. With the same notation as Theorem 1, if h(D) = 1, then

e

n<|D4 1

d
9} 1 = (48+1) l/—“ ) c0s (tlog) —

— V| D}f3)),
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where 1 again satisfies (}-Fit) =

(Mearly if we could show that the right-hand side of (2) is greater
than 1 for |D| sufficiently large, then we could list all D << 0 for which
R(D) =1.

2. Proofs. Wo use tho relations (3.8) of [2], and smuming over all the
reduced. quadratic forms (e, b, ¢) we get for the Dedekind zeta function
£ (8) of the field K = Q(VD),
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which is valid for ¢ == 0@, with } < o< 1.
We now choose § = g = 444, such that
(4) {le) =0, o=ttt
and thus {z(e) = 0. Hence we see that
L(28)] = [L(1+248)] 3 log™" li];

and singe A{D) = 1 we have ¢ = 1 only, thus Theorem 1 now easily follows
from (3).

Proof of Theorem 2. From Theorem 3, p. 260 of [6], we have for
D< —4,

e
By F(8) = @) T'(8) Lk (8)
2w\, o g @ W)
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for 1 582 %.
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Here g(n) iy given by z(s) = 3 g{n)n~* for s > 1, and we further have,
tem ]

(6) 0 < g(n) < d{n},

icm

New formulations of the closs nuwmber one problem 363

for the divisor function d(n). But if &(D) =1, we know (see [9]) that
for n << [D])/4 we have

1 if » is a perfect square

gin) =1 " : - ’
0, otherwige.

Ag in Theorem 1 we choose ¢ to satisfy (4), then

#° +a'? == 2Re(s”),

i.c.

(1) @' &' = 2V weos(tloge);

and

&) —mD)y 1 -3
s(l--5) 2p(o—1) 4241’

Using (7) and (8) in (B) we get,

1 N7 F do
T = 2 [ ( — )cos(ﬂogm) +
41+l n2<Dlje 1 1/ l/m
- 2 g(n) fexi:»(-—-——zf_ﬂ) cos (tlogw) d—f
nl D)4 1 V]D[ I/w

However from (6) we have g(n) < d(n) and hence can esbimate the ex-
pregsion in (9) for which » = [D|/4 as,

o]

< Zd(n)f@

xp( —27mw) dx

wSTBs 1 ViD| Ve
— d(n) —3n

< y|D| BXP( = )
WS VD]

< exp(—V/D|[3);
thus proving Theorem 2.
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Bounding L-functions by class numbers
by

A, Marux (Port Hareourt, Nigeria)

L. Iotrodtuction, Lot L(s, x) be the Dirichlet I-function belonging
to the real primitive character y (mod |[D)), for a fundamental diserimi-
nant D << 6. The value of L{s, ) hags attracted much attention, in particu-

lax L(L, ). The value of L(1, y) iz given by Dirichlet’s elags number
formula,
w~h{D)
(1) } o = D < 0);
1, % Z 20T = (D 0);

where B(D) is the clags number of the field (VD). The size of T(l, x)
is clogely related to the value of (s, y) for s e [{, 1), For example we
mention :

Tusornm 1 (Hecke). Let § be any fived real number satisfying 0 &
< 1, and suppose that there is af least one point o satisfying + << a<< 1 for
which

—7 §
oy §) > o e (D) < —1065t);
Mo > < Taycai )
then
] IDI(u~«1)/2
L, ) o (1--8) ~~-~2a(1 a) (2~W)ﬂ (D << —16m?).

This stutement of Tecke’s theoremn requiring » weaker hypothesis
and with tho constants given explicitly, Is mplicit in Londaw’s proof [3].

On the other hand frying to give upper bounds for L{s, y) for s e [0, 1]
ig algo o difficuls problem. ’l‘}mre is & conjecture (see Montgomery [4])
that for 6> 0 wmi [-D] = 6y(e

) s, x)<|Dl"“‘“’ for  sel}1).

In conncction with giving » lower bound for L(1, y) we mention Tatuza-
wa's [7] near effectivipation of Biegel’s theorem [6].



