- [6] Pierre Kaplan, Unités de norme -1 de $Q(\sqrt{p})$ et corps de classes de degré 8 de $Q(\sqrt{-p})$ où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), pp. 239-243.
- [7] Edmund Landau, Elementary number theory, Chelsea Publishing Company, New York, N. Y., 1958.
- [8] Emma Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), pp. 42-48.
- [9] J. Liouville, Un point de la théorie des éguations binômes, J. Math. Pures Appl. 2 (1857), pp. 413-423.
- [10] G. B. Mathews, Theory of numbers, Chelsea Publishing Company, New York, N. Y., 1961.
- [11] Trygve Nagell, Introduction to number theory, Almqvist & Wiksell, Stockholm 1951.
- [12] G. K. C. von Standt, Ueber die Functionen Y und Z, welche der $\frac{4(x^p-1)}{x-1} = Y^2 \mp pZ^2$ Genüge leisten, wo p eine Primzahl der Form $4k \pm 1$ ist, J. Reine Angew. Math. 67 (1867), pp. 205-217.

DEPARTMENT OF MATHEMATICS AND STATISTICS OARLETON-UNIVERSITY Ottawa, Ontario, Canada KIS 5B6

Received on 27.12.1978
and in revised form on 20.3.1979
(1123)

ACTA ARITHMETICA XXXIX (1981)

On the distribution modulo 1 of the sequence $an^3 + \beta n^2 + \gamma n$

by

R. C. BAKER (London)

1. Introduction. Let $\|\cdot\|$ denote distance to the nearest integer. Let $\varepsilon > 0$, and let α, β, γ denote arbitrary real numbers. Recently W. M. Schmidt showed [5] that for $N > c_1(\varepsilon)$ there is a natural number $n \leq N$ having

$$\|an^2 + \beta n\| < N^{-1/2+s}$$
.

This generalizes the well known theorem of Heilbronn [3] and sharpens a result of Davenport [2].

Schmidt's method enabled him to prove that for $N>c_2(\varepsilon)$ there is a natural number $n\leqslant N$ having

$$||an^3 + \beta n^2 + \gamma n|| < N^{-1/5+\epsilon}$$
.

For $\gamma = 0$, the exponent $-1/5 + \varepsilon$ could be replaced by $-1/4 + \varepsilon$ [6]. Both results sharpen those of Davenport [2].

In the present paper we shall show that for $N>c_3(\varepsilon)$ there is a natural number $n\leqslant N$ having

$$||an^3 + \beta n^2 + \gamma n|| < N^{-1/4+\varepsilon}$$
.

yt is no more difficult to prove a more general theorem. We denote by k an integer greater than 1 and write $K = 2^{k-1}$.

THEOREM 1. Suppose $k \ge 3$ and $N > c_1(k, \varepsilon)$. Then there is a natural number $n \le N$ with

(1)
$$\|an^k + \beta n^{k-1} + \gamma n\| < N^{-1/K+\epsilon}.$$

We also strengthen Schmidt's theorem [6] for an arbitrary polynomial of degree $k \ge 3$ with constant term zero, but only when k is odd.

THEOREM 2. Let k be an odd integer, $k \ge 3$, and write $K_1 = \frac{4}{3}(2^{k-1}-1)$. Let $N > c_2(k, \epsilon)$. Given a polynomial F(n) of degree k with constant term zero, there is a natural number $n \le N$ with

$$||F'(n)|| < N^{-1/K_1 + s}.$$

We shall use ideas normally associated with "major arcs" in the circle method [4]. Schmidt's method, on the other hand, is a very original development of "minor arc" ideas.

2. The final coefficient lemma. We write $e(x) = e^{2\pi ix}$, $e_q(x) = e(x/q)$. In [7], Chapter 4, I. M. Vinogradov showed that, given a large exponential sum

$$\sum_{n=1}^{N} e(a_{k}n^{k} + a_{k-1}n^{k-1} + \dots + a_{1}n)$$

and a good simultaneous rational approximation to a_k , a_{k-1} , ..., a_2 , one can (under suitable conditions) obtain a good simultaneous approximation to a_k , a_{k-1} , ..., a_2 , a_1 . Lemma 4 (below) is a refined version of this principle. Other applications of Lemma 4 are given in [1].

We shall need some preliminary lemmas. Lemma 2 is rather like Lemma 7.11 of Hua's book [4].

LIMMA 1. Let $G(x) = u_k x^k + ... + u_1 x$ be a polynomial with integer coefficients. Let q be an integer and write d for the greatest common divisor,

$$d=(q,u_2,\ldots,u_k).$$

Then when $1 \leq m \leq q$, we have

$$\sum_{m=1}^m e_q(G(x)) = O(q^{1-1/k+s}d^{1/k}).$$

Proof. This is Theorem 2 of [4]. The implied constants, here and subsequently, depend at most on k and ϵ .

In the following lemmas the polynomials occurring have real coefficients.

LEMMA 2. Let $k \ge 2$. Let $f(x) = a_k x^k + \ldots + a_1 x$ and suppose that there are integers $N, q, u_1, u_2, \ldots, u_k$ such that

$$(3) d = (q, u_2, \ldots, u_k) \leqslant N^*$$

and

$$(4) 1 \leqslant q \leqslant N^{1-s}, |q\alpha_i - u_i| \leqslant N^{1-j-s} (1 \leqslant j \leqslant k).$$

Writing

$$\beta_j = \alpha_j - u_j/q \ (j = 1, ..., k), \quad g(w) = \sum_{j=1}^k \beta_j w^j,$$

$$G(v) = \sum_{j=1}^k u_j v^j, \quad S(q) = \sum_{v=1}^q e_q(G(v)),$$

we have

$$\sum_{n=0}^{N-1} e(f(n)) = q^{-1}S(q) \int_{0}^{N} e(g(y)) dy + O(q^{1-1/h}N^{s}).$$

Proof. Write $S = \sum_{n=0}^{N-1} e(f(n))$, then

$$S = \sum_{v=1}^{q} \sum_{(5)} e\left(\sum_{j=1}^{k} \left(\frac{u_j}{q} + \beta_j\right) (mq + v)^j\right)$$

where the inner summation is over integers m satisfying

$$(5) 0 \leqslant m + v/q < N/q.$$

Thus

(6)
$$S = \sum_{v=1}^{q} e_q(G(v)) \sum_{(5)} e(g(mq+v)).$$

Let $l = [1/\varepsilon] + 1$. Write H(x) = e(g(qx)) and $A = Nq^{-1}$. By Euler's sum formula ([4], p. 80) we have for all t

(7)
$$\sum_{0 \leq m+l < A} H(m+t) = \int_{0}^{A} H(x) dx + \sum_{r=0}^{l-1} \{H^{(r)}(A) b_{r+1}(t-A) - H^{(r)}(0) b_{r+1}(t)\} - \int_{0}^{A} H^{(l)}(x) b_{l}(t-x) dx.$$

Here $b_1(x), b_2(x), \ldots$ are functions of period one defined inductively by: $b_1(x) = x - [x] - 1/2$,

$$b_{l+1}(x) = b_{l+1}(0) + \int_0^x b_l(y) dy.$$

We write V_r for the total variation of b_r on [0, 1] (evidently $V_r < \infty$) and $M_r = \sup |b_r(x)|$.

We note that

(8)
$$\int_0^A H(x) dx = q^{-1} \int_0^N e(g(y)) dy.$$

Combining (6), (7) (with t = v/q) and (8), we find that

(9)
$$S = q^{-1}S(q) \int_{0}^{N} e(g(y)) dy + E,$$

where

$$(10) E = \sum_{r=0}^{l-1} H^{(r)}(A) \sum_{v=1}^{q} e_q(G(v)) b_{r+1} \left(\frac{v}{q} - A\right) - \\ - \sum_{r=0}^{l-1} H^{(r)}(0) \sum_{v=1}^{q} e_q(G(v)) b_{r+1} \left(\frac{v}{q}\right) - \sum_{v=1}^{q} e_q(G(v)) \int_0^A H^{(l)}(x) b_l \left(\frac{v}{q} - x\right) dx.$$

It remains to estimate E. We begin by observing that the hth derivative of $e(\alpha y^j)$ takes the shape

$$D^h(e(\alpha y^j)) = \sum_{hj^{-1} \leqslant r \leqslant h} C(r, h, j) \alpha^r y^{jr-h} e(\alpha y^j).$$

For $1 \le j \le k$, $0 \le y \le A$, $hj^{-1} \le r \le h$ we have, in view of (4),

$$(q^j\beta_i)^ry^{jr-h}\leqslant q^{jr}q^{-r}N^{r(1-j-\epsilon)}N^{jr-h}q^{h-jr}\leqslant (qN^{-1+\epsilon})^{h-r}N^{-h\epsilon}\leqslant N^{-h\epsilon}.$$

It follows that for $1 \le j \le k$, $0 \le y \le A$,

$$D^h(e(\beta_i q^j y^j)) = O(C_1(h) N^{-hs})$$

and we easily deduce that

$$(11) D^h(H(y)) = O(C_2(h)N^{-h\epsilon}) (0 \leqslant y \leqslant A).$$

Thus the third term in (10) is

$$O(qNq^{-1} \cdot M_l N^{-l\varepsilon}) = O(1).$$

Write $s_v = \sum_{n=1}^{v} e_q(G(w))$. If t is any real number,

$$\sum_{v=1}^{q} e_{q}(G(v))b_{r+1}\left(\frac{v}{q}-t\right)$$

$$= \sum_{v=1}^{q-1} s_v \left\{ b_{r+1} \left(\frac{v}{q} - t \right) - b_{r+1} \left(\frac{v+1}{q} - t \right) \right\} + s_q b_{r+1} (1-t),$$

so that for $0 \le r < l$,

$$\Big| \sum_{v=1}^{q} e_q \big(G(v) \big) b_{r+1} \Big(\frac{v}{q} - t \Big) \Big| \leqslant (V_{r+1} - M_{r+1}) \max_{v \leqslant q} |s_v| \\ = O(q^{1-1/k + s/2} d^{1/k}) \implies O(q^{1-1/k} N^s)$$

in view of Lemma 1, (3) and (4). Taking (11) into account, it follows that the first and second terms in (10) are

$$O\left(q^{1-1/k}N^{s}\right)$$
.

The same estimate thus applies to B, and Lemma 2 is proved.

LEMMA 3. Let $g(x) := \beta_k x^k + \dots + \beta_1 x$. Then

$$\int\limits_0^N e(y(x))\,dx \,\leqslant\, NZ^{-1/k},$$

where $Z = \max(1, N|\beta_1|, \ldots, N^k|\beta_k|)$.

Proof. This follows at once from Lemma 10.1 of [4].

LEMMA 4. Let $f(x) = a_k x^k + \ldots + a_1 x$ and suppose there are integers $N > c_2(k, \varepsilon)$ and r such that

$$(12) 1 \leqslant r \leqslant N^{1-2\varepsilon}, ||a_j r|| \leqslant N^{1-j-2\varepsilon} (2 \leqslant j \leqslant k).$$

Suppose further that

(13)
$$\left|\sum_{n=1}^{N} e\left(f(n)\right)\right| \geqslant H \geqslant r^{1-1/k} N^{2s}.$$

Then there is a divisor s of r and a natural number $t \leq N^s$ such that, writing q = st,

$$q\leqslant N^{k+3ks}H^{-k}, \quad \|a_jq\|\leqslant N^{k-j+3ks}H^{-k} \quad (1\leqslant j\leqslant k).$$

Proof. Write

$$||ra_i|| = |ra_i - v_i| \quad (j = 2, ..., k).$$

Let $d = (r, v_2, ..., v_k)$ and define $s = rd^{-1}$, $w_j = v_j d^{-1}$ (j = 2, ..., k). By Dirichlet's theorem there is a natural number $t \leq N^s$ such that

$$||a_1 st|| = |a_1 st - u_1| \leqslant N^{-s}$$
.

Write q = st, $u_i = w_i t$ (j = 2, ..., k); then

$$(q, u_2, \ldots, u_k) = t(s, w_2, \ldots, w_k) = t \leq N^s;$$

and in view of (12),

$$1\leqslant q\leqslant rN^{\epsilon}\leqslant N^{1-\epsilon},$$

$$|qa_i - u_i| = td^{-1}|ra_i - v_i| \leqslant N^{1-j-s} \quad (2 \leqslant j \leqslant k).$$

We may therefore apply Lemma 2. Now in view of (13) and $N > c_2(k, \varepsilon)$, the quantity $O(q^{1-1/k}N^{\varepsilon})$ is smaller than $\frac{1}{4}H$. It follows that

$$\left|q^{-1}S(q)\int\limits_{0}^{N}e\left(g(y)\right)dy\right|>\frac{1}{2}H$$

where S(q) and g(y) are as in Lemma 2.

We now use the estimate

$$q^{-1}S(q) \ll q^{-1/k}N^{2\sigma}$$

which follows from (3) and Lemma 1. In the notation of Lemma 3, then, we see that

$$H \leqslant q^{-1/k} N^{1+2s} Z^{-1/k}$$

or

$$qZ = \max(q, N ||q a_1||, \dots, N^k ||q a_k||) \leqslant N^{k+2k^k} H^{-k}.$$

Since $N > c_2(k, \epsilon)$, this proves Lemma 4.

3. Proofs of the theorems.

LEMMA 5. Suppose $N > o_1(k, \varepsilon)$ and $1 \le M \le N^{1/K-\varepsilon}$. Let $F(x) = \alpha x^k + \beta x^{k-1} + \ldots + \omega x.$

Suppose that there is no natural number $n \leq N$ having

$$||I^{r}(n)|| \leqslant M^{-1}$$
.

Then there exists a natural number r with

$$(14) r \leqslant M^{K}N^{s}, ||ar|| \leqslant M^{K-1}N^{s-h}, ||\beta r|| \leqslant M^{K-1}N^{s-k+1};$$

and there is a natural number $m \leq MN^s$ such that

$$\left|\sum_{n=1}^{N}e\left(mF(n)\right)\right| \geqslant N^{1-\epsilon}M^{-1}.$$

Proof. As far as (14) goes, this is a special case of Lemma 8A of [6]. The inequality (15) is an easy consequence of the proof of Lemma 8A.

Proof of Theorem 1. Suppose that there is no natural number $n \leq N$ having (1). Let $M = N^{1/K-s}$. We apply Lemma 5 with $s_1 = \varepsilon/5k$ in place of ε . Thus there is a natural number $r \leq M^K N^{\varepsilon_1}$ such that

$$\|\alpha r\| \leqslant M^{K-1} N^{\epsilon_1 - k}, \quad \|\beta r\| \leqslant M^{K-1} N^{\epsilon_1 - k + 1}.$$

and a natural number $m \leq MN^{n}$ such that

$$\Big|\sum_{n=1}^N e(mF(n))\Big| \geqslant H = N^{1-s}M^{-1}.$$

Write $f(x) = mF(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x$. Evidently $1 \leqslant r \leqslant N^{1-2s_1}, \quad \|a_j r\| \leqslant N^{1-j-2s_1} \quad (2 \leqslant j \leqslant k),$

and moreover

$$r^{1-1/k}N^{2s_1} \leqslant M^{K-1}N^{3s_1} \leqslant H$$

Applying Lemma 4, with ε_1 in place of ε_2 , there is a natural number qsuch that

$$q\leqslant N^{k+3ks_1}H^{-k}\leqslant M^kN^{4ks_1},$$

$$||qa_k|| = ||qma|| \leqslant N^{3ks_1}H^{-k} \leqslant M^kN^{4ks_1-k} \leqslant M^{K-1}N^{4ks_1-k},$$

and similarly

$$||qm\beta|| \leq M^{K-1} N^{4ks_1-k+1}, \quad ||qm\gamma|| \leq M^{K-1} N^{4ks_1-1}.$$

Write n = qm. Then

$$n \leqslant M^{k+1} N^{5k\epsilon_1} \leqslant M^K N^{5k\epsilon_1} \leqslant N,$$

while

$$\begin{split} \|F(n)\| &\leqslant n^{k-1} \|\alpha n\| + n^{k-2} \|\beta n\| + \|\gamma n\| \\ &\leqslant N^{k-1} M^{K-1} N^{4ks_1-k} + N^{k-2} M^{K-1} N^{4ks_1-k+1} + M^{K-1} N^{4ks_1-1} \\ &\leqslant 3 N^{-1+4ks_1} N^{1-1/K} \leqslant N^{-1/K+s}. \end{split}$$

This is a contradiction, and Theorem 1 is proved.

Proof of Theorem 2. This is true for k=3 by Theorem 1. We proceed by induction from k-2 to k. Write

$$F(n) = \alpha n^{k} + \beta n^{k-1} + \ldots + \omega n = \alpha n^{k} + \beta n^{k-1} + P(n),$$

and put $M = N^{1/K_1 - s}$. Suppose that there is no natural number $n \leq N$ having (2). Let r be as in Lemma 5. We apply the induction hypothesis to the polynomial P(rn). Thus there exists a natural number $s \leq M^{K_2}N^s$ with

$$||P(rs)|| < \frac{1}{2}M^{-1},$$

where $K_2 = \frac{4}{3}(2^{k-3}-1)$.

Putting n = rs, we have $n \leq M^{K+K_2}N^{2s} = M^{K_1}N^{2s} \leq N$. Moreover,

$$\begin{split} \|F(n)\| &\leqslant s^k r^{k-1} \|\alpha r\| + s^{k-1} r^{k-2} \|\beta r\| + \|P(rs)\| \\ &\leqslant M^{k(K_2+K)-1} N^{(k+1)s-k} + M^{(k-1)(K_2+K)-1} N^{ks-k+1} + \frac{1}{2} M^{-1} \\ &< M^{-1}. \end{split}$$

This is a contradiction, and Theorem 2 is proved.

References

- [1] R. C. Baker, Fractional parts of several polynomials, III, Quart. J. Math. Oxford (2) 31 (1980), pp. 19-36.
- [2] H. Davenport, On a theorem of Heilbronn, Quart. J. Math. Oxford (2) 18 (1967), рр. 339-344.
- [3] H. Heilbronn, On the distribution of the sequence $n^2\Theta \pmod{1}$, Quart. J. Math. Oxford (1) 19 (1948), pp. 249-256.
- [4] L. K. Hua, Additive theory of prime numbers, Amer. Math. Soc., Providence
- [5] W. M. Schmidt, On the distribution modulo 1 of the sequence $an^2 + \beta n$, Canad. J. Math. 29 (1977), pp. 819-826.
- Small fractional parts of polynomials, Regional Conference Series no. 32, Amer. Math. Soc., Providence 1977.
- [7] I. M. Vinogradov, The method of trigonometric sums in number theory (Russian), Moscow 1971.

ROYAL HOLLOWAY COLLEGE Egham, Surrey UNIVERSITY OF COLORADO

Boulder, Colorado

(1128)Received on 15.1.1979