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On the distribution modulo 1 of the sequence an®+gn?-+yn

by
R. C. Baxar (London)

1. Imtroduction. Lt ||| denote distance to the nearest integer. Let
&> 0,and let a, B, y denote arbitrary real numbers. Recently W, M. Schmidt
showed [3] that fer N > ¢,(£) there is ¢ natural number n< N having

llan?+ fn|| < N -Hrte,
This generalizes the well known theorem of Heilbronn [3] and sharpens
a result of Davenport [2].

Schmidt’s method enabled him to prove that for N > e,(s) there is
a natural number #n < N having

llan? -+ fn? 4y << NHTe,
For y = 0, the exponent —1/5-+¢ could be replaced by —1/4&-+¢[6].
Both results sharpen those of Davenport [2].
In the present paper we shall show that for N> ¢,(s) there is a natural
number n < N having
flom? - fu? +ym|| < NHEFe,
vt is o more diffieult to prove n more general theorem. We denote by %
an integer greater than 1 and write K = 2577,
TrroreM 1. Suppose k=3 -and N > o,(k, &). Then there is a natural
number n < N with
(1) llon® |- ik~ - | <z N e
Wo nlgo glrengthen Schmidt’s theovem [6]1 for an arbitrary poly-
nomial of degree k2 3 with constinnt term zero, bub only when % is odd.
Mrmonrmm 2. Leb & be an odd intoger, % 3 8, and write Ky = 3(2*'—1).
Lot N > ay(k, 2}, Givon & polynomial F(n) of degree & with sonstant term zero,
there is a natural number n <\ N with
(2) T ()] < FHfieske,

Wo shall uso ideas normally asgociated with “major ares? in the circle
method [4]. Schmidt’s method, on the other hand, i3 a ‘very original
development of “minor are” ideas.
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2, The final coefficient lemma. Weo write ¢(z) = 6™, e,(®) =~ e{n/g).
In [7], Chapter 4, I. M. Vinogradov showed that, given a large oxponential
gum
N

-1
Ze(akn’“ oy P

Ra=l

+ a;n)

and a good simultaneous rational approximation B0 og, a1y «»., gy ODO
can (under suitable conditions) obtain a good simultancous approximation
10 @y @yyy « -y gy ¢y Lomma 4 (below) is avefined version of this principle,
Other applications of Lemma 4 arve given in [1].

We shall need some preliminary lemmas. Lemma 2 s rather like
Lemma 7.11 of Hua’s book [4].

LivmA 1. Det G(o) = w28+ ... -+uyw be a polynomial with wnteger
ooefficients. Let g be an integor and write d for the greatost common divisor,

& == Gy Way vovy Ug).

Then when 1< m< g, we have

L

‘Zeq(G (2)) =

a1

Proof. This ig Theorermn 2 of [4]. Tho implied constants, here and
subsequently, depend at most on & and s

Tn the following lemmas the polynomials occurring have real coef-
ficients.

IoMuMA 2. Let k3= 2. Lel flo) = aqat-- ..
there are integers N, )y, gy oy Uy SUCh that

= 0 (qlwlﬂc i—edlfic)

< oo and supposs that

(8) @ = (g Ugy +nny Ug) SV
and ‘
(4) 1< g<S ™, Jgy—u) < N-i=r  (1£igh).
Writing
k
By = ay—uglg (§ =1,..., k), w} = Zﬁjmja
fumd
3 a
Qo) = Dlugd!,  S(g) = D) 6,(G(v)),
Fel A |
we have

N~-~1

D elimy) =g8(g) f

ol

g(9))dy -+ 0 (¢ N).

icm
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N-1
Proof. Write § = 3 e(f(n)

L
0

§ = Z Ze(j (—331 +ﬁj)(mq+v)f)

g=1 (5} fe=1

where the inner summation is over integers m safisfying

() 0 < m-tufg< Ng.
Thus
q
(6) 8 = EGQ(G(TJ))Ze(g(WLQ—i—v)).
=1 )

Let [ = [1/e]+1. Write H(z) = ¢(g(qw)) and 4 = Ng~'. By Euler’s
sum formmnla ([4], p. 80) we have for all £

(7 > Him+1) = me)dw-«f-Z{HU

r+1 (t _A) -
Oson-fbesd =0 .
~HO0) by (0} — f A (@), (t—a) do.
B

Here by (z), by(#), ... are functions of period one defined inductively
by: b)) = o—{w]—1/2y

by (@) = by (0)+ [ Br(y)dy

Wo write V, for the total variation of b, on [0, 1]. (evidently V,<< o0)
and M, = sap|b ().
: &

We note that
A N
(8) [ H@)do =g [ e{gw))dy
] 1]

Combining (6), {7) (with ¢ = v/q) and (8), we find that

9 8 =q*8 q)f (909)) @y + 2,
where
10y B = gﬂ‘ﬂm; o) (- A)——
-1 a
- ZH(T) 2 60(G{®)) r+1( ) Zeq Hm( i ('g“ _m)dw.
=] S Pl =1
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Tt remaing to estimate H. We begin by observing that the hth de-
rivative of e{ay’) takes the shape

DMolayh)) = 3 Oy by j)o g™ Pe(ay’).

B lgr<h
For1l<i<h 0 <y <4, if " <r<h we have, in view of (4),
(qg‘ﬁj)ryir—h < qirg—rNr(l—j—e)Nja'wh gh—jr < (QN—1+E)TL—rN—ILs < Fhe
It follows that for 1K<k 0 Sy < 4,
DM e(B07y")) = 00 (B) N ™)
and wo easily deduce that
(11) DME () = 0{CL)N™¥) (0<y < 4),
Thus the third texm in (10) is
O(gNg™ - M, N7 = 0(1).

v
Write 8, = 3 6,(G(w)). If ¢ is any real number,

¢
Zeq(a(v))br“ (—’”— —t)
Vel
gl 41 ' :
== ug;s“ {b?‘—l-l (1{3 Hdt) b (——Ew ht)}l t b (b,

go that for 0<<r<l,

2
‘ 2 GQ‘(G(Q})) br-}-l (% - ﬁ) ’ < (V'r-]—l —[_MHNI)IE?f ISTJI

LY

v O(giwllfnvl‘«'ﬂl‘l dlilc) .

in view of Lemma 1, (3) and (4). Taking (11) into aceount, it follows thay
the firgt and second terms in (1.0) are

0 (f]l ijalv'n) .

The game ostimate thus applios to X, and Lemma 2 is proved.
LmveA 3. Tet giw) = fpa®-- ... - f 0. Thon

O (ql 1l N")

N
[ elg(o))dm < Nz,
0
where Z = max (L, N8, ..., N¥|f).
Proof. This follows at ouce from Lemma 0.1 of [4].
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Tmwma 4. Lei f(@) = @0+ ... + o0 ond suppose there are integers
N > oy(k, &) and r such that

(12) L<rS N7, o< FV2 0 (2<5<R).
Swppese further that
N
(13) | Me(gm)| = H > r-veye,
n=al !

Then there s a divisor s of » and a natural number § < N° such that, writing
q == 8%

q = Nk _]'.‘I"»i‘c’
Proof. Write

oy gl < NEISREE (1 <G <R

(.? =2, ..., k).

Let @ = (7, vy ..., 9;) and define s = rd™', w, =0;d™" (j =2,..., k).
By Dirichlet’s theorem therc is a natural number ¢ < N* such that

rogll == |ra;— v,

llag st = |ay86— ] < N°°.
Write g = b, u; = w;t (j = 2,..., k); then
(G thay ovny ) = 0(8, Way ooy t0y) =TSN
and in view of (12),
1<V g N,
ey — 2y =W roy — oy S NI (2KGKR).

We may therefore apply Lemma 2. Now in view of (18) and N
> 04(k, 8), the quantity O(g'~"*N*) is smaller than }H. It follows that

Ny
a8 [ e(gn)ay] > 38

where S{g) and g{y) are a8 in Leruna 2.
Wo now use the estimate

¢ 8(g) < gEN

which follows from (3) and Lemma 1, In the notation of Lemma 3, then,
we gee thatb

H < q—llkNl-i-znZﬂl;‘k
or .
47 = wax(g, Flgall..., ¥ lga]) < NeHHg*,

Bince N > ¢,(k, e), this proves Lemma 4.
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8. Proofs of the theorems.
S Mo MR Lot
. wan

Suppose that there 48 no natural number n <, N having

Lumma 5. Suppose N > o, (h, &) and | <
(@) == aa” 4ot ..

Then there ewists o naturel number r wilh
(14) rS MEN,  lar] s MEINCE )
i L MN® such that

A |yl 1
and there is a natural number
(18) l‘: e(mlf’(ﬂ-t)) ‘ o NUT M
=]
Proof. As far as (14) goes, this is u special ease of Lemnw 8A of [67].
The inequality (15) is an casy congequence of the proof of Lemuna 8A.
Proot of Theorom 1. Su_'ppoﬂe that there is no natural nunber
n < N having (1). Lob M == ¥ Wo apply Lenima 5 with s, = ¢/Bk
in place of &, Thus there is a natural number r < ME N such that
”M‘" < .MK""IN‘l"k, ”ﬁ’i"” -t Nh-ket 1
and a natursl number m < MN® guch that
lze(fmﬂ
Pl
Write f(o) = mP(5) = &4 a2+ ...
' 1 -<~h g 'i:. Nl—-ml,

[w H e N0

+oq . Bvidently
loyrll € N¥-I=2m (2 j s by,

and moreover

,'.l—lfde.dnl o MA 1 A7y o " H.

Applying Lemms 4, with s, in place of e, there is o natural nwuber g
fnch thab

Netblesy sl < MmE _‘Nﬂui’
Nk =k < M’“N*’f‘l“k & jl'['”"'la'N"‘]“'“l“k,

a4
lgagl = lgmeli <
and. similaxly
llgmpl| < M1 Jtn~hl
Write 7 == qm Then

"< QgL ppsiey Q.MK.N”‘H < .N,

lgmy|| < W&t Ntke=t,

icm
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while _
[F ()] < 2% lan] +5*"2 B0l + [ynd
g NI:--IMK'-—I Na.i’éq—ln +Nk—2MK—1NHcel—k+1 _I_MK—I N4kel- 1
= 3N-~1—MkelN1-—1,'K < N"‘IIK-I'E‘

This is a contradiction, and Theorem 1 is proved.

Proof of Theorem 2. This iz true for ¥ = 3 by Theorem 1. We
procecd by induction from %k—2 to k. Write

Fin) = an®+ a1+ ... +on = an®+ putT +P(n),

and put M = ¥YEr~*, Buppose that there is no natural nomber n < N
having (2). Let r be ag in Lemma 5. We apply the induction hypothesis
to the polynomial P (rn). Thus there exists a natural number ¢ < M2 N*
with
IP(re)l < 324,
where K, = $(2%°—1).
Putting n = rs, we have n  MEYE:N* — MF1N*™ g N. Moreover,

B () < &% flarl| -+ ¥ 102 |Br]l - 1P (rs)
< MHEE)I=L ksl o b 1(Eg+E)=1 [kamktl | g 71

< M.
This is a contradietion, and Theorem 2 is proved.
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