

And the state of the second of the state of the second of t

Service of the servic

the same that the second of th

A supplied to the control of the contr

the first of the control of the property of the property of the control of the co

ACTA ARITHMETICA XL (1981)

The derivative of p-adic L-functions

. by

LAWRENCE C. WASHINGTON (College Park, Md.)

The derivatives of a p-adic analogue of $\log \Gamma(x)$ are related to the values of the Kubota-Leopoldt p-adic L-functions at positive integers [5], just as in the case of the classical L-functions. It is natural to ask whether or not there is a similar relation between the antiderivatives of $\log \Gamma(x)$ and the values of the L-functions at negative integers. In this paper, we investigate this question and show that the antiderivatives of $\log \Gamma$ yield the values of the first derivatives of the L-functions at negative integers in both the classical and p-adic cases.

1. The p-adic log gamma functions. Define the Bernoulli numbers by

$$\frac{te^t}{e^t-1}=\sum_{n=0}^{\infty}B_n\frac{t^n}{n!},$$

so $B_0 = 1$, $B_1 = \frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, etc. (note that we have chosen $B_1 = +\frac{1}{2}$ as in [3]). The Bernoulli polynomials are defined by

$$B_n(X) = \sum_{j=0}^n \binom{n}{j} B_j X^{n-j}.$$

Let

$$G_p(X) = (X - \frac{1}{2})\log_p X - X + \sum_{i=1}^{\infty} \frac{B_i}{j(j-1)} X^{i-j}$$

for $|X|_p > 1$. Here $\log_p X$ is the p-adic logarithm, which may be defined for all p-adic X (see [3]). One readily recognizes $G_p(X)$ as coming from Stirling's asymptotic series for $\log (\Gamma(x)/\sqrt{2\pi})$, and hence we may regard it as a p-adic log gamma function. Its derivatives were used in [5] to give the values of p-adic L-functions at positive integers (see below). Subsequently it was defined and studied extensively by Jack Diamond [1]. He showed that it may be continued to $\Omega_p - \mathbb{Z}_p$ (where $\Omega_p =$ completion of the algebraic closure of Q_p) and that it satisfies identities analogous

to those for the classical log gamma function. In particular, $G_p(X+1) = G_p(X) + \log_p X$. Also there is the identity $G_p(X) + G_p(1-X) = 0$.

Morita [4] has also defined a p-adic gamma function as follows. If n is a positive integer, let

$$\Gamma_p(n) = (-1)^n \prod_{\substack{j=1 \ p \neq j}}^{n-1} j.$$

Then extend Γ_p to all of \mathbb{Z}_p by continuity. It turns out that Γ_p is an analytic function on \mathbb{Z}_p .

The following lemma shows the relation between G_p and $\log \Gamma_p$.

LEMMA ([2]). Extend G_p to all of Ω_p by setting $G_p(X) = 0$ if $X \in \mathbb{Z}_p$. Then

$$\log_p \Gamma_p(X) = \sum_{q=0}^{p-1} G_p\left(rac{X+a}{p}
ight) \quad \textit{for} \quad X \in \mathbf{Z}_p.$$

Proof. Both sides satisfy the functional equation

$$f(X+1) = f(X) + \delta(X)\log_p X$$

where $\delta(X) = 0$ if p|X and $\delta(X) = 1$ otherwise. Therefore they differ by a constant. But $G_p(y) + G_p(1-y) = 0$, so both sides are equal for X = 0, hence equal for all X.

2. p-adic L-functions. Let χ be a Dirichlet character of conductor f and let $L(s,\chi)$ be the associated Dirichlet L-function. Then (see [3])

$$L(1-n,\chi) = -\frac{B_{n,\chi}}{m}, \quad n \geqslant 1,$$

where $B_{n,x}$ is a generalized Bernoulli number.

The p-adic L-function $L_p(s,\chi)$ satisfies a similar property, namely

$$L_p(1-n,\chi) = -(1-\chi\omega^{-n}(p)p^{n-1})\frac{B_{n,\chi\omega^{-n}}}{n}, \quad n \geqslant 1.$$

Here ω is the Teichmüller character defined as follows: if $a \in \mathbb{Z}_p^{\times}$, then $a = \omega(a) \langle a \rangle$ with $\langle a \rangle \equiv 1 \mod p \pmod 4$ if p = 2; references to similar modifications for p = 2 will henceforth be omitted) and with $\omega(a)$ a (p-1)st root of unity.

In [5] we proved the following: Let F be any multiple of p and f. Then

$$L_p(s,\chi) = \frac{1}{s-1} \frac{1}{F} \sum_{\substack{a=1 \ a \neq a}}^F \chi(a) \langle a \rangle^{1-s} \sum_{j=0}^{\infty} {1-s \choose j} \left(\frac{-F}{a}\right)^j B_j.$$

When s is a positive integer with $s \ge 2$, this becomes

$$(1_p) L_p(1+n,\chi) = \frac{(-1)^{n+1}}{n! F^{n+1}} \sum_{\substack{a=1\\ a \neq a}}^F \chi \omega^n(a) G_p^{(n+1)} \left(\frac{a}{F}\right),$$

where $G_p^{(n+1)}$ denotes the (n+1)st derivative. This is the analogue of the classical formula

$$(1_{\infty}) \quad L(1+n,\chi) = \frac{(-1)^{n+1}}{n! F^{n+1}} \sum_{\alpha=1}^{F} \chi(\alpha) \frac{d^{n+1}}{dX^{n+1}} \left(\log \left(\Gamma(X) / \sqrt{2\pi} \right) \right) \Big|_{X=\alpha/F}$$

(of course, the $\sqrt{2\pi}$ here is extraneous; but it will be needed later when negative n are considered).

When p does not divide the conductor of $\chi \omega^n$, call it g, we may use the lemma to rewrite (1_n) as

$$(1'_{p}) \qquad L_{p}(1+n,\chi) = \frac{(-1)^{n+1}}{n! \, g^{n+1}} \sum_{a=1}^{g} \chi \omega^{n}(a) \, \frac{d^{n+1}}{dX^{n+1}} (\log \Gamma_{p}(X)) \Big|_{X=a/g}.$$

3. The derivative in the p-adic case. We differentiate the above formula for $L_p(s,\chi)$:

$$\frac{d}{ds}\langle a\rangle^{1-s} = -\langle a\rangle^{1-s}\log_p a.$$

If $1-s \notin \{1, ..., j-1\}$, then

$$\frac{d}{ds}\binom{1-s}{j} = -\binom{1-s}{j}\left(\frac{1}{1-s} + \frac{1}{-s} + \ldots + \frac{1}{-s-j+2}\right).$$

If $1-s = n \leq j-1$ then

$$\frac{d}{ds}\binom{1-s}{j} = -\frac{n(n-1)\dots(1)\cdot(-1)(-2)\dots(n-j+1)}{j!} = \frac{(-1)^{j-n}}{j}\frac{1}{\binom{j-1}{n}}.$$

Putting everything together, we obtain

$$L_p'(1-n,\chi) = \frac{1}{F} \sum_{\substack{a=1 \ p \neq a}}^F \chi(a) \left\{ \frac{-\langle a \rangle^n}{n^2} \sum_{j=0}^\infty \binom{n}{j} \left(\frac{-F}{a} \right)^j B_j + \right.$$

$$\left. + \frac{1}{n} \langle a \rangle^n (\log_p a) \sum_{j=0}^\infty \binom{n}{j} \left(\frac{-F}{a} \right)^j B_j + \right.$$

$$\left. + \frac{1}{n} \langle a \rangle^n \sum_{j=1}^n \binom{n}{j} \left(\frac{1}{n} + \right) \dots + \frac{1}{n-j+1} \left(\frac{-F}{a} \right)^j B_j - \right.$$

$$\left. - \frac{1}{n} \langle a \rangle^n \sum_{j=n+1}^\infty (-1)^{j-n} \frac{B_j}{j} \frac{1}{\binom{j-1}{n}} \left(\frac{-F}{a} \right)^j \right\}.$$

This may be rewritten as

$$(2_p) L_p'(1-n,\chi) = \sum_{n=1}^F \chi \omega^{-n}(n) H_n^p\left(\frac{a}{F}\right),$$

where

$$H_n^p(X) = \frac{(-1)^n F^{n-1}}{n} \left[(\log_p FX) B_n(-X) - \frac{1}{n} B_n(-X) + \sum_{j=1}^n \binom{n}{j} \left(\frac{1}{n} + \dots + \frac{1}{n-j+1} \right) (-X)^{n-j} B_j - \frac{1}{n} \sum_{j=n+1}^\infty \frac{B_j}{j} \frac{1}{\binom{j-1}{n}} X^{n-j} \right].$$

Since $B'_n(X) = nB_{n-1}(X)$, we find that

$$H_n^p(X)' = \frac{(-1)^n F^{n-1}}{n} \left[\frac{1}{X} B_n(-X) - (\log_p FX) n B_{n-1}(-X) + B_{n-1}(-X) - \frac{1}{n} \sum_{j=1}^{n-1} \binom{n}{j} \left(\frac{1}{n} + \dots + \frac{1}{n-j+1} \right) (n-j) (-X)^{n-j-1} B_j - \frac{1}{j} \sum_{j=n+1}^{n} \frac{B_j}{j} \frac{1}{\binom{j-1}{n}} (n-j) X^{n-j-1} \right].$$

Since

$$\frac{n-j}{n}\binom{n}{j}=\binom{n-1}{j}$$
 and $\frac{n}{n-j}\binom{j-1}{n}=-\binom{j-1}{n-1},$

it follows that

$$\begin{split} H_{n}^{p}(X)' &= (n-1)FH_{n+1}^{p}(X) + (-F)^{n-1}\left[\frac{-1}{nX}B_{n}(-X) - \frac{1}{n}B_{n-1}(-X) + \frac{1}{n-1}B_{n-1}(-X) + \frac{1}{n-1}(-X) + \frac{1}{n-1}(-X) + \frac{1}{n-1}(n-1)\left(\frac{1}{n} - \frac{1}{n-j}\right)(-X)^{n-j-1}B_{j} + \frac{B_{n}}{nX}\right]. \end{split}$$

Now

$$\binom{n+1}{j}\binom{1}{n}-\frac{1}{n-j}=\frac{1}{n}\binom{n-1}{j}-\binom{n}{j}=-\frac{1}{n}\binom{n-1}{j-1}.$$

Therefore the expression in brackets becomes (let $\binom{n-1}{-1} = 0$)

$$\sum_{j=0}^{n-1} (-X)^{n-j-1} (B_j) \left\{ \frac{1}{n} \binom{n}{j} - \frac{1}{n} \binom{n-1}{j} - \frac{1}{n} \binom{n-1}{j-1} + \frac{1}{n-1} \binom{n-1}{j} \right\}$$

$$= \sum_{j=0}^{n-1} (-X)^{n-j-1} (B_j) \left\{ \frac{1}{n-1} \binom{n-1}{j} \right\} = \frac{1}{n-1} B_{n-1} (-X).$$

We now have

$$(3_p) H_n^p(X)' = (n-1)FH_{n-1}^p(X) + \frac{(-F)^{n-1}}{n-1}B_{n-1}(-X), n \ge 2.$$

Also, from the definition of $H_n^p(X)$,

$$(4_p) H_1^p(X) = G_p(X) + (X - \frac{1}{2}) \log_p F.$$

Therefore

$$(5_p) \qquad L_p'(1-n,\,\chi)$$

$$=(n-1)!F^{n-1}\sum_{\substack{a=1\\p\nmid a}}^F\chi\omega^{-n}(a)\Big[\int\limits_{(n-1)}^{\dots}\int\limits_{(p-1)}^GG_p(X)+\text{polynomial of degree }n\Big]_{X=a/F}.$$

If p does not divide $g = \text{conductor of } \chi \omega^{-n}$, then we may use the lemma to rewrite (5_p) as

$$(5'_n)$$
 $L'_n(1-n, \chi)$

$$= (n-1)! g^{n-1} \sum_{a=1}^{q} \chi \omega^{-n}(a) \Big[\int \dots \int_{(n-1)} \log_p \Gamma_p(X) + \text{pseudo-polynomial} \Big]$$
of degree n

by "pseudo-polynomial" we mean a function of the form

$$\sum_{\substack{k=0\\X+k\neq 0(p)}}^{p-1}P\left(\frac{X+k}{p}\right),$$

where P is a polynomial of degree n.

When n = 1, this formula is due to Ferrero (see [2]).

4. The derivative in the complex case. We now show that the results of the previous section are analogues of the situation for the classical L-functions. Let

$$H_n(X) = \frac{d}{ds} \left(\frac{1}{F^s} \zeta(s, X) \right) \Big|_{s=1-n},$$

where

$$\zeta(s, X) = \sum_{m=0}^{\infty} \frac{1}{(X+m)^s}, \quad \operatorname{Re}(s) > 1,$$

in the state of th

is the Hurwitz zeta function (which may be continued meromorphically to the whole plane). Then

(2_∞)
$$L'(1-n,\chi) = \sum_{a=1}^{F} \chi(a) H_n\left(\frac{a}{F}\right).$$

Also

$$H'_n(X) = \frac{d}{ds} \left(\frac{1}{F^s} \sum_{m=0}^{\infty} \frac{-s}{(X+m)^{s+1}} \right) \Big|_{s=1-n}$$
$$= (n-1)FH_{n-1}(X) - F^{n-1}\zeta(2-n, X).$$

Since

$$\zeta(2-n, X) = (-1)^n \frac{B_{n-1}(-X)}{n-1}$$

(see [6], p. 267; the formula there may be modified to obtain the present formula), we obtain

$$(3_{\infty}) \quad H'_n(X) = (n-1)FH_{n-1}(X) + \frac{(-F)^{n-1}}{n-1}B_{n-1}(-X), \quad n \geqslant 2.$$

In addition ([6], p. 271)

$$(4_{\infty}) H_1(X) = \log \left(\Gamma(X) / \sqrt{2\pi} \right) + (X - \frac{1}{2}) \log F.$$

Therefore

$$(5_{\infty}) \qquad L'(1-n,\chi)$$

$$= (n-1)! F^{n-1} \sum_{a=1}^{F} \chi(a) \Big[\int \dots \int \log \big(\Gamma(x) / \sqrt{2\pi} \big) + \text{polynomial} \Big]$$
of degree $n \Big]_{X=a/F}$.

In fact, formulas (3_p) and (3_∞) show that we may choose the antiderivatives so that the polynomials of degree n are identical (except that $\log_p F$ is replaced by $\log F$).

\$1500 QCM, Pull Bulk 11150 - C

References

- [1] J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), pp. 321-337.
- [2] B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at s = 0, Inv. math. 5 (1978), pp. 91-102.
- [3] K. Iwasawa, Lectures on p-adic L-functions, Princeton University Press, Princeton, New Jersey, 1972.
- [4] Y. Morita, A p-adic analogue of the Γ-function, J. Fac. Sci. Univ. Tokyo Sec. IA 22 (1975), pp. 255-266.
- [5] L. Washington, A note on p-adic L-functions, J. Number Theory 8 (1976), pp. 245-250.
- [6] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, London, New York 1969.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND College Park, Maryland

Received on 21.3.1979 (1147)