

Vaught's conjecture for theories of one unary operation

by

Arnold W. Miller (Madison, Wis.)

Abstract. Vaught's conjecture [11] is that for any countable first order theory T $w(T) \leq \aleph_0$ or $w(T) = 2^{\aleph_0}$, where w(T) is the number of nonisomorphic countable models of T. It is shown that Vaught's conjecture is true for any first order theory T in the language of one unary operation. Also an example is given of a pseudo $(L_{w_1\omega})$ elementary class in the language of une unary operation with exactly \aleph_1 nonisomorphic countable models.

For $\mathfrak{A} = (A, R)$ where R is a binary relation on A define:

- (1) For $a, b \in A$ $\delta(a, b)$ is the least $n < \omega$ such that there are $x_i \in A$ for $i \le n$ with $a = x_0$ and $b = x_n$, and for all i < n $(R(x_i, x_{i+1}) \text{ or } R(x_{i+1}, x_i))$. If no n exists let $\delta(a, b) = \infty$.
 - (2) For $a, b \in A$ a is connected to b iff $\delta(a, b) = n$ for some $n < \omega$.
- (3) A loop is a set of distinct elements of A, $\{x_0, ..., x_n\}$ with n > 1 and such that for any i < n $(R(x_i, x_{i+1})$ or $R(x_{i+1}, x_i))$ and $(R(x_n, x_0)$ or $R(x_0, x_n))$.
 - (4) A component is a maximal connected subset of A.
 - (5) $\omega(\mathfrak{A})$ is the number of nonisomorphic elementary substructures of \mathfrak{A} .

Theorem A. If $\mathfrak{A} = \langle A, R \rangle$ is countable and every component of \mathfrak{A} contains only finitely many loops then $\omega(\mathfrak{A}) \leq \aleph_0$ or $\omega(\mathfrak{A}) = 2^{\aleph_0}$.

Remarks.

- (1) If R is a partial function on $A(\forall x, y, z \in A(R(x, z) \text{ and } R(y, z)) \Rightarrow x = y)$ then each component contains at most one loop.
- (2) Theorem A can be generalized to show that if $\mathfrak X$ is expanded by adding countably many unary predicates or constants, then $\omega(\mathfrak X) \leq \aleph_0$ or $\omega(\mathfrak X) = 2^{\aleph_0}$.

Theorem B. If T is a complete theory in the language of one binary relation and every countable model of T has the property that every component contains only finitely many loops, then $\omega(T) = 1$, κ_0 or 2^{κ_0} .

Theorem B was proved by Leo Marcus [6] and myself independently. Later M. Rubin pointed out that the fact $(\omega(T)>1 \to \omega(T) \geqslant \aleph_0)$ can be obtained as a corollary of a theorem of Lachlan [5].

THEOREM C. There is a θ a PC($L_{\omega_1\omega}$) sentence in one unary operation such that $\omega(\theta) = \mathbf{s}_1$.

This disproves Theorem 1 of S. Burris [1], since it implies that the quantifier ranks of the Scott sentences of countable unary operations are arbitrarily high. J. Steel [10] has proved Vaught's conjecture for $L_{\omega_1\omega}$ sentences in one unary operation. M. Rubin proved Vaught's conjecture for theories of a linear order [8] and more recently for $L_{\omega_1\omega}$ sentences of a linear order [9].

In my abstract [7] I mistakenly stated Theorem C for $PC(L_{\omega\omega})$. Does there exist a $PC(L_{\omega\omega})$ sentence θ in one unary operation with $\omega(\theta) = \aleph_1$?

The proof of Theorem A. We only prove Theorem A for $\mathfrak{U} = (A, R, \bar{a})$ where R is binary, symmetric, and irreflexive; and \bar{a} is finitely many constants, since it is easy to generalize.

DEFINITIONS. (1) For I having a distinguished constant O let

$$\mathfrak{A}_n = \{ a \in A \colon \delta(x, O) \leq n \} .$$

(2) $\mathfrak{U} \equiv_n \mathfrak{B}$ iff Player II has a winning strategy in the Ehrenfeucht game of length n [2].

Our main lemma is the following.

LEMMA 1. If A and B are connected with distinguished constants then

$$(\forall n < \omega \mathfrak{A}_n \equiv_n \mathfrak{B}_n) \Rightarrow \mathfrak{A} \equiv \mathfrak{B}.$$

PROPOSITION 1. If A is connected with distinguished constant then

$$\forall n < \omega \, \forall \varphi \, (\bar{x}, \bar{y}) \, \exists N \geqslant n \, N < \omega \, \exists \Gamma$$

finite

$$\forall \overline{a} \in \mathfrak{A} - \mathfrak{A}_{N} \exists \varphi^{*}(\overline{y}) \in \Gamma \forall \overline{b} \in \mathfrak{A}_{n}(\mathfrak{A} \models \varphi(\overline{a}, \overline{b}) \text{ iff } \mathfrak{A}_{N} \models \varphi^{*}(\overline{b})).$$

Proof. The proof is by induction on the logical complexity of $\varphi(\bar{x}, \bar{y})$. For the atomic case put N=n+2 and $\Gamma=\{T,F,x_1=x_2,R(x_1,x_2)\}$. On the induction step "¬" and " \wedge " are both easy. We do the case of $\exists z \varphi(\bar{x},z,\bar{y})$. By induction $\exists \Gamma_1 \exists N_1 \geqslant n$ such that

$$\forall a \overline{a} \in \mathfrak{A} - \mathfrak{A}_{N_1} \exists \sigma(\overline{y}) \in \Gamma_1 \forall \overline{b} \in \mathfrak{A}_n(\mathfrak{A} \models \varphi(\overline{a}, a, \overline{b}) \text{ iff } \mathfrak{A}_{N_1} \models \sigma(\overline{b})).$$

Also by induction $\exists \Gamma_2 \exists N_2 \geqslant N_1$ such that

$$\forall \bar{a} \in \mathfrak{A} - \mathfrak{A}_{N_2} \exists \tau(z, \bar{y}) \in \Gamma_2 \forall b \bar{b} \in \mathfrak{A}_{N_1} (\mathfrak{A} \models \varphi(\bar{a}, b, \bar{b}) \text{ iff } \mathfrak{A}_{N_2} \models \tau(b, \bar{b})).$$

Let $N = N_2$ and

$$\Gamma = \{ \bigvee_{\sigma \in F} \sigma^{N_1}(y) \vee \exists z \in \mathfrak{A}_{N_1} \tau(z, \bar{y}) \colon F \subseteq \Gamma_1, \tau \in \Gamma_2 \} ,$$

and where σ^{N_1} is the relativization of σ to \mathfrak{A}_{N_1} . These work since given $\bar{a} \in \mathfrak{A} - \mathfrak{A}_{N_2}$ let

$$F = \{ \sigma(\bar{y}) \in \Gamma_1 \colon \exists a \in \mathfrak{A} - \mathfrak{A}_{N_1} \forall \bar{b} \in \mathfrak{A}_n (\mathfrak{A} \models \varphi(\bar{a}, a, \bar{b}) \leftrightarrow \mathfrak{A}_{N_1} \models \sigma(\bar{b})) \}$$

and $\tau(z, \bar{y})$ so

$$\forall b\bar{b} \in \mathfrak{A}_{N_1} \big(\mathfrak{A} \models \varphi(\bar{a}\,,\,b\,,\,\bar{b}) \,\leftrightarrow\, \mathfrak{A}_{N_2} \models \tau(b\,,\,\bar{b}) \big) \,.$$

et

$$\varphi^*(\bar{y}) = \bigvee_{\sigma \in F} \sigma^{N_1}(\bar{y}) \vee \exists z \in \mathfrak{U}_{N_1} \tau(z, \bar{y}) . \quad \blacksquare$$

Remark. Proposition 1 was motivated by the main lemma in Feferman-Vaught [3].

PROPOSITION 2. If It is connected with a distinguished constant then

$$\forall \varphi(x, \vec{y}) \forall n < \omega \exists N < \omega \forall \vec{b} \in \mathfrak{U}_n$$

if $\mathfrak{A} \models \exists x \varphi(x, \overline{b})$ then

$$\exists a \in \mathfrak{A}_N \mathfrak{A} \models \varphi(a, \bar{b}) \; .$$

Proof. Let N_1 , Γ be from Proposition 1 for $\varphi(x, \vec{y})$ and n. Define: $\varphi^*(y) \in \Gamma$ is a testing formula for $a \in \mathfrak{A} - \mathfrak{A}_{N_1}$ if

$$\forall \overline{b} \in \mathfrak{A}_n(\mathfrak{A} \models \varphi(a, \overline{b}) \leftrightarrow \mathfrak{A}_{N_1} \models \varphi^*(\overline{b})).$$

Choose $N \geqslant N_1$, $N < \omega$ so that $\forall a \in \mathfrak{A} - \mathfrak{A}_{N_1}$ if $\varphi^*(\bar{y}) \in \Gamma$ is a testing formula for a then there exists $a' \in \mathfrak{A}_{N_1}$ so that $\varphi^*(\bar{y})$ is a testing formula for a'. This N works because

$$\mathfrak{A} \models \varphi(a,b) \leftrightarrow \mathfrak{A}_{N_1} \models \varphi^*(b) \leftrightarrow \mathfrak{A} \models \varphi(a',\overline{b})$$

some $a' \in \mathfrak{A}_N$ with same testing formula $\varphi^*(\bar{y})$ as a.

PROPOSITION 3. If $\mathfrak A$ is connected with a distinguished constant and $\mathfrak A \equiv \mathfrak B$ then $\bigcup \{\mathfrak B_n \colon n < \omega\}$ is an elementary substructure of $\mathfrak B$.

Proof. If $b \in \mathfrak{B}_n$ and $\varphi(x, \overline{y})$ are given then taking $N < \omega$ from Proposition 2, $\mathfrak{A} \models \text{``} \forall \overline{y} \in \mathfrak{A}_n (\exists x \varphi(x, \overline{y}) \leftrightarrow \exists x \in \mathfrak{A}_N \varphi(x, \overline{y}))$ ''.

So if $\mathfrak{B} \models \exists x \varphi(x, \overline{b})$ then $\exists b \in \mathfrak{B}_N \ \mathfrak{B} \models \varphi(b, \overline{b})$. By Tarski's criterion we are done.

The proof of Lemma 1. HC is the set of hereditarily countable sets. Let M be an elementary extension of (HC, \in) such that ω^M is nonstandard. We assume $\mathfrak{A}, \mathfrak{B} \in HC$. Let \mathfrak{A}^* be the structure determined by M corresponding to \mathfrak{A} and \mathfrak{A}^* and \mathfrak{A}^* is a strategy for player II in the Ehrenfeucht game of length n^* played between \mathfrak{A}^* and \mathfrak{B}^* . Since n^* is nonstandard the strategy s gives a back and forth property to show \mathfrak{A}^* is \mathfrak{B}^* (if player I plays $a \in \mathfrak{A}^*$, then s must respond with $b \in \mathfrak{B}^*$). By Proposition 3 \mathfrak{A}^* and \mathfrak{B}^* and \mathfrak{A}^* so \mathfrak{A}^* and \mathfrak{A}^*

Lemma 2. If for every component $\mathscr C$ of $\mathfrak A$ $\omega(\mathscr C)\leqslant \kappa_0$ or $\omega(\mathscr C)=2^{\kappa_0}$, then $\omega(\mathfrak A)\leqslant \kappa_0$ or $\omega(\mathfrak A)=2^{\kappa_0}$.

Proof. Note that from Lemma 1 if $\mathfrak{B} \prec \mathfrak{A}$ then the components of \mathfrak{B} are elementary substructures of the corresponding components of \mathfrak{A} . If $\omega(\mathscr{C}) = 2^{\aleph_0}$ for some \mathscr{C} which is a component of \mathfrak{A} , then using Ehrenfeucht games we see that $\omega(\mathfrak{A}) = 2^{\aleph_0}$. Otherwise let $\{\mathscr{C}_n \colon n < \omega\}$ be pairwise nonisomorphic so that for any \mathscr{C} and

138

elementary substructure of some component of $\mathfrak A$ there is $n < \omega$ such that $\mathscr C \simeq \mathscr C_{\infty}$. For $k: \omega \to \omega + 1$ let \mathfrak{A}_{ν} be a structure (obtained continuously from k) with exactly k(n) copies of \mathscr{C}_n for each n and universe a subset of ω . Let $X = \{k \in (\omega + 1)^{\omega} : \mathfrak{A}_n\}$ can be elementarily embedded into \mathfrak{A} , then X is a Σ_1^1 set and $|X| = \omega(\mathfrak{A})$, so by a classical theorem of descriptive set theory [4] $\tilde{\omega}(\mathfrak{A}) \leqslant \kappa_0$ or $\omega(\mathfrak{A}) = 2^{\kappa_0}$.

Note that if for all $a \in A$ $\omega((\mathfrak{N}, a)) \leq \aleph_0$, then $\omega(\mathfrak{N}) \leq \aleph_0$; and also if there exist $a \in A$ with $\omega((\mathfrak{A}, a)) = 2^{\aleph_0}$ then $\omega(\mathfrak{A}) = 2^{\aleph_0}$. If \mathfrak{A} is connected and $Y \subseteq A$ is finite and includes all of \mathfrak{A} 's loops then define $\mathfrak{A}\{\mathfrak{z}\}$ for $y \in Y$ as follows. $\mathfrak{A}\{y\} = \{a \in A : a\}$ is connected to y by a path which only intersects Y at y}. By Lemma 1 note that for $\mathfrak{B} \subseteq \mathfrak{A}$ $(\langle \mathfrak{B}, y \rangle_{v \in Y} \prec \langle \mathfrak{A}, y \rangle_{v \in Y})$ iff $(\mathfrak{B}\{y\} \prec \mathfrak{A}\{y\})$ for all $y \in Y$). Hence it is enough to count the number of elementary substructures of a tree. Define M is a tree iff M is countable, connected, has no loops, and has a distinguished constant O. For the rest of the proof of Theorem A we will assume all structures are trees.

DEFINITIONS. (1) a is below b iff b lies on the unique shortest path connecting a to O.

- (2) $\mathfrak{A}(a)$ is the tree with universe $\{b \in A: b \text{ is below } a\}$ and distinguished constant a.
 - (3) $P(\mathfrak{A}) = \{a \in A : \delta(a, O) = 1\}$ and for $a \in A$ $P(a) = P(\mathfrak{A}(a))$.
- (4) For $X \subseteq P(\mathfrak{A})$ $\mathfrak{A}[X]$ is the *tree* with universe the elements of A below things in X and with distinguished constant O.
- (5) Given $x_n \in P(\mathfrak{A})$ for $n < \omega$ $[x_n \to y]$ iff for all $n \neq m$ $x_n \neq x_m$ and the type of x_n in $\mathfrak A$ converges to the type of y in $\mathfrak A$, i.e. for all $\Psi(v)$ first order there is $N < \omega$ such that for all $n \ge N$ ($\mathfrak{A} \models \Psi(x_n)$ iff $\mathfrak{A} \models \Psi(y)$)].

LEMMA 3. If $X \cup Y = P(\mathfrak{A})$, X and Y are disjoint, and for every $y \in Y \exists x_n \in X$ for $n < \omega$ such that $x_n \to y$, then $\mathfrak{A}[X]$ is an elementary substructure of \mathfrak{A} .

Proof. It is easy to find $X_v = \{x_n^y : n < \omega\}$ included in X for $y \in Y$, so that $X_n \cap X_{n'} = \emptyset$ for $y \neq y'$ and for each $y \in Y$ $x_n^y \rightarrow y$.

CLAIM. For every $n_0 < \omega$ and $y \in Y$ $\mathfrak{A}_{nn}[X_v]$ is an elementary substructure of $\mathfrak{A}_{no}[X_{\nu} \cup \{y\}].$

Proof. Let $\mathfrak{B} = \mathfrak{A}_{n_0}$ and $X_y = \{x_n : n < \omega\}$. Clearly $x_n \to y$ in the sense of \mathfrak{B} , hence we know from the basic lemma on Ehrenfeucht games ([2]) that

$$\forall n < \omega \,\exists N < \omega \,\forall m > N \mathfrak{B}(x_m) \equiv_n \mathfrak{B}(y)$$
.

Given $\bar{a} \in \mathfrak{B}[X_n]$ and $n_1 < \omega$, choose N sufficiently large so that $\bar{a} \in \mathfrak{B}[\{x_n : n < N\}]$ and for m>N $\mathfrak{B}(x_m)\equiv_{n_1}\mathfrak{B}(y)$. Now patch together appropriate strategies for Player II by letting $\mathfrak{B}(x_i)$ correspond to $\mathfrak{B}(x_i)$ for $i \leq N$ (and play the identity). letting $\mathfrak{B}(x_{N+1})$ correspond to $\mathfrak{B}(y)$, and letting $\mathfrak{B}(x_{N+1})$ correspond to $\mathfrak{B}(x_{N+i-1})$ for i > 1.

From Lemma 1 and the claim, $\mathfrak{A}[X_v]$ is an elementary substructure of $\mathfrak{A}[X, \cup \{y\}]$ for each $y \in Y$, hence by an easy Ehrenfeucht game argument $\mathfrak{A}[X] \prec \mathfrak{A}$.

DEFINITION. It is simple iff for every $a \in A$ only finitely many nonprincipal types in $Th(\mathfrak{A}(a))$ are realized in P(a).

Note. By using Lemma 3 if $\mathfrak A$ is not simple then $\omega(\mathfrak A)=2^{\aleph o}$.

DEFINITION. Given $(\mathfrak{B}_a: a \in A)$ such that $\mathfrak{B}_a \subseteq \mathfrak{A}(a)$ for each a the fusion of $(\mathfrak{B}_a: a \in A)$ is the tree \mathfrak{B} with $O^{\mathfrak{B}} = O^{\mathfrak{A}}$ and universe $\{b: \text{ for all } a \text{ between } O \text{ and }$ $b, b \in |\mathfrak{B}_a|$.

LEMMA 4. Given $(\mathfrak{B}_a: a \in A)$ with $\mathfrak{B}_a \prec \mathfrak{A}(a)$ for all $a \in A$, then the fusion \mathfrak{B} is an elementary substructure of A.

Proof. By Lemma 1 we may assume $\mathfrak{A} = \mathfrak{A}_n$ for some $n < \omega$. Now prove it by induction on n. Thus $\mathfrak{B}(b) \prec \mathfrak{A}(b)$ for all $b \in P(\mathfrak{A})$, hence $\mathfrak{B}(b) \prec \mathfrak{B}_0(b) \ \forall b \in P(\mathfrak{B}_0)$ and by an easy Ehrenfeucht game argument $\mathfrak{B} \prec \mathfrak{B}_o \prec \mathfrak{A}$.

DEFINITION. If $\mathfrak A$ is simple let $\mathfrak B_a^p = \mathfrak A(a)[\{x: \operatorname{tp}(x, \mathfrak A(a)) \text{ is principal}\}]$ for each $a \in A$, and \mathfrak{A}^p be the fusion of $\langle \mathfrak{B}^p_a : a \in A \rangle$. By Lemma 3 $\mathfrak{B}^p_a \prec \mathfrak{A}(a)$ and by Lemma 4 \mathfrak{A}^p is an elementary substructure of \mathfrak{A} .

LEMMA 5. If $\mathfrak{A}^p = \mathfrak{A}$ then $\omega(\mathfrak{A}) = 1$.

The proof is straightforward and left to the reader.

DEFINITIONS. For a fixed tree $\mathfrak{A} = \langle A, R \rangle$ let

- (1) $N(a) = \{x \in P(\mathfrak{A}(a)): \text{ the type of } x \text{ in } \mathfrak{A}(a) \text{ is nonprincipal}\},$
- (2) $L = \{a \in A : N(a) \neq \emptyset\},\$
- (3) $T = \{b \in A : \exists a \in L \ b \text{ lies on the unique shortest path connecting } a \text{ to } O\}.$

LEMMA 6. If $L = \{a_n : n < \omega\}$ and for every n $(N(a_n) = \{b_n\})$ and $a_{n+1} \in \mathfrak{A}(b_n)$, then $\omega(\mathfrak{A}) \leq \aleph_0$.

Proof. Let for each $n < \omega \mathfrak{B}_n = \mathfrak{A} - \mathfrak{A}(b_n)$, then these are all the nonisomorphic elementary substructures of a.

DEFINITIONS. (1) [T] is the set of infinite branches of T.

(2) $a \in A$ isolates $f \in [T]$ iff $\mathfrak{A}(a)$ is as in the hypothesis of Lemma 6 with $a \in f$. LEMMA 7. If $\mathfrak A$ is simple and $\exists f \in [T]$ such that no $a \in A$ isolates f then $\omega(\mathfrak A) = 2^{\aleph 0}$.

Proof. Choose $a_n \in L$ and $b_n \in N(a_n)$ for $n < \omega$ as follows: Having chosen them for m < n, let c be any element of f lower than any of the a_m and b_m for m < n. Since c does not isolate f there is $a_n \in \mathfrak{A}(c) \cap L$ and $b_n \in N(a_n)$ such that $b_n \notin f$. Let $B = \{c: c \text{ is between some } b_n \text{ and } O\}$. For every $a \in \mathfrak{A}$ let $\mathfrak{B}_a = \mathfrak{A}(a)[X_a]$ where $X_a = P(a) \cap (\{x: \text{ the type of } x \text{ in } \mathfrak{A}(a) \text{ is principal}\} \cup B)$. If \mathscr{C} is the fusion of the \mathfrak{B}_{a} 's then $\mathscr{C} \prec \mathfrak{A}$. For any $n < \omega$ note that there are at most two $x \in C$ such that $\delta(x,O) = \delta(a_n,O)$ and $N(x)^{\mathscr{C}} \neq \emptyset$. For any $X \subseteq \omega$ let $\mathscr{C}_X \prec \mathscr{C}$ be gotten by fusion so that for all $n < \omega[b_n \in |\mathscr{C}_X|]$ iff $n \in X$. Thus if $X \neq X'$ then $\mathscr{C}_X \cong \mathscr{C}_{X'}$.

LEMMA 8. If for every $a \in P(\mathfrak{A})$ $\omega(\mathfrak{A}(a)) \leq \aleph_0$ or $\omega(\mathfrak{A}(a)) = 2^{\aleph_0}$, then $\omega(\mathfrak{A}) \leq \aleph_0$ or $\omega(\mathfrak{A}) = 2^{\aleph_0}$.

The proof of this is similar to the proof of Lemma 2.

LEMMA 9. If $\mathfrak A$ is a tree then $\omega(\mathfrak A) \leq \kappa_0$ or $\omega(\mathfrak A) = 2^{\kappa_0}$.

Proof. If $\mathfrak A$ is not simple then $\omega(\mathfrak A)=2^{\aleph_0}$ by using Lemma 3. Define $D(T)=\{x\in T\colon x \text{ does not isolate any } f\in [T]\}$. By Lemma 7 if D(T) is not well founded $([D(T)]\neq\emptyset)$ then $\omega(\mathfrak A)=2^{\aleph_0}$. If $D(T)=\emptyset$ then by Lemmas 5 or 6 $\omega(\mathfrak A)\leqslant \aleph_0$. Hence we may assume D(T) is well-founded and then the lemma is proved by induction on the rank of D(T) by using Lemma 8.

The proof of Theorem B. If a countable theory T fails to have an ω -saturated countable model then $\omega(T)=2^{\aleph_0}$, hence by Theorem A we have only to show that if $\omega(T)<\aleph_0$ then $\omega(T)=1$. This follows immediately from Lachlan's Theorem [5], since T is superstable. We need to show that for any $\mathfrak{A} \models T$ with $|A|\geqslant 2^{\aleph_0}$ that $\mathrm{Th}(\mathfrak{A}, a: a \in A)$ has at most |A| types. So let \mathfrak{B} be any elementary extension of \mathfrak{A} and $b \in B-A$.

Case 1. For all $a \in A$ $\delta(a, b) = \infty$ (the δ which is defined in \mathfrak{B}).

In this case for any $c \in B$, $(\mathfrak{B}, b, a: a \in A) \equiv (\mathfrak{B}, c, a: a \in A)$ iff $(\mathfrak{B}, b) \equiv (\mathfrak{B}, c)$ and for all $a \in A$ $\delta(a, c) = \infty$. To prove this note that by Lemma 1 the component of \mathfrak{B} containing c is elementarily equivalent to the component of \mathfrak{B} containing b, so patch together Ehrenfeucht game strategies.

Case 2. There is $n < \omega$ and $a \in A$ such that $\delta(a, b) = n$.

Choose $Y \subseteq A$ finite, connected in itself, and including all the loops of the component of \mathfrak{B} containing b. Let $a_0 \in Y$ so that $\forall a \in A \delta(a,b) \geqslant \delta(a_0,b)$. Let $A^1 = A \cap |\mathfrak{B}\{a_0\}|$, then by Lemma 1 and Ehrenfeucht games for any $c \in B$, $(\mathfrak{B}, b, a: a \in A) \equiv (\mathfrak{B}, c, a: a \in A)$ iff $(\mathfrak{B}\{a_0\}, b, a: a \in A') \equiv (\mathfrak{B}\{a_0\}, c, a: a \in A')$. Now suppose \mathfrak{A} and \mathfrak{B} are trees with distinguished constant O, and O and O and O and O are that O are that O are that O and O are that O and O and O are that O and O are that O and O are that O are that O are that O and O are that O and O are that O and O are that O

Thus we see that there are at most 2^{80} . |A| = |A| 1-types in Th((\mathfrak{B} , $a: a \in A$)). Similar arguments show that for any $n < \omega$ there are at most |A| n-types, so T is superstable.

The proof of Theorem C. For any (L, <) a linear order define the following unary operation (U_L, F_L) , where $U_L = \{(a_0, ..., a_{n-1}): n < \omega, a_0 > a_1 > a_2 > ... > a_{n-1}$ and for i < n $a_i \in L\}$, $F_L(\langle \rangle) = \langle \rangle$ ($\langle \rangle$ is the empty sequence), and

$$F_L(\langle a_0, ..., a_n \rangle) = \langle a_0, ..., a_{n-1} \rangle$$
.

CLAIM. If $L=L_1+L_2$ and $\bar{L}=\bar{L}_1+\bar{L}_2$ are countable linear orders, L_1 and \bar{L}_1 are isomorphic well orders, and either L_2 and \bar{L}_2 are both empty or they are both nonempty and have no least element then (U_L, F_L) is isomorphic to $(U_{\bar{L}}, F_{\bar{L}})$. Thus $\theta=\{(U,F):$ there is a countable linear order (L,<) such that $(U,F)\simeq (U_L,F_L)\}$ is $PC(L_{\varpi,\varpi})$ and $\omega(\theta)=\aleph_1$.

References

- S. Burris, Scott sentences and a problem of Vaught for monounary algebras, Fund. Math. 80 (1973), pp. 111-115.
- [2] E. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math. 49 (1961), pp. 129-149.
- [3] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), pp. 57-103.
- [4] C. Kuratowski, Topology, Vol. 1, New York-London-Warszawa 1966.
- [5] A. H. Lachlan, On the number of countable models of a countable superstable theory, Logic, Methodology and Philosophy of Science IV, Amsterdam 1973, pp. 45-56.
- [6] L. Marcus, The number of countable models of a theory of one unary function, to appear.
- [7] A. Miller, Vaught's conjecture for theories of one unary operation, Notices AMS, February, 1977, Vol. 24, No. 2, A-253.
- [8] M. Rubin, Theories of linear order, Israel J. Math. 17 (1974), pp. 392-443.
- [9] Vaught's conjecture for linear orderings, Abstract Notices AMS, 1977, A-390.
- [10] J. Steel, On Vaught's conjecture, in Seminaire Cabal 76-77, Proceedings of the Caltech-UCLA Logic Seminar, 1976-77, Springer-Verlag.
- [11] R. L. Vaught, Denumerable models of complete theories, Infinitistic methods, proceedings of the symposium on foundations or mathematics, Warszawa 1959, pp. 303-321.

Accepté par la Rédaction le 26. 10. 1978