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Vaught’s conjecture for theories of
one unary operation

by

Arnold W. Miller (Madison, Wis.)

Abstract. Vaught’s conjecture [11] is that for any countable first order theory T w(T)<,
or w(T) = 289, where w(T) is the number of nonisomorphic countable models of T. It is shown
that Vaught’s conjecture is true for any first order theory T in the language of one unary operation.
Also an example is given of a pseudo (Layw) elementary class in the language of une unary operation
with exactly X, nonisomorphic countable models.

“For A = (4, R) where R is a binary relation on A define:

(1) For a,be A 6(a, b) is the least n<w such that there are x;e 4 for i<n
with @ = xo and b = x,, and for all i<n (R(x;, X;rq) of R(x;e1,x)). If no »
exists let &(a, b) = 0.

(2) For a,be A a is connected to b iff 8(a, b) = n for some n<w.

(3) A loop is a set of distinct elements of 4, {xo, ..., x,; with n>1 and such
that for any i<n (R(x;, X;41) oF R(Xy4y, X)) and (R(x,, xp) or R(x;, x))-

(4) A component is a maximal connected subset of A.

(5) () is the nmumber of nonisomorphic elementary substructures of 2.

THEOREM A. If A = {4, R} is countable and every component of U contains only
Sinitely many loops then o)<, or o) = 2.,

Remarks.

(1) If R is a partial function on 4 (Vx,y,z€ A(R(x, z) and R(y, ) =x =)
then each component contains at most one loop.

(2) Theorem A can be generalized to show that if 2 is expanded by adding
countably many unary predicates or constants, then o)<y, or o(A) = 2%,

THEOREM B. If T is a complete theory in the language of one binary relation and
every countable model of T has the property that every component coniains only finitely
many loops, then o(T) = 1, %, or 2.

Theorem B was proved by Leo Marcus [6] and myself independently. Later
M. Rubin pointed out that the fact (o(T)>1— o(T)= %o) can be obtained as
a corollary of a theorem of Lachlan [S].
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Turorem C. There is a 0 a PC(L,,,,) sentence in one unary operation such that
@) = 8.

This disproves Theorem 1 of S. Burris [1], since it implies that the quantifier
ranks of the Scott sentences of countable unary operations are arbitrarily high,
J. Steel [10] has proved Vaught’s conjecture for Ly, , sentencesin one unary operation.
M. Rubin proved Vaught’s conjecture for theories of a linear order [8] and more
recently for L,,, sentences of a linear order [9].

In my abstract [7] I mistakenly stated Theorem C for PC(L,,). Does there
exist a PC(L,,,) sentence 0 in one unary operation with @w(0) = &,?

The proof of Theorem A. We only prove Theorem A for % == (4, R, d)
where R is binary, symmetric, and irreflexive; and @ is finitely many constants, since
it is easy to generalize.

DeeNeTioNs. (1) For U having a distinguished constant O let
A, = {ae d: 5(x, 0)<n}.

(2) A =, B iff Player II has a winning strategy in the Ehmnkucht gcum of
length n [2].

Our main lemma is the following.
Lemma 1. If A and B are connected with distinguished constants then

Vo<W, =,B,) = A=B.
ProPOSITION 1. If U is connected with distinguished constant then

Vn<oVo(%, ))INzn N<odl’
finite

Va e A—A,3o*(7) e I¥E € WA k o(@, b) iff Ay k o*(B)) .

Proof. The proof is by induction on the logical complexity of ¢ (%, y). For
the atomic case put N = n+2and I' = {T, F, x, = x,, R(x, x,)}. On the induction

step “71” and “A " are both easy. We do the case of 3z¢tX, z, ). By induction
3r; 3N, =n such that

Yad e W—Ay Jo(7) e I¥he W,(WE (@, a, b) iff Ay, & a(b)).
Also by induction 3I',aN, 2N, such that

Yi e U—Wy,Fe(z, ) e IyVbb e Wy (A (@, b, b) iff Wy, k (b, b))
Let N = N, and

{\/V O'N‘(y)VHZEQ[Nl‘E(_ }’) ['Cll,rel"z}, !
and where o™ is the relativization of o to “IM These work since given g € A~ Q[Nz let

F={o(el: 3acUA—Wy Vb W,(A F ¢(@,a, b) — Ay, & (D)}
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and t(z, §) so
o ¥bb e Ay (UE @@, b, b) « Wy, kz(b; b))
Let N

.

P*y) = \/\F/ M (FHviIzedUyt(z, 5). B

' Remark. Proposition 1 was motivated by the main lemma in Feferman-
Vaught [3].
" PROPOSITION 2. If U is connected with a distinguished constant then

Yo (x, P n<wIN<oVh e,
if Ak xp(x, b) then
Jae Wy Uk o(a, b).

Proof. Let N,, I' be from Proposition I for ¢ (x, y) and n. Define: o*(»erl
is a testing formula for ae A—Wy, if

Vb e WAk p(a, B) « Uy, k *(B)) .

Choose N> N,, N<wso that Vae AW— Wy, if o*(F)eisa testing formula for a then
there exists @’ € Uy so that p*(F) is 2 testing formula for a'. This N works because

Ak pa, b) & Uy, ko*b) « Ak o(a,b)

some @' € Ay with same testing formula ¢*(5) as . ®
PROPOSITION 3. If U is connected with a distinguished constant and A =B
then \J {B,: n<o} is an clementary substructure of B.
Proof. If be B, and ¢(x, J) are given then taking N<w from Proposition 2,
WE“Vied,(Fxex, ) « xeUyolx, .

So if B E Axo(x, b) then 3b € By BF (b, b). By Tarski’s criterion we are done

-The proof of Lemma 1. HC is the set of hereditarily countable sets. Let M
he an elementary extension of (HC, e) such that @™ is nonstandard. We assume
.,B e HC. Let A* be the structure determined by M corresponding to 2 and
AX =1 {9F: n<w). Let n*e o¥—wand MF “sis a strategy for player II in
the Ehrenfeucht game of length n* played between A% and B.”. Since n* is non-
standard the strategy s gives a back and forth property to show A = B (lf player £
plays ae AYL then s must respond with beBE). By Proposition 3 AX <U* and
‘li,<‘l¥ and also N<A* and B<B* so A =B. A o
Lemma 2. If for every component € of W w(€)<x, or w(’6 = 2% theh
@S, or o) = 2%,

Proof. Note that from Lemma 1 if 8<2 then the components of B are el-
ementary substructures of the corresponding components of . If (%) = 2% for
some % whichis a component of 2, then using Ehrenfeucht games we see that
@) = 2%, Otherwise let {%,: n<w} be pairwise nonisomorphic so that for any % ast
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¢lementary substructure of some component of 9N there is n<w such that ¥~% .
For k: @ — w+1 let A, be a structure (obtained continuously from k) with exactly
k(%) copies of 6, for each n and aniverse a subset of . Let X = {ke(w+1)" ¥,
can be elementarily embedded into ¥}, then X'is a ;} set and [X| = w(2A), so by
a classical theorem of descriptive set theory [4] o@Dy, or o) = 2% H

Note that if for all a € 4 ©((2, @))< Ko, then w(AY< Ky; and also if there exist
ae A with o((¥, a)) = 2* then () = 2% If 9 is connected ‘and Ys 4 is finite
and includes all of ’s loops then define 2 {3 } for y € ¥ as follows. A {y} ={aed:u
is connected to y by a path which only intersects " at y}. By Lemma { note that for
BoA (B, .)«’>’,Ey'<<91,y>yey) T (B{y}<A{y} for all y e ¥). Hence it is enough to
count the number of elementary substructures of a tree. Define O is a tree iff A is
countable, connected, has no loops, and has a distinguished constant 0. For the rest
of the proof of Theorem A we will assume all structures arc trecs.

DEFNITIONS. (1) @ is below b iff b lies on the unique shortest path connecting
ato 0.

(2) A(a) is the free with universe {be 4: b is below a} and distinguished con-
stant a.

(3) P(A) = {aed: (a,0) = 1} and for ae 4 P(a) = P{A(a)).

(4) For X< P(2) A[X] is the tree with universe the clements of 4 below things
in X and with distinguished constant O.

(5) Given x, € P() for n<o [x, — y iff for all n # m x, # x,, and the type
of x, in 2 converges to the type of y in %, i.e. for all ¥ (v) first order there is N <
such that for all =N (A k ¥(x,) iff Ak ¥ '

LEMMA 3. If XU Y = P(W), X und Y are disjoint, and for every y € Y dx, e &
for n<w such that x,—y, then [X] is an elementary substructure of .

Proof. It is easy to find X, = {x): n<w} included in X for y e Y, so that
X,n X, = @ for y # )" and for each ye ¥ X ¥

CLAIM. For every ny<w and ye Y W, [X,] is an elementary substructure of

€A,LLX, v {¥}]
Proof. Let 8 = 9, and X, = {x,: n<w}. Cleacly x,— in the sense of %,
hence we know from the basic lemma on Ehrenfeucht games ([2]) that

Yn<oiIN<owVm>NB(x,) =,B8().

Given @ e ®B[X,] and n, <w, choose N sufficiently large so that & e B [{x,: n<N}]
and for m>N B(x,) =, B(y). Now patch together appropriate strategies for
Player 11 by letting B(x;) correspond to B(x;) for i<N (and play the identity).
letting B(xy +,) correspond to B(y), and letting B (xy..;) correspond to B(xy.;-1)
for i>1. M

From Lemma 1 -aand the claim, A[X,] is an elementary substructure of
ALY, U {y}] for each ye ¥, hence by an ecasy Ehrenfeucht game argument
AMXI<A. B
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DEFINITION. 9 is simple iff for every ae A only finitely many nonprincipal
types in Th(A(a)) are realized in P(a).

Note. By using Lemma 3 if 9 is not simple then w(U) = 2.

DEFINITION. Given (B,: ae 4) such that B,=%(a) for each a the fusion of
(B,: a e A) is the tree B with QE = _0_5‘ and universe {b: for all a between O and
b, be|B,l}

LemMA 4. Given (B,: ae A) with B,<W(d) for all ae A, then the fusion B is
an elementary substructure cf W. |

Proof. By Lemma 1 we may assume % = 91, for some n<w. Now prove it
by induction on 7. Thus B (b)<(b) for all b € P(A), hence B(b)<By(b) Vb € P(Bo)
and by an easy Ehrenfeucht game argument BLBo<UA. B

DEFITION. If 9 is simple let B2 = A(D[{x: tp(x, Ala)) is principal}] for
each g e A, and AP be the fusion of (BE: ‘ae 4). By Lemma 3 B2<A(a) and by
Lemma 4 A® is an elementary substructure of 2A.

LeMMA 5. If AP = A then o(W) = 1.

The proof is straightforward and left to the reader. B

DEFINITIONS. For a fixed tree % = {4, R} let

(1) N(@) = {xeP(A(a): the type of x in A(a) is nonprincipal},

(2) L ={aed: N(@) # 9},

(3) T={beA: JaeL b lies on the unique shortest path connecting a to O}.

LimmA 6. If L = {a,: n<o} and for every n (N(a,) = {b;} and a4, € A (b)),
then w(W)< K.

- Proof. Let for each n<w B, = A—A (), then these are all the nonisomorphic

elementary substructures of 2. B

DerTioNs. (1) [T7 is the set of infinite branches of T.

(2) ae A isolates fe [T]iff (a) is as in the hypothesis of Lemma 6 with a e f.

LEmMMA 7. If U is simple and 3 fe [T) such thatnoa e A isolates f then () = 2%,

Proof. Choose a, € L and b, € N{a,) for n<aw as follows: Having chosen them
for m<n, let ¢ be any element of f lower than any of the a,, and b,, for m<n. Since ¢
does mot isolate f there is a,&A(c) L and b,e N(a,) such that b,¢f. Let
B = {c: c is between some b, and 0}. For every ae A let B, = A(a)[X,] where
X, = P(a) n ({x: the type of x in A(a) is principal} U B). If € is the fusion of the
B,’s then ¥<UA. For any n<o note that there arc at most two x € C such that
3(x, 0) = 6(a,, 0) and N (®)® # @. For any X< let ¥x<% be gotten by fusion
so that for all n<w[b,e|@y| iff ne X]. Thus if X # X’ then ¥y = 6x. B

LEMMA 8. If for every ac P(%) o(A(@))< K, or o(A(@) = 2%, then (W<
or o(A) = 2%.

The proof of this is similar to the proof of Lemma 2. &

LemMa 9. If U is a tree then o<, or o (W) = 2%,
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Proof. If . is not simple then w(?W) = 2% by using Lemma 3. Define
D(T) = {xeT: x does not isolate any fe [T] }. By Lemma 7 if D(T) is not well
founded ([D(T)] # @) then w(A) = 2%. If D(T) = & then by Lemmas Soré
o (W< 8. Hence we may assume D(T) is well-founded and then the lemma is
proved by induction on the rank of D(T) by using Lemma 8. B

The proof of Theorem B. If a countable theory T fails to have an w- -saturated
countable model then w(T) = 2%, hence by Theorem A we have only to show
that if w(I)<W, then () = 1. This follows immediately from Lachlan’s
Theorem [5], since T is superstable, We need to show that for any Ak T with
|4]>2% that Th((2, a: a € 4)) has at most | 4] types. So let B be any elementary
extension of A and be B~A.

Case 1. For all ae 4 (¢, b) = oo (the § which is defined in B).

In this case for any ce B, (B, b, a: ac A) = (B, ¢, a: ac A)iff (B, b) = (8, ¢)
and for all a € 4 §(a, ¢) = co. To prove this note that by Lemma 1 the component
of B containing c is elementarily equivalent to the component of B containing b, so
patch together Ehrenfeucht game strategies.

Case 2. There is'n<w and ae€ 4 such that 6(a, b) = n.

Choose Y<A finite, connected in itself, and including all the loops of the
component of B containing b. Let ape ¥ so that VaeAé(a b)=0d(ay, b). Let
A' = 4 n|8{a}|, then by Lemma 1 and Ehrenfeucht games for any ce B,
(B,b,a: acd) = (B,¢,a: ac A)iff B{a}, b, a: acd) = (B{ap}, c,a1aed).
Now suppose 9 and B are trees with distinguished constant O, and be B—4.
Choose @, € A so that b e B(a,) and if x is the unique element “of P(B(dp)) such
that b e B(x), then x ¢ A. For any c e |B(a,)|—{ao} if y is the unique element of
P(B(ay) such that ce B(), then (B, b,a: acA) = (B, c,a: ae A)iff (B, b, a)
=(B,c,aq) and y¢ 4. To see this note that by the right hand side and
Lemma 1 (B(x), ) = (B(»), ¢), so it is easy to patch together Ehrenfeucht game
strategies.

Thus we see that there are at most 2%°. [4] = |4| 1-typesin Th((B, a: ae 4)).
Similar arguments show that for any n< there are at most |4| n-types, so T is
superstable.

The proof of Theorem C. For any (L, <) a linear order define the following
unary operation (Uy, Fr), where Up, = {(@g, s @yov): 1<0, dg>a1 >y > 0>y
and for i<n g;e L}, Fi({ D) =< > () is the empty sequence), and )

FL((”O: s an)) = <al)! ey G -J.> .

CLAM. IfL = Ly+L, and L = L, + L, are countable linear orders, L, and L,
are isomorphic well orders, and either L, and L, are both empty or they are both
nonempty and have no'least element then (Uy, Fy) is isomorphic to (Ug, Fr). Thus
8 = {(U, F): there is a countable linear order (L, <) such that (U F)=(Uy, FL)}
is PC(Lg.w) and o(f) = 8,. B
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