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Continuous selections and countable sets
by

E. Michael * (Seattle, Wash.)

Abstract. Some known selection theorems for set-valued maps g: X — 2 Y are strengthened by
eliminating all hypotheses on g, except lower semi-continuity, on an arbitrary countable subset of X.

1. Introduction. The purpose of this note is to strengthen some known selection
theorems for set-valued maps @: X — 2V by eliminating all hypotheses on ¢, except
Jower semi-continuity, on an arbitrary countable subsgt of X. Analogous results for
0-dimensional subsets, which still required that @(x) be closed in ¥ for every x & X,
were recently obtained in [12] and [13].

Let us establish some terminology. A map ¢: X-+2 wﬁere o' = {Sc¥: S#O}
is called lower semi-continuous, ot Ls.c., if {xe X: ¢(x).n V % @} is open in X for
every open in ¥ in Y. A selection for a map ¢: X' — 2¥ is a continuous f: X — Y
such that 7 (x) € o (x) for every x € X. If Ac X is closed, then ¢: X' — 2¥ has the
selection extension property, or SEP, at A if every selection for ¢|A extends to
a selection for ¢; if ¢ has the SEP at every closed 4 = X, then we simply say that ¢
has the SEP.

Our first result is the following theorem, which was announced without proof
in [10].

TueorEM 1.1 If X is countable and regular, Y first-countable, and ¢: X — 2f
l.s.c., then ¢ has the SEP.

Tt should be remarked that, if ¥ is a complete metric space and each ¢(x) is
closed in ¥, then Theorem 1.1 follows from [7, Theorem 2], and if X is a complete
metric space it follows from a result of H. Reiter [15, Theorem 1] ™.

* Supported in part by a National Science Foundation grant at the University of Washington,
and in part by an Alexander von Humboldt Foundation grant at the University of Stuttgart.

(9 A. V. Arhangel’skii has kindly informed me that a result closely related to Theorem 1.1
was stated (without proof) by B. Pasynkov in [14, Theorem 2]. (There is a misprint in Pasynkov's
hypothesis: He intended to assume that each fiber has a dense subset of points where the whole
space — mnot just the fiber — is first-countable).
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Examples 9.1 and 9.2 show that Theorem 1.1 becomes false if X is not
countable or if ¥ is not first-countable.

All the remaining results in this introduction assume that Y is metrizable, and
for such Y all these results except Theorem 1.7 generalize Theorem 1.1.

THEOREM 1.2. Let X be paracompact (%), Y metrizable, A< X closed with X—A
countable, and ¢: X —2* Ls.c. Then ¢ has the SEP at A.

Theorem 1.2 becomes false if Y is only assumed first-countable (as in The-
orem L1), even if @(x) = Y for all xe X; see Example 9.3.

From now on, all our results assume that ¥ is a complete metric space. All
these results follow from established selection or extension theorems when the
countable set C is empty, and from more recent selection theorems in [12] and [13]
when ¢(x) closed in ¥ for all xe X (see Section 4).

Our next resalt, which generalizes Theorem 1.2, reduces to [6, Theorem 1.2]
when C = @. Following [6], we say that dimy.S<n, where Sc X, if dimE<n for
every set Ec S which is closed in X (where dim £ is the covering dimension of E).

THEOREM 1.3. Let X be paracompact, Y complete metric, AcX closed with
dimy (X~ A4)<0, Cc X countable, and ¢: X — 2 Ls.c. with ¢(x) clesed in Y for
all x¢ C. Then ¢ has the SEP at A.

The following result reduces to [5, Theorem 3.2” and Proposition 1.4] when
C=0.

THEOREM 1.4. Let X be « paracompact, Y a Banach space, C< X countable,
and ¢: X— 2% Ls.c. with ¢(x) closed and convex Jor x ¢ C. Then ¢ has the SEP.

In the following two results, we say that a map ¢: X — 2 has the selection
neighbcrhood extension property, or SNEP, at a closed set A< X if every selection
for ¢4 extends to a selection for ¢| U for some neighborhood U of 4 in X if @
has the SNEP at every closed A< X, we simply say that ¢ has the SNEP.

THEOREM 1.5. Let X be paracompact, ¥ a complete metric ANR (?), Cc X
countable, and @: X —2¥ Ls.c. with @(x) = Y for x¢ C. Then ¢ has the SNEP.
If Yis actually an AR, then ¢ has the SEP.

For C = &, Theorem 1.5 reduces to the known result that every complete
metric AR (resp. ANR) has the extension property (resp. neighborhood extension
property) with respect to paracompact spaces; see, for example, [2].

Our next result, a finite-dimensional version of Theorem 1.5, reduces to
[6, Theorem 1.2] when C = &. When n = —1, Theorem 1.6 reduces to our The-
orem 1.3, which was stated separately because of its greater simplicity. We assume
that n> —1.

THEOREM 1.6. Let X be paracompact, Y complete metric, A= X closed with
dimy(X—A)<n+1, CcX countable, and ¢: X—2¥ Ls.c. with {p(x): x¢ C}

() It can be shown that it suffices for X to be collectionwise riormal.
() A metric space ¥ is an AR (resp. ANR) if it is a retract (resp. neighborhood retract) of any
metric space containing it as a closed subset
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a collection of - closed sets which is equi-LC™ in Y (*). Then ¢ has the SNEP at A.
If, morecver, @(x) is C* for all x¢ C, then ¢ has the SEP at A.

Our last result in this introduction is related to Theorems 1.5 and 1.6, but now
local assumptions on ¢ yield a global conclusion. Observe that, unlike other selection
theorems, we need not assume ¢ to be l.s.c., since that is automatic by Lemma 2.6.
Observe also that, unlike Theorems 1.1-1.6, Theorem 1.7 demands somethmg of o —
beyond being Ls.c.— on the countable set C.

TueoreM 1.7. Let X be paracompact (see Footnote™ (%)), ¥ a complete metric
space, CcX countable, and @: X —2¥ such that o(x) =Y for x¢ C and
(9 ()™ = Y for all xe X. Suppose also that either Y is an ANR or that Y is an
LC"space (%) and dimX<n+1. Then ¢ has a selection (°).

When C = &, Theorem 1.7 is of course trivial for any space Y, but in general
Examples 9.4 and 9.5 show that the completeness and connectivity assumptions on ¥
cannot be omitted. What can happen if C is not assumed countable in indicated by
Example 9.1.

It should perhaps be remarked that, although Theorem 1.7 is stated with con-
siderable generality, its conclusion may be of some interest even when Y is the real
tine (7).

As previously observed, our results are known in case ga(x) is closed in Y for
all xe X. We have two different methods of deriving our theorems about maps
¢: X —2Y from the corresponding known theorems: The first method, based Prop-
osition 2.4, construct a “smaller” map ¥: X — 2 (.e. y(®co(x) for all xe X)
to which the corresponding known theorem applies. The second method is based on

- Proposition 5.1, which permits us to derive properties of ¢ from known properties

of the “larger” map @: X — 2Y defined by &(x) = (@(x))™. While either method
could be used to prove all the theorems in this introduction, we will apply each where
it seems easiest, — Proposition 2.4 to prove Theorems 1.1-1.6, and Proposition 5.1 to
prove Theorem 1.7 .

The paper is arranged as follows. Section 2 is devoted to some results on how to
construct new l.s.c. maps from old ones; one of these is the basic Proposition 2.4
mentioned in the previous paragraph. Theorem 1.1 is then proved in Section 3, and
Theorems 1.2-1.6 in Section 4. Section 5 introduces the selection approximation
property, a useful property of set-valued maps which has already appeared implicitly
in other papers, and proves the basic Proposition 5.1 about it. This proposition is

(9 For the definitions of this concept and of C" (= n-connected), see [12].

() Le., for every y € ¥, every neighborhood ¥ of y in Y contains a neighborhood W of y
such that every continuous image of an i-sphere (i<n) in W is contractible over ¥.

(® By Theorems 1.5 and 1.6, ¢ also has the SNEP. It need not, however, have the SEP, even
when C = @ and Y is a two-point space.

( In this special case, which is valid for any normal space X, one can outline a simple, direct
proof; Write C = (%1, Xa, ...), and construct a uniformly- Cauchy sequence of continuous func-
tions fy: X — ¥ such that fry(x) = fy(xi) €@(xy) for i<n; then limfy is a selection for ¢.”

n
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A

then applied in Section 6 to prove Theorem 1.7, and in Section 7 to prove a result
which combines Theorems 1.3 and 1.4. Section 8 shows how “countable” may be

weakened to “g-discrete” in our résults, and Section 9 is devoted to examples.

" 2. Some results on Ls.c. maps. If gp: X— 2%, then we say that Vo if
¥: X— 2" and Y (x)=¢(x) for all xe X. Now suppose that ¢: X — 2% is Ls.c.
and Y cp; under what conditions will y also be l.s.c.? A very simple condition,
which follows immediately from the definitious (or from Lemma 2.6 below), is
that ¥/(x) is demse in ¢(x) for all xe X. A considerably weaker — although more
complicated — condition is given by the following lemma.

Lemma 2.1. Let ¢: X — 2% be 1.5 c. Suppose that <o and that, for each y e Y,
every neighborhood V of y in Y contains a neighborhood W of y in Y such that

A={xeX: XN W+, y)nV =0}
is closed in X. Then 3 is also l.s.c.
Proof. We need only show that, if xo € X, y, € W (x,), and if 7is aneighborhood

of yo in ¥, then G = {xe X: yi(x) n ¥V # @} is a neighborhood of xo in X, Pick
a neighborhood W<V of y, as in our hypothesis, and let

U={xeX: o) n W+ @}.
Then U is open in X because ¢ is Ls.c. By assumption, the set

Ad={xeU: Y@V}
is closed in X, so U~ A is a neighborhood of Xo contained in G. That completes the
proof.

COROLLARY 2.2. Suppose that X is a Ty-space, that V: X— 2%, and that each
non-empty open V<Y intersects Y (x) for all but finitely many x € X, Then Visls.c.

. Proof. Let ¢(x) = Y for all xe X, The @ is trivially L.s.c., so ¥ is also L.s.c.
by Lemma 2.1 (with W = ¥V and 4 finite).

COROLLARY 2.3. Let X be a Ty~space, Y a metric space and ¢: X —2Y Ls.c.
Suppose that <@ and that, for all ¢>0, {xe X: o) LB N} (B is finite.
Then Vy is also Ls.c.

Proof. This follows from Lemma 2.1 (with A finite), for if y and ¥ are as in
that Jemma, one need only choose r>0 so that B(y)<V and then let W = By, (».
That completes the proof.

Using Corollary 2.3, we now prove the principal result of this section.

PROPOSITION 2.4, Let X be a T,-space, ¥ metrizable, ¢: X 2% Ls.c., and
Cc X countable. Then there exists a l.s.c. map Y=o such that Y (x) = o(x) for
x ¢ C and y(x) is closed in Y for xe C.

Proof. Write C = {x,, x,,..}. Fix a metric d on Y, and for each n pick
S, @(x,) such that S, is closed in ¥ and @ () < B11(S,). (One can take S, to be

(®) B:(S) denotes the open &-neighborhood of S.
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any maximal subset of ¢(x,) such that d(y, y)>1/n for v, ¥’ €S, and y ')
Lety(x) = ¢(x) for x ¢ Cand ¢ (x,) = S, for all . Then ¥ isl.s.c. by Corollary 2.3,
and that completes the proof.

Remark. Proposition 2.4 becomes false if C is not countable; see Footnote )
following Example 9.1.

We conclude this section by recording two known results which are needed in
the sequel.

Lemma 2.5 [5, Example 1.3]. Let ¢p: X — 27 pe L. ¢., Ac X closed, and g a selec-
tion for @|A. Define Pg: X — 2Y by (pﬂ(x) =o(x) for xé A and q)g(x) = {g(x)}
if xed. Then ¢, is also 1. s. c.

‘We now introduce the following notation: If ¢: X —s 2%, then @: X—2¥ is
defined by §(x) = (p(x))".

LemmMa 2.6 [S, Proposition 2.3]. If ¢: X~ 2Y, then ¢ is Ls.c. if and only if @
is Ls.c.

3. Proof of Theorem 1.1. We prove this result in three steps.

First, let us show that ¢ has a selection if ¥ is a metric space: Let Y* be the
completion of Y. By Proposition 2.4, there is a Y < ¢ such that y(x) is closed in ¥*
for all x e X. Since a countable regular space is paracompact and 0-dimensional,
¥ has a selection f by [7, Theorem 2], and this £ is also selection for ®.

Next, let us show that ¢ has a selection if ¥is first-countable. By [9, Theorem 4.3], .
there exists an open, continuous u: M — Y from a metric space M onto Y. Define
6: X—2M by 0(x) = u™(¢p(x)). Since u is open, 0 is l.s.c. Hence 6 has a selec-
tion g by the previous paragraph, and now f=uog is a selection for Q.

Finally, let us prove our theorem, Let 4 = X be closed, and g a selection for | 4.
Thea ¢, is Ls.c. by Lemma 2.5, so ¢, has a selection f by the previous paragraph,
and this £ is a selection for ¢ which extends g.

4. Proof of Theorems 1.2-1.6. Observe first that Theorem 1.2 follows from
Theorem 1.3: Under the hypotheses of Theorem 1.2, where we may assume that ¥is
complete, let g be a selection for ¢ 4. Then ¢,isl.s.c. by Lemma 2.5, so Theorem 1.3
implies that @, has a selection f, and this f is a selection for ¢ which extends g.

It remains to prove Theorems 1.3-1.6. Now, as observed in the introduction,
these results are known in case ¢ (x) is closed in ¥ for all x e X, for in that case,
Theorem 1.3 reduces to [6, Theorem 1.2], Theorem 1.4 follows from [13, Theorem 1.1],
Theorem 1.5 follows from [12, Theorem 1.3], and Theorem 1.6 follows from
[12, Theorem 1.4]. To prove Theorems 1.3-1.6, we will use Proposition 2.4 to reduce
them to these known cases. Specifically, we will do that for Theorem 1.3; the process
for Theorems 1.4-1.6 is essentially the same.

Let g be a selection for ¢| 4. Then ¢, 1is 1.s.c. by Lemma 2.5, Let C" = C—A4.
Applying Proposition 2.4 to @, and C’, we obtain a Ls.c. map Y <¢, such that
¥ (x) is closed in ¥ when x € C’ and Y (x) = ¢,(x) when x ¢ C’. Now y also satisfies
the hypotheses of Theorem 1.3, and y(x) is closed in Y for every x e X. By the pre-
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vious paragraph, | therefore has a selection f; and this fis a selection for ¢ which
extends g. That completes the proof.

5. The selection approximation property. Let us say that a map ¢: X —2Y;
with Y a metric space, has the selection approximation property, or SAP, if to every
£>0 corresponds a & = J,(8)>0 satisfying the following condition: If h: X — ¥
is continuous with d(h, ¢)<& (°), and if A=X is closed, then every selection g
for @4 with d(g, h|4)<5 extends to a selection f for ¢ with d(f, h)<e.

All set-valued maps which appear in general selection theorems known to the
aulhor seem to have the SAP, and a closely related property (see [12, [3.2)]) is
actually used — implicitly or explicitly — in the proofs of almost all of these theorems.
Explicit appearances of the SAP (although without that name) can be found, for
example, in [6, Corollary 4.2 and Theorem 9.1], ia [12, Footnotes 8 and 10], and
especially in {12, Section 3].

The purpose of this section is to prove the following result, which is somewhat
more detailed and general than is needed for our applications in Sections 6 and 7.

PROPOSITION 5.1. Suppose that ¢: X — 2¥, with Y complete metric, that & has
the SAP, and that ¢(x) = §(x) for all but countably many xe X. Then:

(@) @ has the SAP (and one can take d,(&) = 65(}¢)).

(b) If @ has a selection, so does ¢.

- (c) If @ has the SEP, so does ¢.

(d) If @ has the SNEP, if X is normal, and if @|E has the SAP for every closed
E=X, then ¢ has the SNEP.

Proof. We shall first prove (a), and then show that (a) implies (b), (c) and ).

(a) Suppose that A< X'is closed, that g is a selection for ¢ | 4, and that i: X' — ¥
is continuous with. d(h, p)<d;(%e) and d(h, g]A)<6q,(za) ‘We must exteud g to
a selection f for ¢ such that d(f, h)<e.

Let C={xeX: ¢o(x) # $(x)}, and write C = {x;,x,,...}. Let E, = 4,
and let E, = 4 U {xy, ..., x,} for n1. By induction, we shall construct selections f,
(120} for & which extend g such that f,(x) € ¢(x) for x€E,, fur1|E, = f,| Eu»
d(fy, g)<}e and d(fyuy,f)<2~ @+, That will suffice, for then f = limf, will

n

have all the required properties.

. Let fy be any selection for & which extends g such that d(f,, h)<%e Now
suppose that fy, ..., f,, have been chosen. Extend f,|E, to a selection k for ¢|E, .,
such that i

i d(k, £, Eys ) <8527+ 1)
Then k can be extended to a selection f;,, for @ such that d( f,,,,f)<2~ @+
That completes the induction, and thus the proof of (a).
(a)-+(b). Suppose f is a selection for . Then d(f, ¢)<¢ for all >0, so @
must have selection by (a).
(a)—(c). Proved similarly to (a)—(b).

(%) Here d is the metric on ¥, and d{(g, )< means that d(g(x),(x))<e for all xe X.

icm

Continuous selections and countable sets 7

(a)—(d). Suppose A= X is closed, and g is a selection for ¢| 4. Then g is also
a selection for @|4, so it can be extended to a selection k for @] U for some open
U>4. Choose an open V in X such that A=V Ve U. Then d(h]7V, ¢ V) <d
for all >0, so we can apply (a) to @[V to obtain a selection f for ¢|V which ex-
tends g.

That completes the proof.

6. Proof of Theorem 1.7. Since @(x) = Y for all x € X, the map & clearly has
a selection. By Proposition 5.1, it will therefore suffice to establish that & has the SAP
for some suitable metric on ¥. In case ¥ is an ANR, that follows [11, Theorem 7.2
and 1.1] (or the more general assertion in [12, Footnote 10]); in case dim X<n+1
and Y is LC" it follows from [6, Theorem 4.1].

7. Another application of Proposition 5.1. In this section, we use Proposition 5.1
to prove a theorem which combines Theorems 1.3 and 1.4.

THEOREM 7.1. Let X be paracompact, ¥ a Banach space, Z< X with dimxZ <0,
Cc X countable, and ¢: X — 27 Ls.c. such that ¢(x) is closed in ¥ when x ¢ C
and §(x) is convex when x ¢ Z. Then ¢ has the SEP.

Proof. By Proposition 5.1, it will suffice to show that @ has the SEP and the
SAP. Now { satisfies the hypotheses of [13, Theorem 1.1], so that theorem implies
that @ has the SEP. It remains to show that @ has the SAP.

Let A< X be closed and 4: X — Y continuous with d(, ¢)<te We will show
that every selection g for &| 4 with d(g, h| A)<1eextends to a selection ffor § with
d(f, H<e. Define y: X — 2% by

W) = Fyx) 0 By (h(x)) -

Now @, is L.s.c. by Lemmas 2.6 and 2.5, and hence so is ¥ by [5, Proposition 2.5].
But then ¥ is also 1.s.c. by Lemma 2.6, so i satisfies the hypotheses of [13, The-
orem 1.1] and therefore has a selection f. But then fis a selection for @ which ex-
tends g, and d(f; H)<}e<e That completes the proof.

Remark. Theorem 7.1 reduces to [13, Theorem 1.1] when C = @, and to
Theorem 1.4 when C = Z. To see that Theorem 7.1 also implies Theorem 1.3,
let ¢: X—2¥, AcX and C< X be as in Theorem 1.3; since every metric space
can be embedded isometrically in a Banach space, we may assume that ¥ is
a Banach space. Now if g is a ‘selection for ¢|A, then ¢, is L.s.c. by Lemma 2.5,
0 ¢, has a selection f by Theorem 7.1 (with Z = X'—A), and this fis a selection
for ¢ which extends g.

Remark. Observe that, unless C<Z, Theorem 7.1 does not meet our goal of
eliminating all hypotheses on ¢ — except lower semi-continuity — on the countable
set C. To meet that goal, the assumption in Theorem 7.1 that “@(x) is convex for
x ¢ Z” would have to be weakened to “@(x) is convex for x ¢ (Z u C)”. Unfortu-
nately, that would make the theorem false: For example, the weakened hypothesis
is satisfied if X = ¥ = R, C = Q (rationals), Z = R— @, ¢(0) = {0} (1) = {1}
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and ¢ (x) = {0, 1} for all other x € X, but this ¢ clearly has no selection. The trouble,
essentially, is that even though C and Z both are 0-dimensjonal, their union C v Z
is not. .

Remark, In the same spirit as Theorem 7.1, one can obtain other compound
theorems by applying Proposition 5.1 to [12, Theorem 1.2 and Footnote 8] or
to [12, Theorem 1.3 and Footnote 10].

8. The case of o-discrete subsets. Recall that a subset S of a space X is discrete
0

if it has no accumulation point in X, and that S is g-discrete if S = {J S, with each |,
n=1

discrete. Now it is easy to check that our basic Propositions 2.4 and 5.1 remain valid,
with essentially the same proofs, if “countable” is weakened to “o-discrete”, and
hence the same is true of the other results in this paper (*°). Only in Theorem 1.1
must we exercise some care: If “countable” is weakened to “o-discrete” in that result,
then “regular” must be strengthened “paracompact”, since — unlike a countable
regular space — a a-discrete regular space need not be paracompact or even normal
and Theorem 1.1 cannot be true for a non-normal space X.

Since every metric space has a dense, o-discrete subset, the above remarks yield
the following corollary to Theorem 1.1.

COROLLARY 8.1. Let X be metrizable, Y first-countable, p: X —2¥ Ls.c. and
Ac X closed. Then every selection for ¢|A extends to a selection for ¢|D for some
D> A which is dense in X.

9. Examples. Our first example illustrates the importance of X being countable
in Theorem 1.1. We denote the closed interval by I
- ExampiE 9.1. If X is any separable metric space of cardinality ¢, then there
exists an Ls.c. map ¢: X— 2, with $(x) = I for all xe X, which admits no
selection (11).

" Proof. Let S = Xx1I, and let m: S — X be the projection. Precisely as in
[6, Example 4.1], we can choose points s, € J for each x € X such that, if E = S—
—{(x,5,): xe X}, then thereisno A< E such that 4 is closed in § and n(4) = X.
Let @(x) = I—{s,} for all xe X. Then @(x) = I for all xe X, so ¢ is lL.s.c. by
Lemma 2.5. If ¢ had a selection g, and if f(x)=(x,g(x)), then f(X)<E,
#(f(X)) = X, and f(X) is closed in S, which is impossible.

Our next example, due to E. van Douwen and R. Pol [3], shows that Theorem 1.1
becomes false (even with ¢(x) = Y for all x € X) if the assumption that Y is first-
countable is omitted.

Exampre 9.2 [3]. There exists a closed subset 4 of a countable, regular space X
which is not a retract of X.

(*) T am grateful to R. Telgarski for calling this to my attention.
(*) It can be shown that there does not even exist a Ls.c. map y: X~ 2Y with v (x) C(x)
and #%(x) closed in Y for all xe X.
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The following example shows that Theorem 1.2 becomes false (even with
o(x) = Y for all xe X) if -¥ is only assumed first-countable (as in Theorem 1.1).

* BXAMPLE 9.3. There exists a paracompact space X, and a first-countable, com-
pact Ac X with X—4 countabls, such that 4 is not a retract of X.

Proof. Let Z be any first-countable, compact Hausdorff space of cardinality ¢
which is not separable. (For example, Z can be the unit square topologized by
dictionary ordering). Since cardZ = ¢, Z is homeomorphic to subset 4 of I°. By the
Pondiczery-Hewitt~Marczewski theorem (see [4, p. 77, Theorem 7]), I¢ has a coun-
table dense subset D. Let X = 4 u D. Then X is separable while A is not, so 4 is
not a retract of X. Since X is regular and o-compact, it is paracompact. That
completes the proof.

Our next example shows why the completeness assumptions on the range ¥
cannot be dropped from many of our results.

EXAMPLE 9.4. Suppose Y is any non-empty first-category space (*%), and X
any non-empty compact metric space without isolated points. Then there exists
amap ¢: X — 2% with $(x) = Y for all xe X and ¢(x) = ¥ for all but countably
many x & X, which has no selection (*3).

Proof. By assumption, ¥ = |J ¥, witheach Y, a closed set with empty interior

in,Y. Since X has no isolated points, it has a disjoint sequence (C,) of countable,
dense subsets. Let ¢(x) = Y—Y, if xe C,, and let ¢(x) = Y if xe X— U C,.

Suppose ¢ had a selection f. Let X, = f~*(¥;). Then X = |J X,, and the X,
n

are closed in X so IntX, # @ for some m. Pick xeX,n C,. Then
S ef(X,) =Y,, and f(x)ef(C,)=Y~Y,, a contradiction. :

Our last example shows why the ANR and LC" assumptions on ¥ are needed
in Theorem 1.7.

EXAMPLE 9.5. A map ¢: X —2%, with X and ¥ compact metric spaces,
@(x) = Y for all xe X and ¢(x) = Y for all but two xe X. which admits no
selection.

Proof. Let X = I, let ¥ by the Cantor set, and let ¥, ¥, be disjoint, dense
subsets of Y. Let (0) = Y,, ¢(1) = Yy, and ¢(x) = Y for all other x € I. Since ¥
is totally disconunected, every continuous f: X — ¥ must be constant. However,
there are clearly no constant selections for .

(%) Le. Y= |) Y, with cach ¥, nowhere dense in Y. Recall that a non-empty complete
n

metric space is never of the first category.
() Our map ¢ actually has the following stronger property: If K CXx Y is compact, and if
KCU {{x}xp(x): xe X}, then m,(K) has empty interior (where 7;: X'x ¥ X is the projection).
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Ultraparacompactness in certain Pixley—Roy hyperspaces
by

H. R. Bennett (Lubbock, Tex.), W. G. Fleissner (Athens, Ohio)
and D. J. Lutzer* (Lubbock, Tex.)

Abstract. A Ty-space Z is ultraparacompact if each open cover of Z has a disjoint .open re-
finement. In this paper we present a sequence of results which guarantee that for-certain spaces X,
the Pixley-Roy hyperspace construction has the property that for each finite m and n, (F[X™])" is
ultraparacompact. We also investigate ultrameirizability of certain PR-hyperspaces.

1. Introduction. This paper continues the study of the Pixley-Roy hyperspace
initiated in [BFL]. Recall that for each space X, the space & [X], called the Pix/ey-
Roy hyperspace of X, is the collection of all nonempty finite subsets of X topologized
by using all sets of the form

[F, V] = {Fe&F[X]: FcF'<V}

as a neighborhood base at Fe # [X], where V is allowed to be any open subset
of X which contains F, In [BFL] we proved that if X is any first-countable subspace
of any ordinal, then & [X]is metrizable. In [L,] it was asserted that, for such an X,
even F[X?] is metrizable. In this paper we significantly sharpen (and simplify)
both results by proving that if X is any subspace of any ordinal then for each m,
n<wg, (F[X")" is ultraparacompact, i.e., each open cover admits an open refine-
ment which partitions the space. (Indeed, we prove a stronger, but more technical,
result — see Section 2.) Tt follows immediately that if X is a first-countable subspace
of any ordinal then (% [X™])" is a Moore space (cf. [vD] or [L,]) and is ultrapara-
compact and hence has a base of open sets which is the union of countably many
subcollections, each of which is a disjoint open cover of the entire space. Spaces
having such a base are called ultrametrizable and admit a compatible metric d which
satisfies a very strong triangle inequality, viz., for any points x, y and z,

d(x, y)<max{d(x, 2), d(z, )} -

‘Another result in [BFL] characterized those generalized ordered spaces X
built on a separable linearly ordered space (see Section 3 for definitions) for

* Partially supported by NSF Grant GMCS 76-84283.
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