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Let « be the first ordinal such that p € ¥(a). Then a>4. From minimality of «, it
follows that p e D(a)—cls( U ¥(B)) so that
B<a

¢ Cls(pya Y(B)= CIS(pgA ¥(p)

which is impossible. Hence |J ¥(x) is a relatively closed subset of X. According

a<i

to (3.3), #[X] is metrizable. And yet the set E of condition (%) (where 7 denotes
the topology of X as a subspace of §) is all of X and so is uncountable. (Here we use
the fact that X is dense in .§ and S has no “jumps”, i.e., no points a<b where
[a, B] = {a, B}.)

3.7. QuEsTION (Przymusifiski). For any space X, ind(F[X]) =0 and
(see [P]) if #[X] is normal, then dim(# [X]) = 0 (here dim denotes covering
dimension.) Is there any space X for which dim(# [X])>07?

®
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On some test spaces in dimension theory
by

Ali A. Fora (Irbid)

Abstract. Let § and Sy denote the Sorgenfrey and Modified Sorgenfrey lines, respectively.
Then the following result is proved in this paper: If X is any topological space, then Xx S is
strongly zero-dimensional if and only if X'x .S, is strongly zero-dimensional.

1. Introduction. The question of whether dim(X¥x ¥)<dimX+dim ¥ for
topological spaces X and ¥ has long been considered (see e.g., [G], p. 263 and 277).
By dim X, or the covering dimension of X, we mean the least integer, n, such that
each finite cozero cover of X has a finite cozero refinement of order #. (A cover
is of order nif and only if each point of the space is contained in at most 7+ 1 elements
of the cover. All spaces considered are completely regular.)

Researchers worked out the above problem but the recent discovery shows
that Wage [W] and Przymusidski [Pr] construct a Lindeldf space X such that
dimX = 0 and X? is normal but dim(X?)>0.

The aim of this paper is to give a full answer to one of the observations raised
by Mréwka [Mr,] in the conference of 1972 concerning the product problem which
says: “Strong 0-dimensionality of various product spaces remains undecided.
One group of such spaces are powers of certain generalizations of the Sorgenfrey
space. Consider, for instance the product (reals)x [0, 1] ordered lexicographically
and let S, be this product with the Sorgenfrey topology (i.e., the base consists of
half-open intervals). .

Sy is N-compact and strong 0-dimensional, we do not know if S2 is strongly
0-dimensional”, ‘

In this regard, Tan [Ta] showed that certain zero-sets in SZ are countable
intersection of clopen sets. However, he was unable to establish the strong zero-
dimensionality of S%.

The familiar Sorgenfrey space S is defined to be the space of real numbers with
the class of all half open intervals [a, b), a<b, as a base. It is a well-known fact
that S is Lindelsf, first couatable, N-compact and also has dim.S = 0.

A topological space X is called zero-dimensional if and only if X has a base
consisting of clopen’ sets.

A Tychonoff space X is called strongly zero-dimensional provided that
dim X = 0.

2%
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The following theorem (see e.g., [G]) characterizes the class of all strongly
zero-dimensional spaces.

1.1. THEOREM. For a Tychonoff space X, the following conditions are equivalent:

a) X is strongly zero-dimensional.

b) BX is strongly zero-dimensional.

©) For every two disjoint zero-sets Z; and Z, of X, there exists a clopen set G
of X such that Z, <G and GnZ, = @.

It can be easily seen now that a Lindeldf zero-dimensional space must be
strongly zero-dimensional. Since S? fails to be Lindelsf, there is no easy way to
determine dimS2. The fact that dimS” = 0 for all n was proved only in 1972
[Mry, Te]. Prior to that, several researchers have proved that dimS2 = 0 (see
e.g., [N]), but their arguments could not be generalized, even to 3. An interesting
parallel is that Terasawa (private communication) has shown that §2 is hereditarily
strongly zero-dimensional; his proof cannot be generalized even to S3.

Several theorems concerning dimS” can be found in a more generalized way
in Fora [F;] and Fora [F,]. In this paper, we are going to use the result “dim(S™) = 0
for all ne N” to conclude “dim(S}) = 0 for all ne N”.

2. The covering dimension of product of Modified Sorgenfrey lines. We write
X = Yin case X and ¥ are homeomorphic. The closure (boundary) of a set A in
a space will be denoted by Cld4 (Bdry4 = Cl4/IntA). N, R denote the set -of all
positive integers, the set of all real numbers, respectively.

We will start our results with the following:

2.1. LeMMA. If X is a tapologzml space which can be decomposed as a d1s70mt
union of subspaces X,, «<f, where X,’s are clopen for a>0and X, is C*-embedded,
then X is strongly zero-dimensional, provided all X.'s are.

To prove Lemma 2.1, we need the following:

2.2. LemMA. If X satisfies the conditions stated in Lemma 2.1 and if D is a clopen
set in Xy, then there exists a clopen set Dy in X such that Dy n Xy = D,

Proof of Lemma 22. Let g: X,— [0, 1] be defined by g{D) =1 and
g(X,/D) = 0. Then g is a continuous map because D is a clopen set in X, Since X,
is C*-embedded, therefore we can find a continuous map g,: X — [0, 1] such
that g,|X, = g. Since g;'[0, 3] n X, and g;l[% 11~ X, (@>0) are two disjoint
zero-sets in the strongly zero-dimensional space X,, there exists a clopen set D,
in X, (hence clopen in X) such that

g9x' 3 10 X,eD, and D,ng;'0,1]n X, =d.
Let Dy =Dy UOD,. Then D, is a closed set in X because D is a closed set in X'
a>
and

Bdry(U DJ=gx'ld, 110 Xy = D.
a>0

icm®

(notice that both D, and X, /C,,
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To prove that D, is open, we let x € D,,. Since each D, (x>0) is an open set, there-
fore we may assume x e D, and consequently g+(x) = 1. Hence
xeg:'G, lle YD, uD.
a>0
Hence Dy is an open set in X. It is clear that D, n X, = D.

Proof of Lemma 2.1. Let Z, and Z, be any two disjoint zero-sets of X which
are determined by a contmuous map f: X — [0, 1] in such a way that Z; = £~'(¥)
for i=0,1.

For each a>0, f~'[f, 1]~ X, and 1[0, %] n X, are two disjoint zero-sets of
the strongly zero-dimensional space X,. Therefore, there exist clopen sets K, of X,
(hence clopen in X) such that

F3 1N X,cK, and K,nf0,i1nX,=0.
Observe that if xeBdry( ) X), then xe X, and f(x)>%. Since f~1[4,1]1n X,
a>0

and f1[0,4] N X, are two disjoint zero-sets of the strongly zero-dimensional
space Xj, there exists a clopen set (in X,) DcX, such that
S 1IN XpeD and . Daf 0, nX,=0.

By Lemma 2.2, we can find a clopen set D, in X such that D, n X, = D. Since

7%, 11 n X, and f~%(0) n X, (2>0) are two. disjoint zero-sets of the strongly

zero-dimensional space X, so there exists a clopen set C,c X, for which

0N X,cC, and C,nf Yt 1]lnX,=@.

Notice that K, n C, = & because K,=f (%, 1] and C,<f~[0, 1)
Let U= (Dy/ U C)uw UK,. Then Uis a clopen set in X for which Z,cU
a>

and UnZ, =@ Zs>coe the obgervation below).

OBSERVATION. (i) U is an open set in X.

(i) U is a closed set in X..

(i) Z,cU and Un Z, = G.

(i) Let x e U. Since each K, (x>0) is an open set in X, so we may assume
xe D,/ C,. Now, either x & X,, for some 0,>0 or xe& X,. In the first case, we

a=>0

get
x€ Dy 0 (X,/Co)= Dyl U C,
a>0
are clopen sets in X). In the last case, we get xe D
and consequently f(x)>%.
Since f'is a continuous map and D, is open, so there exists an open set Ein X
such that
xeEcf Yt 110 Dy .
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Since for each a>0, C,=f7'[0,%), therefore C,n E =@ and consequently
En {JC,=@. Hence

>0
xeEcD,/ CcU.
a>0

(i) Since each C, (¢>0) is-an open set in X, therefore Dy |J C, is a closed set.
>0

Also, notice that
Bdry(U K)=f 4, 11~ Xo= DU,
>0

Hence U is a closed set in X.

(i) Let xeZ,. Then f(x) = 1. If xe X,, then xe D= U. If xe X, for some
o>0, then x€ K, U.

It is clear that Z, n U = @, and this completes the proof of Lemma 2.1.

‘We shall now state the main result concerning the Modified Sorgenfrey line S,.

2.3. THEOREM. Let X be any Tychonoff space. Then X xSy is strongly zero-
dimensional if and only if X xS is.

Proof. Tt is clear that Xx§ is strongly zero-dimensional whenever X xS, is
strongly zero-dimensional. Now, suppose that Xx.§ is strongly zero-dimensional.
Let Xy = Xx(Rx{l1})eXxS,. Then X, is C*-embedded and X, = XxS.

. Consequently X, is a strongly zero-dimensional space. For each real number r,
define
Sr) ={(x,(r,0): xeX,re[0,1)}. .

Then S(r) is a clopen subset of X'x.S, and moreover
S = XxS for all re R.

Now apply Lemma 2.1 with X, = S(r) (x # 0) on the topological space X% Sy to
complete the proof of the theorem.

2.4. COROLLARY. The space Sy (ne N) is strongly zero-dimensional.

Since dim(S*) = 0 (see e.g., [F,]), so dim(Sx §,) = 0 (by Theorem 2.3) and
henceforth dim(S, xS) =0. Apply Theorem 2.3 again, get dim (Sex Sy) = 0.
Now, use the induction principle together with dim(S") = 0 to get dim Sy =0
for all n>2.

2.5. CorOLLARY. If Y is any strongly zero-dimensional metrizable space, then
Sex Y is strongly zero-dimensional.

The result follows immediately from the fact that a product of a perfectly
normal Hausdorff strongly zero-dimensional space and a metrizable strongly zero-
dimensional space is strongly zero-dimensional (see [Pe], p. 354).

“We can still conclude several corollaries to Theorem 2.3, but the best thing to
observe is that S, does not give us any additional trouble in the product Prgblem
since we can always replace S, by § according to Theorem 2.3.
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. Actually, § has much nicer properties than Sy So, dealing with S is much easier
than dealing with Sy.

At the end of this paper, I would like to point out that the proof and the result
which are given here are less complicated and, in some sense, more general than
those given in Fora [F,] and Tan [Ta].
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