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number of critical points of an m-function extending f? It should be possible to
obtain similar results as in our case if one consider the chain complex induced
by f in place of homology model R® in the definition of A(M).

For non-simply connected manifolds the minimalization problems are much
more difficult and even for Morse functions no satisfactory calculations are known.
However, Theorems 2 and 3 are uneffective enough to have straightforward gener-
alizations to that case. OQur arguments ought to work if the homology groups of M
and OM are replaced by the homology groups of universal covering considered as
modules over the integer group rings Zm; M and Zm;0M, at’ least when
iy: m,0M — = M is an isomorphism.
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Special bases for compact metrizable spaces
by

Erick K. van Douwen (Athens, Oh.)

Abstract., Each compact metrizable space has a base B such that

(1) for every finite £c B, if any two members of {4: A € A} intersect then N4 # @; and

(@) if R is the ring generated by $B, then R consists of regularly open sets and
NF)~ = (Y{A: AeF} for every finite FcR.

This implies that every compact metrizable space is regularly supcrcompact. The construc-
tion of B is complicated but elementary.

0. Conventions and definitions. As usual, if X is a space, ~, °® and € denote the
closure operator, the interior operator and the complementation operator in X;
if # is a family of subsets of X we write e.g. & for {F: Fe #}.

If X is a space and & is a family of subsets, then & is called a closed subbase
if it is a subbase for the closed sets, i.e. #° is a subbase for the open sets, a ring
fFnGeFand FuGeZF forall F,Ge %, linkedif FNG # Qforany F,Ge &
(not necessarily distinct), binary if every linked subfamily has nonempty intersection.

A space is called supercompact if it has a binary closed subbase, regularly
supercompact if it has a binary closed subbase & such that the ring generated by &
consists of regularly closed sets, regularly Wallman if it has a closed subbase which
is a ring and which consists of regularly closed sets.

1. Introduction. The notion of supercompactness was introduced by de Groot
in [dG]. It is a trivial consequence of Alexander’s Subbase Lemma, [A], that every
supercompact space is compact. An easy example of a compact T,-space that is not
supercompact was given by Verbeek, [V, II. 2.2(8)]. The question of whether all
compact HausdorfT spaces are supercompact was settled in the negative by Bell, [B],
this is a nontrivial result in spite of the fact that the answer was to be expected, [dG].
Subsequently van Douwen and van Mill showed that every infinite supercompact
Hausdorff space has many nontrivial convergent sequences, [vDvM]; this gives
a rich supply of compact Hausdorff spaces that are not supercompact.

This paper deals with de Groot’s conjecture that all compact metrizable spaces
are supercompact, [dG]. The first result is due to de Groot who proved that compact
polyhedra are supercompact. An erroneous proof of dec Groot’s conjecturc wag
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published in [O’C]; several people have noticed that this proof does not work for
spaces which have an isolated point, Jeroen Bruyning has discovered that the proof
is entirely incorrect, even for spaces without isolated points.

The first correct proof of de Groot’s conjecture was published by Strok and
Szymariski, [SSz]. Their very complicated proof is inspired by de Groot’s proof that
compact polyhedra are supercompact, and follows his suggestion to consider a com-
pact metrizable space as an inverse limit of a sequence of polyhedra, [dG].

The purpose of this paper is to give an elementary proof of de Groot’s conjecture
which is based on a totally different idea. In fact we prove something more.

THEOREM. Every compact metrizable space X has a base B such that

(1) for every finite F <=2, if F is linked then (\ F # @

(2) if R is the ring generated by B, then & consists of regularly open sets and has
the property that

(%) v (NF)" =NF for every finite F<R .

COROLLARY 1. Each compact metrizable space X is regularly supercompact.

Proof. Let # and £ be as in the theorem. # is a closed subbase since X is
compact and & is a base. Z is binary by (1) since X is compact. Clearly % consists
of regularly closed sets. Z is closed under finite union since £ is, and £ is closed
under finite intersections because of (x) in (2). B

Corollary 1 is best possible in the sense that the implicit condition that X have
a countable base cannot be weakened. Indeed, there is a compact Hausdorff space
with weight w, (in fact even with cardinality ®,) which is not supercompact,
[vDvM].

Regularly supercompact spaces were introduced by van Mill, [vM, 1.4], in
analogy with regular Wallman spaces, introduced by Steiner, [St]. A consequence of
Corollary 1 is that every compact metrizable space is a superextension (this we will
not define) of every dense subspace, [vM, 1.4.2]. This is analoguous to the fact
a regular Wallman space is a Wallman compactification (this we will not define)
of every dense subspace, [St, Thm. 4]. The proof of Corollary 1 also yields the
following.

COROLLARY 2. Each compact metrizable space is regular Wallman.

This was first proved by Steiner and Steiner by a totally different method, [SS].
The consequence that every metrizable compactification is a Wallman compacti-
fication was also obtained by Aarts, [Aa]. It is a recent result of Ul’janov that not
every compactification is a Wallman compactification, [U].

We prove the theorem from the following lemma, which in fact is a corollary
to the theorem.

LEMMA. Every compact metrizable space has a base % which is a ring consisting
of regularly open sets, and which has the property that (\ F)™ = (\ F for every
Jfinite FSUY,

Special bases for compact metrizable spaces 203

We prove the theorem from the lemma by constructing a suitable subfamily &
of %.

Note that Corollary 2 follows from the lemma in the same way Corollary 1
follows from the theorem.

I am grateful to Jan van Mill for supplying me with some information, given
above, that does not occur in print.

2. Proof of the lemma. We first show that if suffices to prove the following
CLAWM. X has a base ¥~ consisting of regularly open sets, satisfying
(x)  for any two disjoint finite F, <V, if N(F U9 ) =3 then
N(Fuvg ) =20.

Given ¥~ as in the claim, we will show that

W ={U¥%: 4<v is finite}

consists of regularly open sets and satisfies
o - NF =(NF)~ for every finite Fc# .

Since the intersection of finitely many regularly open sets again is regularly open,
we then can define our base # by

U ={\F: FcW is finite} .
In order to show that %" is as stated, we need the following strengthening of (¥):
=) NF VI )=(N(F g ) for any twa disjoint finite F, %<y .

To see that (xx) holds, let #, 4 <7¥" be finite and disjoint. Clearly (") (# U 979)"
SN(F vg™)7). Let x¢(N(F u¥ ) be arbitrary. It is easy to see that
x¢ ) ((F v ¥))if x is isolated, so we assume that x is not isolated. Then theré
isaVe¥ —gwithxeVand Vn (F u ¥ ) = @. It now follows from () with
Z U {V} instead of & that x¢ ) ((F v ¥~ )").

Evidently (1) is nothing but the special case ¥ = & of (xx).

Since the members of ¥~ are regularly open, we see from the special case # =
of (1) that for all finite ¥~ '

(U g)—o - (U g)—c—c = (U g—)c—c = (n g—c -c _ (n g-c—)c
=¥ “°=0¥°"°=19%.
Hence the members of %~ are regularly open.
It remains to prove the claim.
Proof of the claim. Let & be any countable base for X. Enumerate
{{4,B)e A xof: A<B} as {({A(n,0),B#,0): ncw,
and
KF,G): F,Gsw; FNG =@, |[FUG|l<w} as <(F,GY: kew).
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It is a straightforward exercise in normality to construct with recursion on 1<k <w
open set A(n, k) and B(n, k) for all ne w in such a way that for all ne @

(@) A(n,k)"<A(n,k+1), A(n,k+1)~ =B(n,k+1), and B(n,k+1)" =B(n,k),
for ke w; and
(b) if N {4, k)": ie F} n N {B(,k): je G} = D, then
N{BG, k+1): ie F}na N{4A(,k+1): jeG}=9.
For each ne w define
Va=(U 4@, k)°,
) kew
and let ¥ = {V,: ne w}.
It follows from (a) that »
(c) A(n,k)"<V, and V,=B(n,k) for kew, ne w.
Hence ¥ is a base for X. Obviously ¥~ consists of regularly open sets. We
check (x). Let k €  be arbitrary. Write () and () for the intersections with i e F
i i
and j e G;, respectively. If
NvinNvi‘=9,
i J

then using (c), (b) and (c) in turn, we see that
NAG, k)" n B,k =9,
i J .
hence
NBE k+1) " nNA(,k+1)°=0.
i i

hence
NVinNVi =0.
i -

(In the last step V;°~ < A(j, k+1)° since A(j, k+1)c Vy and A(j, k+1) is open.)
Remark 1. Note that (*) implies that

(\) for all U, Vev, if U is a proper subset of V, then UcV.

(For UcV, hence UNn V° =@, hence Un V™ =@, hence UV ¢ =V° = V)
It was shown in [G] that every metacompact Moore space has a basis satisfying (\).

Remark 2. Since every metrizable space is perfectly normal and has a g-dis-
crete base, for every metrizable space X one can find for each ne w a collection
{4,, B,): yerl,), where {I',: new) is a pairwise disjoint collection of index
sets, such that

4, is closed, B, is open and 4,=B, for yerI,;
{B,: yeT,) is a discrete family; and
if % = (U,: ye U I', is any open family such that 4, U,< B, for all ye U I',.,

then % is a base for X.
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One can probably use this to show that the lemma holds for all metrizable spaces.
Since I do not know an application I did not bother to check this. (T recall that I once
verified the special case that every metrizable space has a base 7~ satisfying both (\)
and

() forall U, Ve¥,if UnV =G then UnV=20)

Remark 3. The technique of constructing a base by successive approximation
is not new, the earliest reference I am aware of is [Os, Lemma 4]. Also, Aarts proves,
that every metrizable compactification is a Wallman compactification using a one-
step approximation, in [Aa].

Remark 4. There is an easy example of a compact metrizable space which has .
a base % which is a ring consisting of regularly open sets, yet (\ #)~ # N #."
for some finite & =%. Indeed, let w+1, the ordinals < have the order topology.
Define '

U={3n:new}, V={3n+l:new};
and :
B ={{n}; new}u{n ol: new}v{U,V}.

Then & is a base for w+ 1. One easily verifies that the ring generated by # consists
of regularly open sets. However, (Un V)™ # U n.V.

3. Proof of the theorem. Let X be a (nonempty) compact metrizable space,

“let d be a compatible metric for X, and for x € X let S(x, ¢) be the ¢-sphere about x;

By the'lemma there is a base # for X such that
(A) % is a ring consisting of regularly open sests; and
@) (N &)™ = N F for all finite F<u.
We construct our base # by finding for each n€ w a finite #,S% such that
©Ou% =X
(D) diam(B)<2™" for Be &,; and
(B) U {#,: k<n} is binary;
for all ne w. Then & = U {#,: nec w} is a base for X by (C) and (D). Clearly (1)
follows from (E), and (2) follows from (A) and (B) since Z<%.

. 'We construct the 4,’s with recursion on n € w, using the following claim which
we prove later.

CLAIM. Let ne w. If o is a finite binary subfamily of %, then there is a finite
closed cover & of X such that

& U & is binary;
for all E€ 8 and Ae o if ENA =@ then En A = @; and
diam(E)<27" for E€ 8.

Let new, and suppose ﬂ,; to be constructed for k<n.Then o/=){®,: 0<k<n}
is a (possibly empty) finite subcollection of %. Let & be as in the claim. Since % is
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closed under finite unions, {Ue#: U2E} is a neighborhood base for E, for E€ &.
Therefore we can find for each E€ & a U(E)e% such that .

EcCU(E) for E€ ¢;

for all Ee & and Ae o, if ENn A = @ then U(E)n A = O;

for any two E,E'e &, if ENn E' = @ then U(E) n U(E') = @; and
diam(U(E))<27" for Ec &.

Then &, = {U(E): E€ &} is as required, as one can easily check.
We assume that X e o/; alternatively accept the convention that | @& = X.

Proof of the claim. The idea is to take a closed cover & , consisting of suf-
ficiently small sets, and then to enlarge each Fe & to E(F) in such a way that

for all #'cof and F'cF, if &' U F' is linked then o’ U {E(F): Fe F'}

has nonempty intersection,

making sure that the enlarging does not cause more families to become linked. In
other words, we also will require

for all Aesf and F,F'e#, if AnF=@ then An E(F) =@, and if
FNF =@ then E(F)n E(F') = Q.

For x e X we define &/, c.of and 6(x)>0 by
A, ={Adesd: x¢ 4} ;
Sx) =dx,U ), where d(x,0)=1.

Step 1. We construct a finite closed cover.
For each x e X define a neighborhood N, of x by

N = {x} _if x is isolated;
*T S, 27" %) A S(x, $8(x)) if x is not isolated.

Since X is compact, there is a finite Y<X such that (J{N,: ye ¥} = X. For
each ye Y choose a neighborhood I,=N, such that I,n1I, =@ for distinct
y,y' €Y. For ye Y define
F,=N,—U{l,: ye Y, ¥y #y}.

One can easily check the following facts:

@ U{F: yeY}=X;

(b) L,cF, for ye Y;

(© I, n F,, = & for distinct y, 1’ € Y;

d) F,eS(»,27" %) " S(»,46(x)) for ye ¥; and

(e) F, = {y} if y is isolated.

Remark. The /,’s will be used when we enlarge the F’s.
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Fact 1. For all y,y' e Y, if F,nF, # O then A, s, or Ay =d,.

Proof of Factl.Lety, y' € Y bearbitrary, and suppose there are 4 € A~y
and 4'e o, —sf,. Then y¢ A but y'e A hence d(y,y)=d(y, A) >d(», U 4,)
= 6(). Similarly, d(y, y")>8(y"). Therefore (d) implies that

F,nF,c8(y,4d(y,y)) 0 S(y', 3d(y,y)) = O.
Step 2. We enlarge the F,’s.

Since any linked family that contains a singleton set has nonempty intersection,
we only have to enlarge F, if y is not isolated, because of (). Define Z and & by

Z ={ye Y: y is not isolated};
¥ ={L<=Z: {F,: yeL} is linked}.

Since each L € & is finite, there is by Fact 1 for each Le & an
a(L)eL with o, S, for all zeL.
Since & is a finite subset of %, it follows from (B) that
w(L)eN{A: desd,Lcd} = (N {decaf: LcA})”

for all Le . Hence we can pick p, for Le & in such a way that
() pre(ly " N{deo: LeAY)-| Sy,
(g) PL # Pr for distinct L, L' € g,
for & is finite, and for each L € . the set L, is a neighborhood of the (non-isolated)

point a(L), and Eam is a finite collection of closed sets none of which contains a(L).
For each y e Y define an enlargement E, of F, by

E =15 =) if x is isolated;
?  \F,u{p: xeLe &} if x is not isolated .

Step 3. Proof that this works.
We first note that (b), (d) and the definition of & imply

* yedif F,nA+Qif F,n4A+0, for all ye ¥ and Ae o.

Fact 2. For all &'cof and LY, if o' L {F,: yeL} is linked, then
N nN{E: yeL} # @. _

We may assume that o’ # @ since X € o, and that L # @ since our hypothesis
about & tells that () &’ # @. We also may assume that L<Z, the set of nonisolated
points in Y, since F, = E, = {y} for ye Y—Z.

Hence Le 2, so our construction guarantees that py € E, for all ye L, and
that p e 4 for all 4e o’ since (+) implies that L) =",

So we did enlarge the F,’s enough. It remains to show that we did not enlarge
the F,’s too much.
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Fact 3. For all Aco/ and ye Y, if AnF, =@ then AnE, = @.

First observe that y ¢ A because of (), hence 4 € «,. So if L € & contains y,
then «(L) ¢ 4 since &/, S &,1,, hence then p, ¢ A. Since F, n 4 = @ because of (x),
it follows that A n E, = @, both for isolated y and nonisolated y.

Fact 4. For all y,y' €Y, if F,nF, = @ then E,n E, = O.

If ze Y is isolated then E, = I, = {z}, and if ze Y is not isolated then
E,cF,u | {l,: 2’ € Z not isolated}, hence if one of y and )’ is isolated, then
E, n E, = . Next assume that neither y nor y' is isolated. If L € & contains y and
L' € & contains y’, then clearly

y¢L aad Yy ¢L.

Hence p; # pp by (2); and a(L) # ' and a(L') # y, hence py ¢_1Fy. and pp ¢ F,
“by (c) since pp € I, and pp. € Iy. Consequently E, N E, = Q.
Fact 5. diam(E,)<27" for ye Y.
~If yisisolated, diam(E,) = diam({y}) = 0. If y is not isolated, then for all
Le 2, if yeL then p e Fyy, and F,qyn F, # @, so d(x(L),y)<2™*"! by (d),
hence E,=S(y, 27 ""!), again by (d). Therefore diam(E,)<2"" since E, is compact.
It now follows from (a) and Facts 1 through 5 that & = {E,: y€ Y} has all
properties required.
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