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Abstract. In this paper it is proved that weakly confluent mappings of a compact Hausdorff
space onto an n-manifold, n> 1, or a Q-manifold induce monomorphisms in first Cech cohomology.
This result is not true if the image space is not nice enough. It is also proved that for locally con-
nected compacta being contractible with respect to any one-dimensional ANR is equivalent to being
contractible with respect to S*. Finally, it is proved that any mapping from a compact Hausdorff
space of dimension at least three into any compact, simply connected ANR is homotopic to
a weakly confluent onto mapping.

1. Introduction. In 1935, Eilenberg showed in [7] that open mappings or mon-
otone. mappings of compact metric spaces induce monomorphisms between the
first Cech cohomology groups. This implies that contractibility with respect to S!
of compact metric spaces is an invariant under monotone mappings and open map-
pings. In 1966, Lelek extended in [16] Eilenberg’s results to the class of confluent
mappings. In [10] and [12] the author together with E. D. Tymchatyn generalized
Lelek’s result to confluent mappings of compact Hausdorff spaces as well as to semi-
confluent mappings of compact Hausdorff spaces outo hereditarily unicoherent con-
tinua, and to contractibility with respect to any connected one-dimensional ANR.
There are examples to show that more general mappings, like pseudo-confluent
or even weakly confluent mappings, do not preserve contractibility with respect
to S* (see [17, p. 99)). '

In [24] Wilson constructed a monotone open mapping of the Menger universal
curve onto the Hilbert cube Q, and in [25] he constructed monotone open mappings
of any compact, connected triangulated m-manifold M, with m>3, onto any cell.
Using techniques from [24] and [25] Walsh proved in [22] and [23] that any mapping
of M into a compact, connected ANR Y is homotopic to a monotone open mapping
of M onto Y if and only if f,: n;(M)— n,(Y) is surjective.

In this paper it is proved that pseudo-confluent mappings of compact Hausdorff
spaces induce monomorphisms between the first Cech cohomology groups, and that
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contractibility with respect to any one-dimensional ANR is an invariant under
pseudo-confluent mappings provided that the image space has a certain property.
(In particular if it is an n-manifold, n>2, or a Hilbert cube manifold). It is also
proved that for locally connected metric continua “being contractible with respect
to S1” is equivalent to “being contractible with respect to any non-simply connected
graph”. Finally, it is proved that if X is a compact Hausdorff space of dimension >3
and Y is an arbitrary compact, simply connected ANR, then any mapping of X
into Y is homotopic to a weakly confluent mapping of X onto Y. Two unsolved
problems are also posed.

The author wishes to thank Professor Tymchatyn for the numerous helpful
discussions during the preparation of this paper.

2. Preliminaries. A compactum is a compact metric space, and a continuum
is a compact, connected Hausdorff space. A mapping is always a continuous function.
By an ANR we mean a metric absolute neighbourhood retract [1]. A mapping
f: X— Y is said to be essential provided that f is not homotopic to a constant
mapping. We. write f non ~1. If f: X— Y'is homotopic to a constant mapping we
write f~1. We write firr non =~1 provided that fis essential, but f| K=~1 for every
proper closed subset K of X. A continuum X is said to be unicoherent provided that
X # P U Q, where P and Q are subcontinua of X such that P n Q is not connected.
A space X is said to be contractible with respect to a space Y provided that every
mapping of X into Y is homotopic to a constant. By S™ we denote the standard
n-sphere.

By a simple closed curve we always mean a homeomorphic copy of S*. If X is
a subset of Y, then by Cl(X), Bd(X) and Int(X) we denote the closure of X in ¥,
the boundary of X in ¥, and the interior of X in Y, respectively. We say that a simple
closed curve S in a space X is approximated by a spiral provided that X contains
a homeomorphic copy C of [0, +00) such that ScCI(C) and SUC is homeo-

morphic to the planar continuum
0

2+e
4={@ 0l e=1,org=1"75and 9>0},
where (g, 0) denotes a point of the plane in polar coordinates. We call 4 the standard

spiral.
A mapping f: X — Y of a compact Hausdorff space X onto a Hausdorff space Y
is said to be monotone provided that f ~ () is connected for each y € Y. The mapping f
. is said to be open provided that £ (U) is open in Y for each open set U in X. We say
that f is weakly confluent [17] (resp. pseudo-confluent [18]) provided that for each
subcontinuum K (resp. each irreducible subcontinuum K) of Y there exists some
component C of f~*(K) such that f(C) = K. (For the definitions of confluent map-
pings and semi-confluent mappings see [5] and [19]). It is known that open mappings
and monotone mappings are confluent, confluent mappings are. semi-confluent,

semi-confluent mappings are weakly confluent, and weakly confluent mappings are .

pseudo-confluent.
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3. Contractibility witlr respect to graphs. In this section we prove that contract-
ibility with respect to any one-dimensional ANR is an invariant under pseudo-
confluent mappings if the image space belongs to a certain class of spaces. The first
proposition is due to Borsuk [2, p. 184] and Eilenberg [8, p. 70]:

3.1. PROPOSITION. Let Y be a locally connected metric continuum. Then the
following are equivalent:

(i) Y is not unicoherent;

(ii) Y is not contractible with irespect to S*;

(iii) Y contains a simple closed curve which is a retract of Y;

(iv) if g: Y— S is an essential mapping, then Y contains a simple closed
curve S such that g|S non ~1.

Proof. The equivalence of (i) and (ii)is established in [8, p. 70], and the equival-
ence of (i) and (iii) is established in [2, p. 184]. Itis also obvious that (iv) implies (ii).
The fact that (i) implies (iv) can be proved by using the proof of the result in
[2, p. 184] (see also [15, p. 439]). For this letg: Y — S ! be the essential mapping,
and let S1 and S® be the upper-half and the lower-half of S*, respectively. Let also
a=(1,0) and b = (1, 7). Consider the set K, = g~!(S}) and K, = g~1(S1).
As in [15, Theorem 7, p. 432] there exist two locally connected continua Cy and C;
such that Ky<=C,. K;=Cy, ¥ = Cy U Cy, and g|C;~1 for je {0, 1}. By [15, The-
orem 3, p. 417], Co n C, is not connected. Moreover, C and C, can be constructed
so that Cy N C; = F, U Fy, where F, and F, are closed, non-empty, disjoint sub-
sets of Y with -

1) g (@<F, and g~ 'b)cF,.

Let A, be an arc contained in C, and irreducibly connected between F, and F,.
Put A, N F; = {p;} for je{0,1}, and let 4; be an arc pop, contained in C;. It
follows that 4, U 4, = S is a simple closed curve. The proof of Theorem 4, p. 439
in [15] shows that 4, U 4, is a retract of Y. Notice that the only difference between
this construction and the construction in [15, p. 439] is that Cy and C, are chosen in
such a way that (1) is also satisfied. It is not difficult, now, to prove that the retraction
r: Y— S can be taken so that

191 o r(»)—g(y)I<2

for each ye Y, where g, = g|S This implies that g, o r is homotopic to g, and
hence, g, non ~1,

We shall use the following formulation of Fort’s Lemma (see [9, page 542])
(for the definition of a locally trivial fiber see [20, p. 328]).

3.2. LemMA (M. K. Fort [9]). Let (E, B, p) be a locally trivial fiber space such
that for each b e B, the fibre p~'(b) is totally disconnected, and such that E is not
arcwise connected. If f: K— E is a mapping of a connected space K onto E, then
pof non ~1.
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Consider the following continua in the plane

2+’ R
B = {(Q,B)i e=1¢0=20rpo= e and —00<0<+00},

and
0

2+
d= {(e,o)l g=1, 0f g=r and 0<9<+oo}_
1+¢

It can be seen that B is the one-point union of two homeomorphic copies of 4,
sdy A, and 4,. Let {a} = 4; N A,. Consider the mapping h: B— S! defined by
h(g,0) = (1, 0) for each (g,0)e B, and let h;: A — S* be the restriction of A
on A.

For each non-negative integer n, let g,: S' — S! be the mapping of S* onto S!
defined by g,(1, 0) = (1, n-6) (here consider S* as the set of all points in the plane
having. polar coordinates (1, 6) with 0<0<2n). It is known that each mapping
of S onto S* is homotopic to g, for some n.

Let g: A— S! be an essential mapping of 4 onto S'. It is easy to see that
g=g,°hy for some n. Let f: K— A be a mapping of a continuum K onto A4. If
g o f=1, then since g~g, o h,, we have that g, o h, o f~1. Thus, by [8, p. 68] there
exists a mapping ¢: K— R such that g,oh, of = yro¢, where y: R— S! is
the mapping defined by ¥ (t) = e** for each te R.

. 'We introduce the following notation: If D is a compact Hausdorff space and
de D, let
U(D,d) = Dx{0,1}{(d, 0),d, D)},

that is U(D, d) is the one-point union of two homeomorphic copies of D. Let
¢p: Dx{0,1} - U(D, d) be the quotient mapping of Dx {0, 1} onto U(D, d).
Let f: D — E be a mapping of D onto a Hausdorff space E. Then by

fvf: UD,d)— U(E, f(d))
we denote the mapping which is induced by f, that is the mapping defined by

(fvNlen@d, D] = o f(d), i)

for each point (d,7)e Dx {0, 1}.
Choose, now, a point x, € f~!(a), and consider the mappings

fvf: UK, xo) — U(A, a),
pvo: UK, x0) = U(e(K), (o)),  (gn°hy)V(gnohy): U(4,a)— S vS*
(S*vS* denotes the one point union of two S*) and

Yyvy: Ule(K), o(xp))— S'vs!.
Then we have that

€Y (@nob)v@no b))l (fVf) = W Vi) o(oVve).
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Define a mapping.y: S'vS! — S* such that y maps each copy of S! (in S'v S?)
homeomorphically onto S. It is very easy to see that y can be taken so that

(2) 7° [(gn°hl)v(gn°h1)] =gn°h
(notice that U(4, a) = B). By (1) and (2) we obtain that

@nom) o (fVf)=7°1(@aoh)V@noh)le (fVf) =y (Vi) o(ove),

and since U(@(K), ¢(xo)) is contractible (U(p(K), ¢(x,)) is the one-point union
of two arcs), we have that

3 Gnoh) o (fVvf)=1.

‘Consider the triple (B, S!, g, o h). This is a locally trivial fiber space such that
for each s e S, the fibre (g, o B)~*(s) is totally disconnected, and such that B is not
arcwise connected. By Lemma 3.2, (g, o ) o (fvf) non=~1. This contradicts (3),
and hence, we have proved the following:

3.3. LeMMA. Ifg: A — S! is an essential mapping of A onto S*, and if f: K — A
is @ mapping of a continuum K onto A, then g o f is an essential mapping of K onto S*.

Let & denote the class of all compact metric spaces Y with the property that
if f: ¥ — S! is a mapping such that f non=~1, then there exists a subcontinuum B
of Y which is homeomorphic to the standard spiral 4 and such that f|B non ~1.

It can be proved that the class § contains all compact n-manifolds, n> 1, and
all .compact Hilbert cube manifolds [4]. :

To see that compact n-manifolds (n>1) are in class § let M be an n-manifold

“(n>1) and let ;- M — S* be an essential mapping. By Proposition 3.1, there exists

a simple closed curve S in M such that f|S non=~1. Let A: S* —» M be an em-
bedding of S! into M such that h(S?) = S. It is easy to see that given ¢>0 there
exists an embedding #’: S* — M of S! into M such that d(h, i')<e (here by
d(h, ") we denote the number sup{o(h(x), h'(x))| xe S'} where g denotes the
metric in ‘M), and such that A'(S') n M = @. Moreover, we can take A’ so that
#'(S?) is a tame simple closed curve. Since M is an ANR, we can choose ¢ sufficiently
small so that A’ is homotopic to h. Then we have that f|S’ non=~1, where
S’ = h'(S'). Consider, now, a tubular neighbourhood U of S’ in M such that

CllU)ndM =9 .

Now it is obvious that we can construct a homeomorphic cépy T of the half-line
in U so that §* U T is homeomorphic to the standard spiral 4. Moreover, f[S' U T
non=1.

By using the same method one can show that Hilbert cube manifolds are also
in class §. '

3.4. THEOREM. Let f: X — Y be a pseudo-confluent mapping of a compact
Hausdorff space X onto a space Y in §. If g. Y — S* is a mapping such that g o f~1,
then g=~1.
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Proof. Suppose, on the contrary, that g non~1. By hypothesis, there exists
a continuum B in Y which is homeomorphic to the standard spiral 4 and such that
(91B) non=1. Since B is irreducible, there exists a subcontinuum X in X such that
Jf(K) = B. By Lemma 3.3, (g|B) o (f|K) non=1. Thus, g o f non~1. This con-
tradiction proves the theorem.

By H(X) we denote the first Cech cohomology group of a compact Hausdorff
space X based on arbitrary open coverings and with integer coefficients. By the
Bruschlinsky theorem (see [6, 8.1]) we have that H !(X) is isomorphic to the group
of the homotopy classes of mappings of X into S*. Therefore, a compact Hausdorff
space is contractible with respect to S! if and only if H'(X) is the trivial group.

The following results follows from Theorem 3.4:

3.5. COROLLARY. Let f: X— Y be a Dpseudo-confluent mapping of a compact,
Hausdorff space X onto some space Y e §. Then the induced mapping

f* H(Y) - H\(X)
is @ monomorphism.
3.6. COROLLARY. Let f: X — Y be a pseudo-confluent mapping of a compact,

Hausdorff space X, which is contractible with respect to S*, onto a space Y€ §.
Then Y is contractible with respect to S*.

Next, we shall prove that Corollary 3.6 holds true for locally connected members
of § if instead of S* we have any graph G (i.e., compact, connected one-dimensional
polyhedron). We need first to show that for locally connected compact metric spaces
“being contractible with respect to S” is equivalent to “being contractible with
respect to any non-simply connected graph”. It is known that this is not true for non-
locally connected continua. For example the Case-Chamberlin continuum [3] is
a one-dimensional continuum which is contractible with respect to S! but it is
notcontractible with respect to the one-point union of two circles S* v S (sometimes
called a “figure 8”).

It is known that a compact metric space X is contractible with respect to
a graph G if and only if each component of X is contractible with respect to G.
The proof of this is identical with the proof in [8, p. 66] where G is taken to be the
1-sphere S*. Consequently, in order to prove that for locally connected, compact,
metric spaces “being contractible with respect to S1” is equivalent to “being con-
tractible with respect to any non-simply connected graph”, it suffices to prove the
following:

3.7. PROPOSITION. Let X be a locally connected metric continuum. Then the
Jollowing are equivalent:

() X is contractible with respect to S*;
(i) X is contractible with respect to a non-simply connected graph G.
Proof. (ii) implies (i): Since G is not simply connected, it contains a homeo-

morphic copy of S*. Therefore, every mapping of X into S is homotopic to a con-
stant mapping, since X is contractible with respect to G.
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(i) implies (ii): Let X be a continuum which is contractible with respect to S*.
To show that X is contractible with respect to a non-simply connected graph G,
let fi X — G be a mapping. We shall prove that f~1. Since every subcontinuum
of a graph is a graph, we may assume without loss of generality, that f'is surjective.
There exist two simply connnected graphs 4, and A4, such that G = A 1 U A, (see
[1, p. 156]). Let F; =f"%(4;) and F, = f7'(d4,). Then X = F, U F,, f|F,~1
and f'| F,~1. We shall prove, by using the same method as in [15, Theorem 6, p. 431],
that there exist two locally connected continua X, and X, in X such that F,cX,,
F,cX,, flX;~1 and f|X,~1.

First, notice that since F, is a compact subset of X with f| F,~1, by [12, Prop-
osition 4.4] there exists an open subset U of X containing F, and such that fICI(U)~1.
Since X is locally connected, we can take U so that CI(U) has a finite number of
components each one being a locally connected continuum. Thus, without loss of
generality, we may assume that F; = C, U...u C,, where the sets Ciy s Cpy
are disjoint, locally connected continua.

We use induction. If m = 1, then the claim is true, that is, there exists a locally
connected continuum X; containing F; = C, and such that 1| X 1 =1. Assume that
it holds for the number m— 1. Let L be an arc ab sach that L N F; consists of exactly
two points @ and b, such that ae C,,_; and be C,,. Since fICiu..uC,_ =1,

fIL~1 and (C; v ... v C,_,) " L = {a}, it follows easily (see the proof of Prop-

osition 2.2 in [9]) that f|C, u ..U C,_, U L~1. Thus, flICiu..uC,_;u
ULu C,~1, since (C;v..uC,_yUL)nC,={b} and fIC,~1. By the
inductive hypothesis, there exists a locally connected continuum X ; in X such that
Fyc X, and f| X, ~1. Similarly, we obtain a locally connected continuum X ,in X
such that F,c X, and f|X,~1.

.We now have that X = X, U X,, where X, and X, are subcontinua of X.
Since X is contractible with respect to S, Proposition 3.1 implies that X is unico-
herent. Thus, X; n X, is connected. Let p: J— G be the universal covering pro-
jection for G. Since f|X,~1 and f|X,~1, there exist mappings ¢: X; —J and
¥: X, —J such that f| X, = po¢ and f|X, = po . Moreover, ¢ and ¥ can be
taken so that ¢(a) = y(a) for some point ae X; N X,. It follows that o(x) = Y (x)
for each x € X, n X,, and hence, the mapping g: X — J defined by

o(x), if xelX,,
9() = {l/l(x), if xeX,
is such that f = p o g. This proves (compare with the proof of [10, Proposition 2.2])
that f~1.
Proposition 3.7 is related to a theorem of Krasinkiewicz [14, p. 237] who proved
that the result of Proposition 3.7 is true for a class of one-dimensional metric con-

tinua, namely the class of pointed movable one-dimensional metric continua (for
the definition see [14]).

3.8. THEOREM. Let f: X — Y be a pseudo-confluent mapping of a compact
Hausdor(ff space X, which is contractible with respect to a graph G, onto a locally con-
nected space Y in §. Then Y is contractible with respect to G.
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Proof. If G is a simply connected graph, then the theorem is obvious. So assume
that G is not simply connected. Then X is contractible with-respect to S*, and hence,
by Corollary 3.6, Y is contractible with respect to S*. The theorem now follows from
Proposition 3.7. .

Let M be a one-dimensional connected ANR. Then M contains at most finitely
many simple closed curves. Hence, there exists a graph G< M with fundamental
group 7,(M) = =,(G) and such that there exists a monotone retraction of M onto G.
As a consequence we have the following:

3.9. COROLLARY. Let f: X — Y be a pseudo-confluent mapping of a compact

Hausdorff space X, which is contractible with respect to a one-dimensional connected
ANR M, onto a locally connected space Y in &. Then Y is contractible with respect
to M.

It is clear that contractibility with respect to higher dimensional ANR’s is not
preserved. For example, for each n>2 there exists a monotone mapping of 7" onto S”.

4. Mappings into simply connected ANR’s. Let ¥ be an ANR and let B be
a subset of Y. We say that B is contractible in Y provided that there exists a homo-
topy F: Bx I— Y (Iis the unitinterval [0, 1]) such that F(b,0) = band F(b, 1) = b,
for some point b, € B and for each b € B. It is known that ANR’s are locally con-
tractible, that s, if Yis an ANR and y € Y, then there exists an open neighbourhood U
of y in Y such that U is contractible in Y (see [1, p. 87]). A connected ANR Y is said
to be simply connected provided that the fundamental group x;(Y) is trivial.

4.1. THEOREM. Let X be a compact Hausdorff space with dimX>3 and let Y
be a compact, simply connected ANR. Then any mapping of X into Y is homotopic to
a weakly confluent mapping of X onto Y. '

Proof. Let f: X — Y be a mapping of X into Y. Since dim X>3, there exists
a point xo€ X such that if U is an open neighbourhood of x,.in X, then
dimCl(U)=>3. Let V be an open set in X with UcCI(U)c V. Since Y is an ANR,
Y is locally contractible, and hence, we can take ¥ so that f [CI(¥)] is contractible
in Y. Since dimCl(U)>3, by [12, Theorem 4.3] there exists a weakly confluent
mapping g;: CI(U) — I* of CI(U) onto the 3-cell I3. Since I® is an AR, there
exists a mapping g,: Cl(V) — I® which extends g}. Then g, is a weakly ‘¢onfluent
mapping of CI(V) onto I°. .

Consider now the 3-cube I3. Since =,(I3) = 0, by Walsh’s result [22, Prop-
osition 2.0], there exists a monotone mapping p: I3 — Y of I* onto Y. Put

I}
ol
/ A

cuy) € cuvy ==Y
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f'=f|ICI(V). It is clear, now, that since I3 is contractible, we have that
peogy: CI(¥)— Y is homotopic to a constant mapping. Also, since f[CI(V)].is
contractible in Y, the mapping f’: Cl(V) — Y is homotopic to a constant mapping.
Therefore, there exists a homotopy

fi: CI(V)xI—>Y

such that fi(x) = f'(x) and fy(x) = pog,(x) for each x e ClI(V). By using this
homotopy we shall define a weakly confluent mapping from X onto Y which is
homotopic to f.

For this let ¢: ClI(V)— [0, 1] be an Uryshon mapping such that ¢ [CI(U)] = 0
and @[Bd(V)] = 1. Define a mapping g’: CI(V)— Y by putting

g'(x) = fo(¥)

for each x e CI(V). Then for each x € CI(U) we have that g'(x) = fo(x) = fo(x)
= pog,(x), and for each x e Bd(V) we have that g'(x) = fo,(X) = fi(x) = f'(x)
= f(x). We finally define a function g: X— Y

_Jgx®, if xeCl(V),
g(x)—{f(x), if xeX\CI(V).

Since g’|Bd(¥) = f|Bd(V), we have that g is continuous. In order to see that g is
a weakly confluent mapping of X onto Y, notice that g|ClI(U) = p o g}. Since p is
monotone, it is weakly confluent, and by [18, 1.5], pog] is a weakly confluent
mapping of CI(U) onto Y. It is now apparent that f~g, since they are both homo-
topic to a constant mapping in CI(¥) and they coincide on X\CI(V). This completes
the proof of the theorem.

We saw in the proof of Theorem 4.1 that every simply connected, compact,
connected ANR Y is the weakly confluent image of any given compact Hausdorff
space with dimension at least three. By the lifting theorem [21, p. 67], for every
mapping f: ¥ — S! there exists a mapping ¢: ¥ — R such that f(y) = ¢*™*®
for each y € Y. Hence, Y is contractible with respect to S*. The converse is not true.
The projective plane P, is an example of an ANR which is contractible with respect
to S* but which is not simply connected. The following problems can be posed:

PROBLEM 1. Let X be a compact connected Hausdorff space with dimension
at least three, and let Y be a compact, connected ANR which is contractible with
respect to S'. Is there a weakly confluent mapping of X onto Y?

PROBLEM 2. Let X be a compact connected Cantor manifold with dimension
at least three, and let Y be a compact connected ANR. Is it true that any mapping
S X — Y is homotopic to a weakly confluent mapping of X onto Y if and only’if
f*: H(Y)— H'(X) is a monomorphism?

5 - Fundamenta Mathematicae CXI, 3
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In general Theorem 4.1 is not true if we do not assume that Y is a simply con-
nected ANR. Corollary 3.6 guarantees that there is no weakly confluent mapping
of I* onto the torus S'xS*.

In [11, Example 4.2] a two-dimensional continuum was constructed which
admits an essential mapping onto S2, but which does not admit any semi-con-
fluent mapping onto S2. By using exactly the same technique one can construct
n-dimensional continua (#>2) which admit no semi-confluent mapping onto S".
Thus, in Theorem 4.1 weakly confluent mappings cannot be replaced by semi-
confluent ones.

Added in proof. Problems 1 and 2 have been answered in the negative by J. Grispolakis
and E. D. Tymchatyn.
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