Hence, taking $\gamma = f(\{A\})$, we have from the definition of δ that $H^2(g(\gamma), \gamma) < \varepsilon$. Thus, by the triangle inequality, $H^2(k(\{A\}), \{A\}) < \varepsilon + \delta$. Hence

(2) k is within $\varepsilon + \delta$ of the identity of $F_1(C(S^1))$.

Finally, recall that

(3) $F_1(C(S^1))$ is naturally isometric to $C(S^1)$.

Since ε and δ may be chosen as small as we please, we see from (1), (2) and (3) that $\{S^1\}$ is a Z-set in $C(S^1)$. But it is well known that $C(S^1)$ is a 2-cell with S^1 , as a point of $C(S^1)$, in its interior (see [13, (0.55)]). Thus $\{S^1\}$ cannot be a Z-set in $C(S^1)$ [8, VI 2, p. 75]. The contradiction proves that $\Gamma(C(S^1)) \approx Q$.

References

- [1] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), pp. 1101-1110.
- [2] K. Borsuk and S. Mazurkiewicz, Sur l'hyperespace d'un continu, C. R. Soc. Sc. Varsovie, 24 (1931), pp. 149-152.
- [3] T. A. Chapman, Lectures on Hilbert cube manifolds, C.B.M.S. Regional Conference Series in Math., No. 28, 1976.
- [4] D. W. Curtis and R. M. Schori, 2^x and C(X) are homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc. 80 (1974), pp. 927-931.
- [5] Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), pp. 19-38.
- [6] Hyperspaces which characterize simple homotopy type, Gen. Top. and Appl. 6 (1976), pp. 153-165.
- [7] J. T. Goodykoontz, Jr., C(X) is not necessarily a retract of 2^x, Proc. Amer. Math. Soc. 67 (1977), pp. 177-178.
- [8] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, New Jersy, 1948.
- [9] J. L. Kelley Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), pp. 22-36,
- [10] S. Mazurkiewicz, Sur l'hyperespace d'un continu, Fund. Math. 18 (1932), pp. 171-177.
- [11] K. Menger, Untersuchungen über allegemeine Metrik, Math. Ann. 100 (1928), pp. 75-163.
- [12] E. E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), pp. 1111-1121.
- [13] S. B. Nadler, Jr., Hyperspaces of Sets, v. 49, Pure and Applied Math. Series, Marcel Decker, New York 1978.
- [14] A characterization of locally connected continua by hyperspace retractions, Proc. Amer. Math. Soc. 67 (1977), pp. 167-176.
- [15] R. M. Schori and J. E. West, Hyperspaces of graphs are Hilbert cubes, Pacific J. Math. 53 (1974), pp. 239-251.
- [16] H. Torunczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), pp. 31-40.
- [17] M. Wojdyslawski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), pp. 184-192.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY Lexington, Kentucky

WEST VIRGINIA UNIVERSITY Morgantain, West Virginia

Accepté par la Rédaction le 15. 1. 1979

A generalization of a theorem of Skala

by

Helmut Länger (Vienna)

Abstract. Let $n \ge 1$, let (A, f) be some algebra of type n+1 satisfying

(a) $f(f(x_0, ..., x_n), y_1, ..., y_n) = f(x_0, f(x_1, y_1, ..., y_n), ..., f(x_n, y_1, ..., y_n))$ for any $x_0, ..., x_n, y_1, ..., y_n \in A$ and put

 $C := \{x \in A \mid f(x, x_1, ..., x_n) = x \text{ for any } x_1, ..., x_n \in A\}$

$$S_i(M) := \{x \in A | f(x, x_1, ..., x_n) = x_i \text{ for any } x_1, ..., x_n \in M\} \quad (1 \le i \le n, M \subseteq A)$$

and

$$S(M) := S_1(M) \cup ... \cup S_n(M) \ (M \subseteq A).$$

The following result of H. Skala (cf. [1]) is generalized:

THEOREM 1. Let $|C| \ge 3$ and assume $f(x_0, ..., x_n) \in \{x_0, ..., x_n\}$ for any $x_0, ..., x_n \in A$. T.f.a.e.:

- (i) $a \in A \setminus C$.
- (ii) $a \in S(C \cup \{a\})$.

In the following if $x \in A$ or if $x \subseteq A$ then x(i) denotes the sequence x, ..., x of length i $(1 \le i \le n)$.

LEMMA 1. Let $B \subseteq A$ satisfying

- (b) f(x, y, ..., y) = x for any $x, y \in B$
- and let $a \in A$ such that (α) and (β) :
 - (a) f(a, x, ..., x) = x for any $x \in B$.
 - (β) $f(a, B(i-1), a, B, ..., B) \subseteq B \cup \{a\}$ for any i = 1, ..., n.

Further let $a_1, ..., a_n, b, b_1, ..., b_n \in B$ and assume $f(a, a_1, ..., a_n) = b$. Finally, suppose $b_1 = b$ whenever $a_1 = b$ $(1 \le i \le n)$. Then $f(a, b_1, ..., b_n) = b$.

Proof. We prove $c_i := f(a, b_1, ..., b_i, a_{i+1}, ..., a_n) = b$ for any i = 0, ..., n by induction on i. $c_0 = b$ is our hypothesis. Now, let $0 < j \le n$ and suppose $c_{j-1} = b$ to be already proved. If $a_j = b$ then $b_j = b = a_j$ whence $c_j = b$. If, otherwise, $a_j \ne b$ then $f(f(a, b_1, ..., b_{j-1}, a, a_{j+1}, ..., a_n), a_j, ..., a_j) = b$ by (a), (b) and (α) whence $f(a, b_1, ..., b_{j-1}, a, a_{j+1}, ..., a_n) = b$ by (β), (α) and (b) and therefore

$$c_j = f(f(a, b_1, ..., b_{j-1}, a, a_{j+1}, ..., a_n), b_j, ..., b_j) = f(b, b_j, ..., b_j) = b$$

by (a), (b) and (α) .

THEOREM 2. Let $B \subseteq A$ satisfying (b), suppose $|B| \ge 3$ and let $a \in A$. T.f.a.e.: (i) (α') , (β') and (γ) hold:

- (a') $f(a, x(i-1), y, x, ..., x) \in \{x, y\}$ for any $x, y \in B$ and for any i = 1, ..., n.
- $(\beta') \ f(a, B \cup \{a\}, ..., B \cup \{a\}) \subseteq B \cup \{a\}.$
- (Y) There exist $u, v, w \in B, u \neq v \neq w \neq u$, such that f(a, u(i-1), v, w, ..., w) $\in \{u, v, w\}$ for any i with 1 < i < n.
- (ii) $a \in S(B \cup \{a\})$.

Proof. (i) is an immediate consequence of (ii). Therefore, suppose (i) holds. Then $f(a, u, ..., u, v) \neq w$ by (α') and (γ) . Now put

$$k := \min\{i | 1 \le i \le n, f(a, u(i-1), v, w, ..., w) \ne w\}.$$

We will prove

(1)
$$f(a, u(k-1), v, w, ..., w) = v$$
.

If k = 1 then (1) follows from (γ) , (α') and from the definition of k. Now suppose k>1. Then f(a, u(k-2), v, w, ..., w) = w by definition of k whence

(2)
$$f(a, u(k-1), w, ..., w) = w$$

by (γ) and Lemma 1. Now, f(a, u(k-1), v, w, ..., w) = u would imply

$$f(a, u(k-1), w, ..., w) = u \neq w$$

by (γ) and Lemma 1 contradicting (2). Hence (1) follows from (γ) , from the definition of k and from (α') . Now

(3)
$$f(a, B(k-1), v, B, ..., B) = v$$

by (1), (7) and Lemma 1. Let $c \in B$, $c \neq v$. Choose $d \in B$, $d \neq c$, v. Then

$$f(a, d(k-1), c, d, ..., d) = d$$

would imply $f(a, d(k-1), v, d, ..., d) = d \neq v$ by (γ) and Lemma 1 contradicting (3). Hence f(a, d(k-1), c, d, ..., d) = c by (α') and thus f(a, B(k-1), c, B, ..., B) = cby Lemma 1. Together with (3) this shows

$$a \in S_{\mathbf{t}}(B) .$$

If there would exist $a_1, ..., a_n \in B \cup \{a\}$ with $f(a, a_1, ..., a_n) \neq a_k$ then choosing some $e \in B$, $e \neq f(a, a_1, ..., a_n)$, a_k we would obtain

$$f(a, f(a_1, e, ..., e), ..., f(a_n, e, ..., e))$$

$$= f(f(a, a_1, ..., a_n), e, ..., e) \neq f(a_n, e, ..., e)$$

by (a), (b) and (a') contradicting (4). Hence $a \in S_k(B \cup \{a\}) \subseteq S(B \cup \{a\})$ and (ii) holds.

Remark. Using the left ideal property of C, i.e. $f(A, C, ..., C) \subseteq C$, one easily verifies that Theorem 1 is an immediate consequence of Theorem 2. But Theorem 2

is more general than Theorem 1 as can be seen from the following example: Let M be some set, $|M| \ge 3$, put $A := \{f | f: M^n \to M\}$ and let σ be some equivalence relation on M" satisfying

$$\prod_{X \in M^n/\sigma} |X \cap \operatorname{diag}(M^n)^2| \geqslant 3.$$

Further let $B \subseteq \{ f \in A | \ker f = \sigma \text{ and } (fX, ..., fX) \in X \text{ for any } X \in M''/\sigma \}, |B| \geqslant 3.$ Finally, let $\bigcup \{fM'' \mid f \in B\} \subseteq L \subseteq M$, let $1 \le j \le n$ and let $a \in A$ such that $aM'' \subseteq L$ and $a(x_1, ..., x_n) = x_i$ for any $x_1, ..., x_n \in L$. Now consider the algebra (A, f)where f is the composition of functions, i.e.

$$(f(f_0, ..., f_n))(x_1, ..., x_n) := f_0(f_1(x_1, ..., x_n), ..., f_n(x_1, ..., x_n))$$

for any $f_0, ..., f_n \in A$ and for any $x_1, ..., x_n \in M$. Then Theorem 2 does apply to this case whereas Theorem 1 does not in general.

Reference

[1] H. Skala, Irreducibly generated algebras, Fund. Math. 67 (1970), pp. 31-37.

TECHNISCHE UNIVERSITÄT WIEN INSTITUT FÜR ALGEBRA UND DISKRETE MATHEMATIK Vienna, Austria

Accepté par la Rédaction le 15, 1, 1979