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Integrating intuitionistic and classical theories
by
E. G. K. Lépez-Escobar (Annapolis, Md.)
Abstract. A completeness theorem for HAS,, (the intuitionistic theory of species -+ the w-rules)
is given using Beth models: The completeness theorem is then used to show that HAS,, has the disjunc-

tion property. A conservative extension of HAS, called UHAS, is also defingd and it has the property
that HAS,,, UHAS, and UHAS;c (UHAS + the recursively restricted w-rules) are all equivalent.
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§ 0. Introduction. The principal aim of this note is to give a completeness theorem
for HAS,,, the intuitionistic theory of species with w-rules. The models used are,
except for minor modifications, the structures originally introduced by E.W. Beth.

The completeness theorem is then used to show that some properties of the con-
sequence relation of HAS,, can be derived by model-theoretical methods; we only
consider the disjunction property, however it is clear that the method is applicable
in other instances.

Since it is known that HAS,, is not equivalent to HAS,,. (HAS + the recursively
restricted w-rules) we inroduce the system UHAS a conservative extension of HAS,
which has the property that the infinitary extensions UHAS, and UHAS,. are
equivalent conservative extensions of HAS,,.

- Jt.may be -of some interest to observe both HAS,, and UHAS involve a mixture .
of classical and intuitionistic notions. _HAS,, yields all the classically true arlthmemcal‘
statements; UHAS has, in addition to the intuitionistic disjunction, a very weak
kind of classical disjunction (see Prawitz [5] for similar considerations).
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§ 1. The system HAS. To all intent and purposes by the system HAS we under-
stand the (two sorted) impredicative theory of species given in Troelstra [9].

One of the minor modifications will be that we shall only use unary predicate
variables (and called them species variables). Also instead of writing “Xx” we shall
often write “x e X”.

We shall distinguish between the logical system and its axioms; furthermorc
the axioms will always be sentences (i.e. formulae having no number or species
parameters). Thus HAS is the intuitionistic system of impredicative analysis, and FIAS
is the set of axioms of HAS.

Observe that the following axiom of extersionality ,

 VXVxVylxeXAx =yoyeX]

is assumed to be in HAS.
We shall use the symbol “+” for derivability in (intuitionistic) second-order.
logic. In particular a theorem of HAS is any formula v such that HAS + 4:
The following theorem will be needed later on and since it is not usually included
in the developments of the intuitionistic theory of species we include it here.

1.1. THEOREM. For any formula A(P, S, y) of HAS:
HAS F VXVPVQVy(Vx(xeP = xe Q)>(4(P, S,») =
Proof. By induction on the length of the formula A.

4(2,8,5).

§ 2. The unfaithful intuitionistic theory of species. The extension UHAS of HAS
will be obtained by adding a very restricted classical disjunction, and because the
classical disjunction is not allowed to interfere with the other connectives we obtain
that UHAS is a conservative extension of HAS.

2.1. The formulae of UHAS are defined so that:
(1) every formula of HAS is a formula of UHAS,

Q) if ®,, ..., , are formulae of UHAS then &,®..0, is a formula of
UHAS.

2.2. The axioms of UHAS are formulae of UHAS thq form &, ®ADP, where
(one or both of &,, , may be absent and) 4 is an axiom of HAS.

2.3. The rules of inference of UHAS are such that if | is the derivability relation
in UHAS, @, &,, ¢, are formulac of UHAS then:

Q) &, | 0,02, :
) 2, |— 9,09,
3) if &, |—> @ and &, |— O then &, P, |~ O;

(4) it B is a consequence of Ay, ..., 4; by an application of a rule of inference
of HAS, then for all UHAS formulae &

dDAy, ..., POA; | IDB.

icm

Integrating intultionistic: and classical theories 127

Although we are not particularly interested in how one obtains the derivability
relation |—, one way is to fitst introduce sequents

64y O =0

of UHAS formulae and then the appropriate sequent-calculus is developed. Then
T'|— @ could stand for "’ there are finitely many UHAS formulae O,y ey Oy
in T such that the sequent @, ..., @, = @ is derivable in the calculus,

The following lemma gives some easily verified properties.

2.4. LEMMA.

1) 6,6006,0060 |— 906996301, >

) 6,096,800, 0,860,060,

The principal theorem of this section is the following:

2.5. THEOREM. UHAS is conservative over HAS.

Proof. Let I U {4} be a finite set of formulae of HAS. Then it has to be shown
that the following two conditions are equivalent:

(D) TCFA,

@ I'|— A.
That (1) = (2) is immediate since HAS is a subsystem of UHAS. To prove that
(2) = (1) we need to analyze in some detail the |— relation. So let us assume that —

arose out of a sequent calculus. Thus to assume (2) is equivalent to having a proof
tree  whose end-sequent is

Biy..,B, =>4

where I' = {By, ..., B,}. Suppose that & is an UHAS formula of the form O, DFRD,
(where one, or both of ®,, &, may be absent). Then let us agree to call the HAS
formula F an HAS-subformula of ®. Next suppose we are given a sequent &
Do, ..., P;_y == @ of UHAS formulae. Then a sequent Fy,...,F,_; = G is an
HAS-subsequent of © if and only if F, is an HAS-subformula of &,, ..., Fi_qis
an HAS-subformula of &;_, and G is an HAS-subformula of @, Finally given:
a proof tree I~ of UHAS sequents then a tree I of HAS sequents is called an
HAS-restriction of F if and only if it has exactly the same tree structure and the
sequent occurring at a node of 7~ is an HAS-subsequent of the sequent occurring
at the homologous node of 7.

Now if 7 is a proof tree of the sequent B, , ..., B, = A then every HAS -restric-
tion of 4~ will have the same endsequent. The proof that (2) = (1) is completed by
showing that every proof tree in UHAS has an HAS -restriction consisting entirely
of HAS provable sequents.: The latter is done by induction on the length of the
proof tree.

In view of the above theorem we shall not bother to distinguish between
and |—.
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§ 3. The infinitary extensions HAS,, and UHAS,,. The way by which we shall
inject some classical reasoning into HAS is by adding to the rules of inference of HAS
the w-rules.

(wy) From CoA4(0™) forn=0,1,2,..
To conclude Co>VxA(x)

and .
(e0g) From AQ™)>C forn=0,1,2,..
To conclude AxA(x)=>C.

The resulting system shall be denoted by HAS,,. Note that HAS,, and HAS have
the same axioms; however, the derivations in HAS, are no longer finite objects.
If I' is a finite set of formulae of HAS then “I' }, 4” is to be understood as an
abbreviation for the statement that there is a derivation from I' of 4 using the logical
rules of HAS and the w-rules.

If 4 is an infinite set then we set 4 b, A4 if and only if for some finite subset
I'sd, Tk, 4. :

Since we do not require that the derivations of the premisses of the «-rules
be given effectively it is not surprising that the arithmetical part of HAS, commdes
with classical truth, or more precisely:

3.1. THEOREM. If A is an arithmetical sentence of HAS (i.e. a sentence without

any species parameters or variables) then:

@) if A is (classically) true then HAS F,, A4,

(i) if A is (classically) false then HAS |, 714.

Proof. A trivial induction on the complexity of the arithmetical sentence A.

Note however the addition of the unrestricted w-rules does not make HAS,,
a completely classical system.. For example, we shall show that the sentence
VXVx(xe Xv T1x e X) is not provable in HAS,, (see Section'5).

‘We can of course, add the corresponding w-rules to UHAS to obtain the system
UHAS,, which turns out to be a conservative extension of HAS,.

The w-rules for UHAS,, are:

(09 ~ From &,0(C240")@P, forn=0,1,2,3, ..
To conclude @, @(CoVxA(x))®P,
(w9 From @, ®(A40™)=C)®d, forn=0,1,2,..

To conclude &, H(Ax4 (x)> C)D D,

where &,, ®, are formulae of UHAS.

By essentially the same method as that used in the proof of Theorem 2.5 (except
that some form of transfinite induction has to be used) we obtain

3.2. THEOREM. If 4 U {4} is a set of formulae of HAS then the following two
conditions are equivalent:

) 4k, A4,

Q) 4=, 4.
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3.3. COROLLARY. For any formula A of HAS, A is a theorem bf HAS,, if and
only if A is a theorem of UHAS,.

§ 4. The recursively restricted versions of HAS, and UHAS". Ope of the possible
criticisms of the system HAS,,, and of its conservative extension UHAS,, is that
the derivations are no longer finite objects and thus do not belong to “Proof-theory™.
Now it is well known that one cannot have the power of systems like HAS,, and still
insist on finite derivations. A compromise (originated for classical systems by
Shoenfield [6] and Novikov [4]) is to have infinite but recursively given detivations.
That is, by suitable codings a derivation in HAS,, can be viewed as a number theoretic
function, and so the compromise is in effect to restrict oneself to derivations given
by recursive functions. An alternate, but equivalent way is to restrict the appli-
cations of the @-rules to those instances where there is a .recursive function giving
the (codes of the) derivations of the premisses.

Let HAS,,. and UHAS,, be the subsystems of HAS, and UHAS,, respectively
obtained by applying such recursive restrictions on the w-rule.

Using the appropriate form of realizability (and probably also normal form
theorems) it can be shown that:

HAS,, is not a conservative extension of HAS,c.

On the other hand, because in UHAS, we have available the (weak) classical
disjunction @, the method introduced by Takahashi [8] (see also Lépez-Escobar [3])
can be applied to show that

UHAS,, is a conservative extension of UHAS ..
Hence combining the above with Corollary 3.3 to Theorem 3.2 we obtain that:

as far as formulae of HAS are concerned the systems HAS, and UHAS,,.
are equivalent.

Each of the systems HAS, and UHAS , has its own merits (and demerits?):
HAS,, is much more suitable for model-theoretic discussion or when one is interested
in obtaining a derivation of some formula and is not particularly interested in the
form of the derivation (for example, in completeness results); UHAS ;. is more
suitable to pacify one’s constructive (and formalist) conscience. It also shows that
it is possible to mix classical and intuitionistic concepts within one formal system
without trivializing the system.

§ 5. A Beth semantics for HAS,,. It is already common practice to require the
domain of individuals of a Beth structuré:to be the set N of natural mumbers. So'it
is a natural step to require that the domain of individuals for the Beth miodels suitable
for interpreting HAS,, to be IV fogether with all the usual arithmetical functions.
In order to have a way. of interpreting the species variables we make the following
definition:

4 — Fundamenta Mathematicae CXII
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5.1.. DEFINITION, Suppose I = (M, <) is a partially ordered set. Then by
an M-species we understand a function & such that for each node ne M, h(n)cN
and such that h(n,)<h(n,) whenever n,<n,.

If S is an M-species then instead of writing” “S(n)” we shall write “S}n
(and read it: S restricted to the node n).

5.2. DEFINITION. A Beth w-structure is a system B = (M, <, D) such that

(M, <) is a partial ordering and D is a set of (M, <)-species.
_ In order to define satisfaction in the Beth w-structure 8 = (M, <, D) it is
convenient to assume that we have a species parameter S for each element of D.
Then the formula A is forced (or true) at k& in B; B,k F 4 (or simply: kF A) if
and only if one of the following conditions holds:

'(1) A is a true atomic number-theoretic sentence,

(2) A is the atomic formula 0™ & § and there is a bar B for k (i.e. B&M and
each path in M through k meets B) such that for all k'€ B, ne St k’

(3) Ais BAC and kF'B, kF C.

" - {4) 4is BvC and there is a bar B for k such that for all k'e B elther k' E B,
or K" EC,

(5) A is B>C and for all k'=k, if k' ¥ B then k' k C,

(6) A is 1B and for all k'=k, k' not k B,

(7) A is VxB(x) and for all neN, k k B(O™),

(8) A is 3xB(x) and there is a bar B for k such that for all £’ € B there is an
ne N such that k £ B(0™),

(9) 4 is VXB(X) and for all Se D k FB(S),

(10) A4 is AXB(X) and there is a bar B for k such that for all k' € B there is an
S e D such that k' F B(S).

It is straightforward to verify that if 4 is a classically true arithmetical sentence
and B a Beth w-structure then A is satisfied at every node of B. In fact more can
be said.

5.3. DerNITION: HAS, is the set of sentences obtained by deleting from HAS
all the instances of comprehension.

5.4. THEOREM. If B = (M, <, D) is a Beth w-structure and A a sentence such
that HAS, b, A then for all nodes k of M, B,kk A.

Proof. In view of what is known about satisfaction in Beth struétures we im-
mediately conclude that the theorem holds for the intuitionistic propositional
axioms. Similarly it carries through modus ponens. The w-rule causes no problem.
For VXB(X) it suffices to observe that if HAS, F, B(S) then for any other par-
ameter S’, HAS; F, B(S").

5.5. DEFINITION. A sentence A is true in a Beth w-structure 8 = (M, <, D)
if and only if for all k'€ M, B, k F 4. We express it in symbols: B F 4, and then

call B an w-model of A.
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If I' is a set of sentences then B is an w-model of I' if and only if for each sen-
tence A of I', B £ A. In particular, Theorem 5.4 tells us that every Beth w-structure B
is an w-model of HAS,. However, our interest lies more in the w-models of HAS.

The following give us a way of obtaining w-models for HAS.

5.6. DEFINITION. The full @-structure on a partial oi-deriug (M, <) is the
Beth o-structure M = (M, <\, D¥*) where D* consists of all (M, <)-species,

The following lemmas will be useful in the proof of Theorem 5.9 (and also in
other places). '

5.7. LemMA. If B is a Beth w-structure 4 a formula of HAS, k, I nodes of B
k<!, and B,kE A then B,k A.

5.8. LeMMA. IfB is a Beth o-structure and A a formula of HAS, then the follawmg
conditions are equivalent:

() B, kk A4,

(i) there is a bar B for k such that for all k'€ B B,k'F 4.

5.9. THEOREM. The full w-structure on a partial ordering (M, <) is an w-model
of HAS.

Proof. In view of Theorem 5.4 it only remains to verify that (all instances of)
the comprehension axiom are true in the full model. Let us consider a typical
example

VX3AYVx(xe ¥ = AX, X))

»

‘where 4(X, x) is some formula of HAS in which ¥ does not occur. Let k be a node
of (M, <); we will show that for all Se D*

M, EkEIAYYx(xe Y= A(S,x).

Let, for each mode [ of (M, X), T; = {nl M, I £ A(S,0™)}. Lemma 5.7 then
tells us that {T;: le M} is an (M, <)-species. From the fullness ‘of the model
we get that {T;: I M} belongs to D* and since it satisfies the formula

Vx(xe ¥ = A(S, %)

at the node k we have completed the proof.
5.10. DEFINITION. The universal spread W is the spread of all finite sequences
of natural numbers with the initial-segment ordering

AN
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5.11. DEFINITION. The van Dalen w-model D is the full - - structure on the
universal spread.

5.12. COROLLARY. D is ah w-model of HAS.

5.13. COROLLARIES.

(D) If S is a sentence such that D not k S, then HAS not F,S.

() If 8 is a sentence such that D k S, then HAS not }-,718.

The full models are in certair sense maximal w-models. In the case of classical
analysis H. Friedman has shown that there are no minimal - ~-models. Conse-

quently, for some partial orderings (e.g. conmsisting of exactly one node), there
will not be minimal Beth w- -models.

ProBLEM. What is the precise situation concermng minimal Beth o- models
of HAS?

In the 1975 article van Dalen showed that D was (was not) a model of various
intuitionistic meaningful formulae and thus obtained consistency results for HAS.
Usmg Corollary 5.13 we obtain analogous results about the system HAS,,.

5.14. THEOREM. D is not an w-model of VxVX(xe Xvx¢X).

Proof. Suppose on the contrary that D were a model of VX Vx(xeXvx¢X ).
Then in particular we would obtain that for all §

D,{ >k (0eSV0ES).
A contradiction is obtained by considering the U-species §' such that

Sty =@,

' L _ @ ifalla=0i=0,1,.,n
St a0, s an) - {{0} otherwise.

5.15. Cororiary. HAS,, is not the same as classical analysis.

To show that HAS,, is not the same as classical analysis (although in view of
Theorem 3.1 HAS,, contains the arithmetical part) we could also have used the
following theorem of classical logic:

VXYY[Vx(O €YvxeX)o0e YvVx(xeX)].
5.16. DEFINITIONS.
(1) MP is the sentence:

VX{Vx(xeXvx¢X)>(T T3x(re X)>3x(xe X))},
(2) IP, is the sentence _ :
VXV Y{Vx(x erxgé‘X) ::[(Vx(xeX):Sy(y eY)> EIy(Vx(xe X)oye ¥)]}.

MP and IP, are often called Markov's Principle and the Independence of Premiss
Principle respectively (see Troelstra [oDn.
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5.17. DermTioNs. UP!, UP® and UP are the following' schemas:

UP! VX 3xA(X, x)>3x VXA, x),

UP? VXIAxd(X, x)>3xVXA(X, x), where 4 contains only X and x free,

UP VX3xA(X, x)>IxVXA(X, x).

5.18. Trzorem (van Dalen [1]). (1) D not k MP, (2) D ot k IP, (3) D F UP,
4) DEUPY, (5 D notk UP.

5.19. COROLLARY. Neither MP, UP, nor IP, are theorems of HAS,.

By similar methods it can be shown that h

VXVx 1 IxeX=211Vxxe X)

is not a theorem of HAS,,. On the other hand, in view of Theorem 3.1 we have that
for arithmetic A(x) .
Vx114(x) 2 11VxA(X)
is a theorem of HAS,.

§ 6. A completeness theorem. In this section we shall show how to associate
with each (consistent) set I' of sentences a Beth a-structure B such that for all

sentences A

Brkd if I'h,A.

But first we need to get organized. So we make the following arrangements.

Pgy, Py, ... is an enumeration, without repetitions, of all the species parameters.

Sp(4) is .the set species parameters occurring in A. :

Sp(d) = U, 4Sp(4) if 4 is a set of formulae.

Fo, Fy, ... is an enumeration, without repetition, of all the formulae of HAS\

\x y, 2y is-a (1-1) function from Nx Nx{0,1} onto N such that \x ¥, 13
= \x ¥, 0\+1

We shall first define a (classical) spread of finite sequences of natural numbers.
At each node we shall attach a set of formulae and a (finite) set of species parameters.
The definition of the spread (and the attached sets) proceeds mductwel){

Basis step. d¢y = I, S¢y = 9@. _

Inductive step. Suppose d¢a,...a 804 S¢aq,...ay have already been defined.
We now proceed to define d,...ansy 304 Scag,.. ey for j=0,1,... -

First of all determine the unique numbers p, g, r such that:

i=<P:q,">-
Case 1. r =0. Let F=F,, k = {ag, .., @)
Subcase 1.1. Sp(F, )CSp(A,‘) and Ay b, F,. Then set -

dirry = AV {F}, _
Siacry = S U P}

and let dy~gy, Skngy, be undefined otherwise.
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Subcase 1.2. Sp(F,)=Sp(4,), Subcase 1.1 does not apply and
‘ A,,u{F}notl- 0=1
Then set
Al"(4) = 4,
Sircoy = Sy (P,
and undefined. otherwise.
Subcase 1.3. Neither 1.1 nor 12 apphes then set

ngyy = AU {FY
< Sgrqay = SkU {2}

Aoy = 4
. ) Sk"(o> = S,‘ [ {P(}
and -undefined otherwise. '
Case 2. r = 1. Then i = {p, ¢,1% = \p, ¢,0)+1. And thus Case 1 has just
been applied to F. We proceed by cases depending on the syntactical form of F.
Subcase 2.1. F is not of the forms 4v B, x4 nor 3XA4. Then we set
i~coy = Ay :
Sk"(o) = Sk
and undefined otherwise.

Spbcase 2.2. Fis of the form 4, v 4,. If F was not added at the previous stage
then. proceed as in Subcase 2.1. Now if F was added at the previous stage then
Alag,..simyy VW {F} mot b, 0 = 1. 1t follows then that for some u<2, Adagyar-iy Y
U {F, 4,} not +,0 = 1. For the sake of argument let us suppose that = 1,2
Then we set

Akn(1> = Ak 1) {Al}
Sty = Sk,

Ayngay = Ak v {4,},
Sn¢zy = S
If 4, U {4} Fu0 =1 then we would have left dyeqy and Syec undeﬁned’
Subcase 2.3. F = Jx4 and Fhad been added at the previous stage. Let n,, n, ,.
be the set of natural numbers such that
B 4, U {A(0™)} not k0= 1.
Then for u = 0,1, ... we define .

v Aingu+1y = AU {4(0™)],
Sk"(n..+1) = 5.
Subcase 2.4. F = 3X4 and F had been added at the previous stage. Let m be
the least natural number such-that P, ¢ S;. Then set .-
Ayniry = A 0 {A(P,,;)} s
Suncay =Sy U {Pu} .
~+ Observe that A~y not +,0 = 1.
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End of the definition of’ the sprcad A and 8.
6.1. DEFINITIONS. E
@) Mr = {{ao, oes @i=1)% A¢agmasosy 18 dcﬁned}

(i) k-<,~ k' iff k, k'€ My and k is a proper initial segment of k.

(iif) ‘For any species parameter P-and k€ My let Ph k= {n: 4}, (0(’" r.—'P)}

(iv) Br = (Mr, <r, {{P} k: ke M;}: P a species parameter}). i

It is fairly evident that B is a Beth o-structure. In order to prove that By is
an w-model of I' we need to know some further facts about the 4, k.e My. For
the remainder of this section we shall follow the convention that «, f, ...-are paths-
in My, i.e. for all n; &n, Bn, ... € My. We-will also abbreviate In(k = &n).by-k e,

6.2. LeMMA. If Sp(4>B)<S; then the following two conditions are: equzvalem

(1) 4ty (A2 B), :

(2) Vore Yride dz.— VY Bz epdt(Be 45)].

Proof. (1) = (2). Suppose 4, }, (4> B) and k' >k and Ae A,‘, Then A,,, FoB.
Now consider a path « such that k" e o Determlne the unique p such that B = F,.
Consider then a t>1h(k’) such that ¢ = \po, q,0% > Then Subcase 1. 1 of the de-
finition of A will apply and BeA,(,“)

(2) = (1). Assume (2). Let i = lh(k). Determine the umque p such that A F

Next consider the subspread T’ of M r which

(a) contains k and all its initial segments, c .

(b) the nodes below k are obtained by modifying the definition of 4 so that in
Subcase 1.2 we choose the right side when F = A otherwise we take the left path.

If 4, U {4} +,0 = 1 then (1) clearly holds. Thus we might as well assume: that
4; U {4} nott,0 = 1. It then follows that for all ¥'eT

4y U {4} nott,0=1.

. Next suppose that w is a path through T such that k & a. Then there is a smallest #

such that r>1h(k) and 4 €4;. Then
Vﬁ;,s,.Tit(Be 45) .
Thus :

Vﬂucﬁsrat(dm }' B)

Consider those 4 o B Bach 4y, will be of the form 4, u {Co,

., C,, A} so that.
we have o B

-

40 {Coy s G, d} o B! , -
, Cy are superﬂuous and. ﬁnally we concludet
" A,‘u {A} Fo B, ) s

from -which : 4; +,, (4> B) follows."


GUEST


136 - s B.G. K, Lépez-Escobar.

Using similar methods we obtain the following:
6.3. Lemma. If SP(A)SS; then the following two conditions are -equivalent:
1) 4 b5 4, ‘
@ vakuuat(A € 4;). )
An immediate consequence of Lemma 6.3 and of the definition 4,y = I‘ is
that for sentences 4 .
'+, 4 iff Vo Elt(A edy).

Transfering the above lemmata (and those corresponding to the other logical con-
nectives which we have not written down) to the Beth structure we obtain:
6.4. THEOREM. If Sp(A)< S, then the foIIowing two conditions are equivalent:
(1) 44+, A4,
() Br,kF A.
6.5. COROLLARY. For iany sentence A the following are equivalent:
(1) HAS F,, 4,
() Byas F A.
" 6.6, DERINITION. Valf,s is the set of sentences A such that for all Beth
o-structures Bt such that 0t F HAS, M k 4. We read 4 € Valf,s: “4 is w-valid”,
‘ Combining the above theorems we obtain:
6.7. THEOREM. For any sentence A the following conditions are equivalent
(1) 4 is w-valid,
(2) A is provable in HAS,,, ) )
(3) A is provable in UHAS,, -
(4) A is provable in the recursively restricted UHAS,, ‘

§ 7. The Smorynski calculus of models. Beth wrote, in one of his earlier articles,
that he hoped that his models would be as fruitful for intuitionism as the Tarskian
models were for classical mathematics. Unfortunately most model theoretic discus-
sion of intuitionistic formal theories involve Kripke models rather than Beth models.
That was certainly the case in Chapter V of Troelstra 1973 (written by Smorynski,)
which is one of the first (if not the first) instances where model theory is used to obtain
results, beyond mere completeness, about formal intuitionistic theories. .

Smorynski’s method was, loosely speaking, to consider various mappings of
Kripke models to Kripke models such that the theory in question (say HA) was
invariant under them. In this section we shall outline the beginnings of a similar *
calculus for Beth w-models. -

7.1. A normalization procedure for Beth o-structures. As already mentioned,
the proof of the completeness theorem tells us that we may restrict ourselves to those
Beth w-structures 8 = (T, <, D) in which T'is a subspread of the universal spread.
In particular we can assume’that the top node of 7 is the empty sequence and that
as we progress downward in T" the nodes of T are finite sequences of natural numbers,
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Now suppose S is a (T, <)-speciés (so that for éach t & T, S}  is a set of na-
tural numbers). Then by S we understand the (7", <)-species such that for each
teT

8t t = {n n<length()AneSht}.
Note that for each te T, 8} ¢ is a finite set.

Finally by the normalized 8 we understand the w-structure - B = (T, \,ﬁ)
where D = {§] SeD}.

7.2. TeEOREM. For any formula A(Xy, ..., X,, %y, ..., X,) und Beth w-structure
B = (T, <, D) the following two conditions are equivalent for all ny, ...,n, &N,
Py, .., Py eD and keT

(1) B,k kAP, ... ,P,,, n,, s M),

@ B,kE AP, .., Pyny, .. 0.

<>

b

<ao) <a1) <@

a0, ao0) (G

Proof. By induction on the complexity of the formula 4. The only case of
interest is the atomic formula xe X, and it follows from the fact that for
B, kE0™eP it is not required that ne P} k but rather that there be a bar B
for k such that for all k'€ B, neP} k'.

7.3. COROLLARY. B is an w-model of HAS if and only if 8B is an w-model of
HAS. ) .

74 Alternating sums of w-structures. Given two Beth w-structures A, B we
shall now form the Beth e-structure (A +B)/D, which we s}lall call the alternating .
sum of 9 and B (relative to D). The construction of (2 +B)/D is best explained using
diagrams.

Let us represent D (the normalization of the van Dalen model) by the following
diagram:
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and let us represent’ 2 and B by

respectively. Then (% +B)/D may be represented by:

The underlying spread (ordering) of (A+B)/D is clear from the bdiagram and let us
denote it by = (T, <). The 7 -species are obtained by extending the corre-
sponding species of 2%, B and D to all of 7. The species of A[B] are extended to
all of 7 by letting them be @ for all the nodes outside of A[B]. The species of D are
extended to all of J by letting them be the value they had at the last node of B.

7.5. THEOREM. If ¥ and B are w-models of HAS then so is (A+B)/D.

Proof. From the construction it follows that (A+B)/D is an w-structure.
Thus it follows from Theorem 5.4 that it suffices to verify that (U+BYD satisfies
all instances of the comprehension schema. Let us consider a typical example

) VXAYVx(xe X = A@x, X)), -

In order to show that () is satisfied in (Q[+.‘B)/55 we need to show that to every
T -species P of (W+B)/D there corresponds a bar B to the top node such that to-
each node &’ e B there corresponds a J -species Q such that

@+B)/D, k' k Vx(xe 0 = A(x, P)).

We proceed by cases depending on whether P is an extension of a species.
of U, B, or D.

icm
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Case 1. P is an extension of a species of A. Then P behaves like the constantly &
apecies on B and . Since the constantly @ species is a species of B and D (because B
snd © are both models of HAS) we have that in B and D the formula

3YVx(xe Y = A(x, @)
is satisfied.” Also in 2 we have the satisfaction of
AYVx(xe Y = A(x, P))

(because U is also a model of HAS). Hence we get appropriate bars in 2, 8 and D
which can then be used to comstruct a bar in (20 +8B)/D.

Case 2. P is an extension of a species of 8.

Analogous to Case 1.

Case 3. P is an extension of a species of D. . : :
First determine the bar on © which forces the satisfaction -of the formula

AYVx(xe Y = A(x, P)).

[\

~,

NS

\ “~ D
N ~ .

Then consider those nodes on the left most branch of D which are either on the bar
or lie above it. P restricted to those nodes is a finite set. Hence the values of P in
the 2’s and B’s will be of fixed finite values. Now U and B being models of HAS
will contain such finite species. Hence we can find bars in 2 and 8 which will force
in ¥ and B respectively the formula

AYVx(xe Y = A(x, P)).

(Theorem 1.1 being helpful in this situation.)
7.6. TarorREM. The system HAS,, has the disjunction property, i.e. if A, B are
sentences of HAS and HAS +,, (A v B) then either HAS |, 4 or HAS |, B.
Proof. Suppose that HAS },, (4 v B) and that neither HAS |-, 4 nor HAS I-,,f B.
Then, by the completeness theorem, there would exist w-models %, B of HAS such


GUEST


140 i E. G. K. Lépez-Escobar

that U not k 4 and B not k B. Consider then the w-model (2 +B)/P. Since it is
an w-model of HAS we have that
H+B)Y/DE(4VB).

However using Lemma 5.7 we see that it is not possible to find a bar B in (2 +B)/D
such that for all nodes k e B either 4 or Bis satisfied at k. But then (4 v B) is not true
in (A+B)/D.

Remark. It should be clear that similar methods could be applied to obtain
other common closure properties of intuitionistic systems.
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Set-valued mappings on metric spaces
by

Brian Fisher (Leicester)

Abstract. In this paper we consider a mapping F of a complete metric space (X, d) into the
class B(X) of nc ty, bounded sut of X. For A in B(X) we define FA = U Fa and for 4, Bin

B(X) we define 8(d4, B) = sup {d(a,b): ae 4,be B}. It is proved that l.f F maps B(X) into
B(X) and satisfies the inequality
8(Fx, Fy)<c.max{8(x, Fx), (y, Fy), 6(x, Fy), 6(y, Fx), d(x, )}

for all x, y in X, where 0<<c<1, then there exists a unique point z in X such that z € Fz and further
Fz = {z}.

In a paper by Kaulgud and Pai, see [3], they consider mappings F of a metric
space (X, d) into either b(X), the class of nonempty, closed and bounded subsets
of X, or Cpt(X), the class of nonempty, compact subsets of X, or 2% the class of
nonempty, closed subsets of X. The classes b(X) and Cpt(X) are given the Haus-
dorff metric D induced by the metric d. With F satisfying various conditions, they
prove a number of fixed point theorems for F, a fixed point being defined as a point z
in X for which z is in the set Fz. For example, they prove the following theorem in
which d(x, 4) with x in X and 4 in Cpt(X) is defined by

d(x, 4) = inf{d(x, A): ae d}.

TueoREM 1. Let F be a mapping of a complete metric space (X, d) into Cpt(X)
satisfying the inequality

D(Fx, Fy)<a,d(x, Fx)+a,d(y, Fy)+asd(x, Fy)+a,d(y, Fx)+asd(x, )
for all x, y in X, where ay, ..., a,>0 and a‘1+...+a5<1. Then F has o fixed point
in X.

In the following we consider a mapping -F of a metnc space (X d) into B(X),
the class of all nonempty, bounded subsets of X. We define the function (4, B)
with 4, B in B(X) by -

5(A, B) = sup{d(a,b): ac 4,beB}.
If the set 4 consists of a single point a we write.
$(4; B)=6(, B)
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