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On the simultaneous embedding
of wncountably many distinct wild arcs
with one wild endpoint in E3, a geometric approach

by

Fugene Roger Apodaca (Los Angeles, Ca.)

To my father, who spoke of reasoning
To my mother, who spoke of temperance
In all things

Abstract. I study arcs with one wild endpoint, embedded in E2. I define cone neighborhoods
and a composition of arcs. I obtain a decomposition theorem, a product theorem for the pen-
etration index, and show that cone neighborhoods of an arc are contained in one another up to
penetration index. As corollaries, I conclude that there exist uncountably many wild arcs dis-
tinctly embedded in E®, simultaneously embed uncountably many distinct wild arcs and simul-
taneously embed uncountably many distinct wild discs, each containing a distinct wild arc. This
work is all geometric,

Thank you, Robert Edwards, for you listened with caution and sincerity.
In me, there is a deep respect for you, my advisor, Robion Kirby, for you gave
me freedom and watched me wander, patiently, when I needed it.

The idea here is to use geometric techniques to distinguish topologically un-
countably many wild arcs, with one wild endpoint in E 3, given that there exists an
arc with penetration index equal to any odd prime natural number. To this end,
T define and use cone neighborhoods, which are geometric embedding invariants, to
reduce the comparison of two arcs with infinite penetration index to that of comparing
arcs with finite penetration index. In this case, having restricted all compositions
to being performed with cone neighborhoods which determine the penetration index,
we have a product theorem for the penetration index of the composition at our dis-
posal. At this point, a construction is used to embed the cantor set cross an interval,
Cx I, into E? so that each element of C determines a distinctly embedded wild arc.
The entire construction is “tilted” to embed (Cx D?)xI into E3, yielding un-
countably many wild discs, each containing a distinct wild arc.

The work is short, so there are no chapters. I depend heavily on pictures for
some of the reasoning. Some details, which upon reflection, are easily shown and
relatively clear, are left out to avoid confusing the essential issues.


GUEST


176 E.R. Apodaca

OmreCTIVE. There exists uncountably many distinctly embedded wild arcs
in E3, each locally tame except at one end point.

We consider (ambient isotopy classes of) arcs K< FE3, locally tame except
possibly at one end point (O = origin of £3). Assume K = f(I) where f: [— E3
is an embedding _ /[0, 1) is smoothand (1) = O = IF: D*xI— E3 s Flp2xpo, 1)
is a smooth embedding $ O and £ (t) = F(0, ), Vt... so F(D*xI)is a “disk-bundle”
about K whose fiber collapses at O; denote F(D? x I) by C(X). Let C(K) be a right
circular cone about [—diameter C(K), 0} 5 C(K)~0cintC(K).

DeFINITION. A cone neighborhood N of an arc K< E3 is the image of a map
F: D*xI— E?

1. Flpixpo, 1y is a tame embedding Vr<1,

2. F(D*x1) = 0,

3. K~OcintF(D*x [0, 1])

F(Ox1I) is called the core of N.

Note: 1. C(K) and &(K) are examples of cone neighborhoods (see Fig. 1).

Fig. 1

2. An initial section of a cone neighborhood is of the form F(D*x[0, t,]),
for some t,<1.

DermNiTION. Let A,, 44, ..., A,, ... be arcs in E3 The composition Ay x4,
of arcs 4; and A, is obtained by taking ¢>0 5B is a ball of radius & about O and
Jo(x,8)e E3~B, if 1<}, where fy: D*xI— E3 defines Ao = fo(O x I). Identify
C(fo(D*x I3, 1)) with C(4,), keeping fo(D? % [0, 4]) fixed, and put the composite
in a right circular cone: we are wrapping the last “half” of C(4,) about 4. To form
Aniy % dy*..x A+ 4,, put a right circular cone, with apex = O, about
Ay % ... ¥ do; Choose &,>0 _ s, <}min{e,, &, ..., &_;, 1/2"='}. Let B, be a tame
3-cell neighborhood of 0, of radius <&, such that the image of D?x [0, 1—1/2"]
(as determined by 4,) after having formed C(d, % ... x 4,) lies in E3~B, . Let
B, cintB, be a tame 3-cell neighborhood of O, intersecting Ay *..ow 4,
tamely at 9B, and identify C (A% .. ¥ 4)) N B,, with C(4,,,), i.e, wrap
C(d,* ... * 45) A B, around 441 Inside of B, , keeping E(4, % ... x dg) N (E3~B;)
fixed. By construction ... * Ay % Ay *.ox Ay is well defined because as n-—0,
only the image of D?x1 collapses (see Figures 2 and 3).

Notice: These cone neighborhoods of ... * ... x Ay % ... v 4y in E® are contained
in one another.
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Tueorem 1 (Decomposition of arcs). 4 cone neighborhood of an arc K in E3
determines two arcs K; and Ky=E® such that K = K, * K.

Proof. Let f: D*xI— E® determine a cone-neighborhood o£ X. Le;;
K, = f(Ox1I), an arc in E® with “disk bundle” f(D*x1). Let g: D*xI—E

3

gomposing:
ClAg) being identified
with ClAy)

A ClAg) s Y
fixed part,” N
,/ the cone \ Cla)
ClA*Ag)
Fig 2. Ay * Ay
F0 x10,3))

#0x10,1-)

in here

Fixed part of C{A,%24g)
Fixed part of C{A;*A*4g)
Fixed part of C(AyAq)
Fixed part of Cl4o) )
Fig. 3. For the map f: D*X I~ E?® defining ... % ...* dn4y % Ay * ... % 4,

be a cone-neighborhood of [—1, 0] x {0} x {0}, where g carries D* x I ontzo a right
circular cone with apex at O. Let K; = g of ~*(K), then C(K;) = g(D*x I) and
K=K,+K,. Q.ED. -
Remark, Time ¢ considerations are irrelevant for finite compositions of arcs.
Also, K, is just the core of the given cone neighborhood of K. . .
7 OBSERVATIONS. 1. Cone neighborhoods are geometric embedding invariants

of an arc KcE>. ’ ‘ o
2. A decomposition of an arc K is a geometric embedding invariant.

DeFmTION. The penetration index P(K) of an arcKeE® is defined by
P(K) =lim inf ##(@BnK)

£—+0 diamB<e

where B is a 3-cell neighborhood of O and 8B n K consists of disjoint points.
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Note. We may assume B and 0B are tame and 4 (3B n K) is finite,
OBSERVATIONS. 3. P(K) is a geometric embedding invariant.

4. Given K,3C(K) 5 Vex>0,3(D% 0DH<=(C(K), 65(K))5 #(D* " K) = P(K),
if P(K) is finite, and 0<diam(D* U {O})<e. Convention: If P(K) is finite, we
now assume C(K) determines P(K).

5. By Alford and Ball [1], 3 an arc K, 5 P(K) = 2n+1, Vn.

THeoREM 2. Let K and L be ares in E® with P(K) and P(L) finite. Then P(K+L)
= P(K)-P(L).

Proof. Let k = P(K) and I = P(L). We show P(K* L)<P(K)-P(L). Given
e>0, 3 a tame 3-cell neighborhood B,cE3 of O jdiamB,<¢ and #(08, N K)
=k = dk disjoint tame disks D, sPieintD;cD;cdB, where {P,, v P}
=dB,nK. :

Let h: C(L)— C(K) be used in forming KxL, so that A(L) = K« L. We
can assume / is a homeomorphism (modulo initial sections of either “Cone.”)
= 36>0 5 h(C(L) n B)=intB,.

P(L) =1 = 3k disjoint tame “meridian” discs D, of &(L) s

1. D,cintB;,

2. cone (8D,, 0):cone(abj, 0) if i<j,

B #DinD=1i=1,. L :

Let (D, D)) be the cylinder of C(K) determined by the meridian discs .D;
and D;. We may assume (D,, Dy)>..o (De-1, D). Further, we assume D, occurs
“before” D,. We assume the section of C(K) from Dy to O has diameter <. § may
be chosen so that D, occurs “before” h(D;) (see Fig. 43).

REMEMBER. An arc and any cone neighborhood of it are eventually in any
neighborhood of 0. Now, h(L)=intC(K) = we can push (D,, k(D)) in along
a collar of C(K), keeping D; and (L) fixed, resulting in a cylinder H, 5 H1 N AC(K)
= 8D,. Replace 8B, by (6B, U 0H,)~int D,. Thus replacing D, by Dy 5

#(Dy N A(L) =1
and getting a new tame 3-cell neighborkood B, of O 2 #(dB. K) =k, We do
this fori = 1,2, ..., k (see Fig. 4b). Finally getting, by construction, a tame 3-cell
neighborhood " of O, B, l.diamB,<e and 2.(40B, " h(L)) = k-1. But
K+ L = h(L). Thus, P(K * L)SP(K)-P(L).

‘We now show that P(K * L)>P(K)-P(L). Let 6>0 be for tame 3-cell neigh-

borhoods B’ of O .
inf  #(0B' nL) = I>one
diam B’ <8 .
Let B, be a ball neighborhood of O of radius 46. Choose a meridian disk D of C(K)
which separates C(K) into two components Cy(K) and C,(K) with O e C,(K) and
FY(Cy(K))cint B;. Let Bcint B; be a tame 3-cell neighborhood of O 5B n CK)
SC(K)\D and #(@Bn K+ L) = P(K * L). We may assume 6B N dC(K) consists

and  inf (0B’ N K) = k>one.

diam B’ <3
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h{B, Bl € int B,
A Dy, 04) 1 8B, = § an;

Ha (hiB1), h(Dd He
————— e SRR,

The cylinder of CIK) = (D1, h(D). A(L) will pierce each of the discs h(D;)
precisely { times as #{L D) =1

h carries this axis onfo K

/ and this cone CiL) onto CIK)

-

-

Fig. 4
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of meridian circles of C,(E)\(D v 0), say {S;}i=;°. (Circles bounding disks on
C(K)\(D v 0) are surgered using the innermost circle argument.) Each S; separ-
ates 0B into 2 components; consider an innermost circle, say Sy, of either component,
bounding a disk B, with intBy n dC(K) = @. If intBy<intCo(K) = h~1(B,)
<h™Y(Cy(K)). The join of A 4(B,) and (45, O, 0) is tame 3-cell neighborhood of O
of diameter less than & = #(h™*(B,) N L)=!=> %(By n K * L)1 Suppose we have
intBy N C(K) = @ = B, U ,By, where By is a meridian disk of C,(K), is a tame
2-sphere intersecting K once, i.e., # ((Bo U 5,B0) N K) = one. But B, U g, B, bounds
a tame 3-cell neighborhood B’ of O of diameter <& = # (0B’ N K)=k>one,
a contradiction. Thus either component of 0B determined by any S, intersects K # I,
at least / times. .
Choose . pairwise disjoint meridian disks {B,}l-; of A~ }(C,(K)\(D U 0))
with 0D, = h™*(S), and D;nL =1 (reindexing the S/s if necessary). Let
Dy = (D), i =1, ..., n. (Compare with Fig. 4b),s0 #(D; n K # Ly =1, i= 1, ey ML
Now B\(6B n intCz(K)) U Dy, U ..U D, is the union of a finite collection of
81 Sn

82
tame 2-spheres, at least one of which contains O, say S. Then

#ENK+xL)<#@BNK+L)

by construction. Thus #(S N K L) = P(K % L). Let B be the tame 3-cell neighbor-
hood of O with B = §. P(K) =k = 8B n C(K) consists of at least k& meridian
disks of Cy(K), say {D}y, k'>k. But #(D,nK+L)=1=> P(K+L)>k]
= P(K)-P(L). Hence P(K* L) = P(K)-P(L). Q.E.D.

THEOREM 3. Let Ny and N, be two cone neighborhoods of K. Then there is a cone
neighborhood N, of K such that

1. N;~OcintN, or Ny~OcintNj,

2. if N, decomposes K into J»L and N, decomposes K into J’ *x L', then
P(L) = P(L). .

Proof. By general position, we may assume 8, n 8N, consists of totally tame
simple closed intersection curves (except possibly at 0).

Case 1. (K~0) (3N, UAN,) = & = an intersection curve cannot be
a median “circle” of 8N, (8N,) and bound a disk contractible on ON,~ O (N~ 0).

Warning, We neglect the initial sections of any cone, arc, etc., as our concern
is with ambient isotopy classes of arcs only, e. g., contraction over the base of a cone
is not allowed.

Case 2. Intersection curves which bound discs contractible on both ON,~0O
and ON,~O are isolated, with at most finitely many concentric on 8N, or ON,.
Since K~ OcintN,, they can be removed by a standard procedure, by an ambient
isotopy of E® carrying N, to N} leaving X fixed and 53Ny N ON; contains no such
Intersection curves.

Note. P(core of N;) = P(core of N,).

icm®
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Case 3. If N; and N, intersect along their boundaries in an infinite number of
meridian circles, they determine arcs of the same penetration index, so we can re-
place N, by N;, and then push into a collar of N; to get N3’ J N3 ~Ocint ¥,

Note. Given &> 0, choose a meridian curve C of intersection of 8N, and dN, 5
the components of 8N, and &N, containing O are contained in an #-ball about O.
Choose a meridian disc D of N, (N,) intersecting K a minimum number of times
and ; the component of N, (V) containing O also is contained in an &-ball about 0.
Now, use C, D and interior collars of N, and N, to construct a meridian disc of
N; (N in the g-ball intersecting K in exactly the same points as D.

Note. P(core of N;) = P(core of Nj). .

Remark (see Fig. 5). Cases 2 and 3 are reasonable because away from the
endpoint O of K, i.e. the apex of these cone neighborhoods of -K, things are tame.
Rename N, by N,.

Ni(N2) Isolated appearance of Case 2

and Case 3 curves on dN, (3N}

B

K would pierce
this disk on
3Ny (3N2)

Nz i}

Case 1 can not happen

N tangential circlos of Case 2

~ SN T
_________ -1 I\
! b
i i 1
H [ RN
{ by [
K : Vo WY
H [ \ 0
\ \
-------- ' ] - e
Ny - ~4 \J meridian circles
AN of Case 3
Ny
Fig. 5

Case 4. Teardrop intersection curves. Comsider intersection curves which
contain the apex O of N, and N, (see Fig. 6).

Note. Cases 3 and 4 are essentially mutually exclusive (modulo initial sections
of Ny, N,). .

2 — Fundamenta Mathematicae CXIII/3
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M
Fig. 6

Let f: D*xI— E® define N,. g: D*xI— E3 have image C

9lozxpo,1y is 1-1 onto image and g(D*x1) = 0.
We fix g (see Fig. 7).

Fig. 7. im(g) = C, a rt. circular cone about [—1, 01X {0} X {0}

Note. gof '(N,) = C and gof {(K)~OcintC gof~ly: N,—C is
a homeomorphismr and fog~': C— E* defines and embedding of C into E? (see
Fig. 8).

Chords of
intersection _

- r_points

This collar “can” be used
to insure ambient isotopy vy fE) Ny

') gl

Crossection

e
Fix / push E Fix
D2« Chords of intersection

of Fog'tD,) n am,

Fig. 8
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Given >0, let B,(O) be a ball neighborhood of
0 = 35>0_f°g7(B0) n C)=B0).

Let 6, =1/2", n=0,1,.. Let B, be a tame 3-cell neighborhood of
0, 0B,ngof “4(K) consists of a minimum number of points, say r, and
diam B, <4,. Let D, = 0B, n C, assumed to be tame with time coordinate 7,. Choose
the B,’s so that B, cintB,. We may assume a regular neighborhood of D, inter-
sects g o f T1(K) in precisely r disjoint line segments, for all 7, In particular, there is
a bi-collar of D in C with this property, say H,=D,X[t,—V., t,-+7,]. Let
H =D, x[t, t,+7,] and Hy 2D, % [ty—y, ], with H n Hy = D,, for all n.
Then 4 =f~Y(fog~"(D,) N ON,) consists of a finite number of disjoint chords
of g~%(D,), by general position.

Connect r—1 points of f™(feg™ (D) N K) by non-intersecting paths con-
tained interior to these chords in g~ *(D,) to the rth point and take a regular neigh-
borhood (a 2-cell) of this r—1 frame in g~%(D,), say E. Note f(E)cintN,. We
may assume that a bicollar of E, say E,~Ex[—1, 1] is contained interior to g~ *(H,)

- with E, nf~(K) consisting of r disjoint line segments, and f (E,)cintN,. We can

now contract a small bicollar of g~*(D,) into E, by an isotopy of D*x I leaving
D?x INg~*(H,) fixed. Using the normal bundle to dN,\O in E®, we extend the cor-
responding isotopy of fog~!(D,) into f(E) to an ambient isotopy of N, in E3,
thus pushing feg~%(D,) into intN,, leaving K fixed. -

Proper choice of the y,’s, allows us. to assume H,~ H, = @ 1f n % m. So
performing this construction for each n, we find f o g ~(D,) N 0N, = @, Vn. Asn— o,
we are okay because f(D*x 1) = O But now there are no more teardop intersec-
tions, just the tangential circles of case 2. So, remove the tangential circles and
let N, be the resulting. cone neighborhood of K. Then N,~OcintN,, by construc-
tion, P(N,) = P(N,). Q.E.D.

By Alford and Ball [1] for every odd positive integer k, there is an arc
K P(K) = k. Let S(i) and T'(i) be two distinct sequences of primes (i = 90, 1, ...).
For each i, let K; and L, be arcs ; P(K;) = S(i) and P(L;) = T'(i). Form the infinite
compositions ik KK, *%.*K «Ky=A, ..ol %L, *.%L *L,=B.
Let C,(D,) be the cone neighborhood of A (B) determined by K,(L,). Since the power
set of the positive primes is uncountable, it is safficient to show that 4 and B are
distinctly embedded in E® to prove the following: .

THEOREM 4. There exist uncountably many distinctly embedded wild arcs in E®,
each locally tame except at one endpoint.

Proof. Suppose there was an ambient isotopy carrying B to 4. Let C,.4 be
the image of D,,, under this isotopy, where r is such that T'(r) # S(i) for all i
Now D,., and therefore C(r+1) is determined by C(L,%L,_; % ... * Ly * Ly).
Let R=T(@)-T(@r—1)..-T(1)-T(0). : . .

Choose n , R<N = S(n)-S(n—1) ... S(1)-5(0). By Theorem 3 we may assume
either C,, ~O0cintC,yy~0 or Cyyy~OcintC,,~ 0. By construction, Cpyq
e
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‘ - strip along K
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K %Ky %K Ko %Ky ® K

S.P. S.P. X SP. SP.
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Fig. 9. S. P. -— Separation Process: Remove the middle third and separate into two copies of K;;
: Form K, K, and K, K,

run along K, remove the middle third, separate and for X, » K, and K;* X
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is the image of C(K, * K,yq .. * K; * K;) under a map h such that A~*(A)
=K, * K,y % ... % K; * Ky = P(h7'(A)) = N, by Theorem 2.If C,,, ~O<intCpy,
~0 = h~(C,4;) is a cone neighborhood of A~!(4), which by Theorem 1 and
Theorem 2, decomposes £~ (4) into two factors, one of which has penetration index
equal to R. Theorem 2 = R divides N = T(r) divides N, contradicting our choice
of r. If C,y y ~OcintC,,, ~ O we similarly show N must divide R, contradicting our
choice of nj R<N. Hence 4 and B are distinctly embedded in E3  Q.E.D.

THEOREM 5. Uncountably many distinctly embedded wild (;I'L‘S, each with one wild
endpoint, can be simultarieously embedded in E°. .

Proof. Let {k;}Z; be a sequence of distinct odd primes and {K}{2; wild arcs
with P(K)) = k;. Run a rectangular (P} strip along K (see Fig. 9). Remove the
middle third, separate ( —»2) , and form K, * K and Kj; * K (the separa-
tion process S.P.). Let C = Cantor set. As we form Cx I from {7} , removal of the

4

middle third of each Ysubstrip, corresponds to an S. P. and formation of compositions
with new arcs, yielding this wild tree. Different paths down this tree correspond to
diﬁ"erent\compositions of these arcs, which by Theorem 4, are distinctly embedded
in E%. Q.E.D. :

THEOREM 6. Uncountably many wild discs, each containing a distinctly embedded
wild arc with one wild endpoint, can be simultaneously embedded in E®.

Fig. 10

Proof. Thicken the % -strip used in the construction of Theorem 5 to a wedge

(see Fig. 10). Continue the process of Theorem 5, effectively embedding a triangle
along each of the arcs of Theorem 5. These triangles are pairwise disjoint by con-
struction. Q.E.D.
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Some additive properties of sets of real numbers
by

P. Erdds (Budapest), K. Kunen (Madison, Wis.), and
R. Daniel Mauldin (Denton, Texas)

Abstract. Some problems concerning the additive properties of subsets of R are investigated.
From a result of G. G. Lorentz in additive number theory, we show that if P is a nonempty perfect
subset of R, then there is a perfect set M with Lebesgue measure zero so that P+ M = R. In
contrast to this, it is shown that (1) if S is a subset of R is concentrated about a countable set C,
then A(S+R) = 0, for every closed set P with 2(P) = 0; (2) there are subsets G, and G, of R both
of which are subspaces of R over the field of rationals such that G, N G, = {0}, G;+G, = R and
MGy = A(Gy) = 0. Some other results are obtained under various set theoretical conditions.
If 280 = ¥, then there is an uncountable subset X of R concentrated about the rationals such that
if 2(G) = 0, then A(G+X) = 0;.if V = L, then X may be taken to be coanalytic.

P. Erdos and E. Straus conjectured and G.G. Lorentz proved that if
1<a;<a,<... is an infinite sequence of integers, then there always is an infinite
sequence of integers 1<<b, <b, <... of density zero so that all but finitely many positive
integers are of the form a;+b; [1]. In this note we investigate the measure theoretic
analogues of this result.

Throughout this paper, the real line will be denoted by R. If 4-and B are subsets
of R, then A+B = {a+b: ac4,be B}. .

THEOREM 1. Let P be a nonempty perfect subset of R. Then there is a perfect set M
with Lebesgue measure zero so that P+M = R.

Let us note that it suffices to prove the theorem under the additional assumption
that P[0, 1]. Let us also note that under this assumption it suffices to prove the
existence of a closed set M so that P+ M contains some closed interval. With this
in mind, for each n and i, set I(i, n) = [i/2", (i+1)/2"]. For each n, set -

A, = {i: int(I{i, n)) n P B}
and
= {IG,n):ied,}.
Clearly, P,2P,2 ..and P, = P.

We will prove the following lemma.

LeMMA 2. There is a sequence of positive mtegers my<my<ms<.. and a se-
quence {B,};.; of sets of nonnegative integers so that

1) for each p, B,c[l1, 2",
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