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Normality and paracompactness of Pixley—Roy hyperspaces
by

Teodor C. Przymusifiski (Warszawa)

Abstract. Normality and paracompactness of Pixley—Roy hyperspaces is investigated with
a particular emphasis on Pixley~Roy hyperspaces of metrizable spaces, of compact spaces and
of spaces of ordinals. Operations on Pixley-Roy hyperspaces are also studied. }

In particular, we show that the Pixley-Roy hyperspaces 4% [X] of a compact space X is normal
iff it is paracompact iff X is scattered. :

§ 1. Introduction. In this paper we study (hereditary) normality and paracom-
pactness of Pixley-Roy hyperspaces. .

In Section 2 we characterize those spaces X whose Pixley-Roy hyperspaces
F[X] are paracompact or hereditarily paracompact. We also show that & [X]
is (hereditarily) paracompact iff #[X]" is (hereditarily) paracompact for all n<w
iff #[X] is (hereditarily) collectionwise Hausdorff (Theorems 2.1 and 2.2).

Section 3 contains a number of applications of these results, mostly concerned
with the invariance of paracompactness and hereditary paracompactness under
continuous mappings and the operations of union and product of spaces. In parti-
cular, we show that if X"is a ¢-locally finite union of closed subspaces whose Pixley—
Roy hyperspaces are paracompact, or if every point of X has a neighbourhood whose
Pixley-Roy hyperspace is paracompact, then & [X] is paracompact (Corollaries 3.4
and 3.5). We also show that if X is scattered, then & [X] is paracompact and thekt

if #[X;]is paracompact for i = 1, 2, ..., n, then PP # [X]is paracompact (Corollaries
. i=1

3.6 and 3.8%.

Section 4 is devoted to the investigation of Pixley—Roy hyperspaces of compact
(or, more generally, locally Cech—complete) spaces. We prove that if X is locally
C‘ech-ccmplete, then & [X] is (hereditarily) normal iff & [X] is (hereditarily) para-
compact iff X is scattered (scattered and first countable) (Theorems 4.2 and 4.6).

In Section 5 we examine normalj‘:cy (= perfect normality) and metrizability
(= paracompactness) of Pixley-Roy 'hyperspaces &% [M] of metrizable spaces M.
Theorem 5.2 asserts that & [M] is metrizable iff M is o-discrete. If dimM =0,
then & [M] is normal iff M is a strong g-set (Theorem 5.9). Moreover, the existence
of a normal non-metrizable hyperspace & [M] is equivalent to the existence of
“a non-o-discrete strong g-set (Theorem 5.11).
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Section 6 deals with Pixley-Roy hyperspaces of spaces of ordinals. Such hyper-
si)aces F [X] are always paracompact (Theorem 6.1) and & [X] is hereditarily normal
iff #[X] is hereditarily paracompact iff characters of all non-isolated points of X~
coincide (Theorem 6.2). This result leads to some pathological examples of Pixley-
Roy hyperspaces (Examples 6.4-6.6).

In the last Section 7 we define and examine iterated Pixley—Roy hyperspaces
Z"[X7. In particular, we prove that F"[X] is paracompact for all n>2 and, if X is
first countable, then #"[X] is metrizable for all n>2.

The paper contains a number of open problems.

Throughout this paper, all spaces are Ty, all mappings are continuous, 7 denotes
an infinite cardinal, % denotes a (von Neumann) ordinal and ¢ = 2%,

The Pixley-Roy hyperspace of the real line was defined by Pixley and Roy
in [PR] and later generalized by van Douwen in {vD]. Pixley-Roy hyperspaces were
also applied and investigated in [PT], [L], [BFL,}, [BFL,], [Pl], [R] and [B]. The
Pixley—Roy hyperspace & [X] of a space X (or, briefly, the PR-hyperspace of X)

is the set of all non-empty finite subsets F of X with the topology generated by

basic open sets of the form [F, V] = {He #[X]: FcHcV}, where Fe F[X]
and ¥V is a neighbourhood of F in X. We shall often use the fact that
[F,V]1n [H, W] # @ if and only if F< W and. Hc V. Following [BFL,] we write

FX] = {Fe FIX]: |FI<m}
for m<wo. Pixley-Roy hyperspaces are always completely regular and zerodimen-
sional (i.e. ind F[X] = 0).

A completely regular space Z is strongly zerodimensional (i.e. dimZ = 0) if
any two disjoint functionally closed subsets of Z can be separated by a clopen set.
A space Z is collectionwise Hausdorff if every discrete collection of points of Z can
be separated by a disjoint collection of open sets.

A space is scattered if it contains no dense-in-itself subsets. By X@® Y we denote
the free (i.e. disjoint) sum of the spaces X and Y. For the undefined notions the reader
i¢ referred to [E].

ProrositioN 1.1. F[X] is metrizable if and only if it is first countable and
paracompact. -

Proof. #[X]is a Moore space iff X is first countable iff # [X] is first countable
vD]. &

The proof of the following two propositions is an easy exercise.

PrOPOSITION 1.2. If A is a subspace of X, then & [A]is a closed subspace of # [X]. B

ProrosITION 1.3. & [X] is perfectly norinal if and only if F[X] is normal and
dll points of X are Gy sets. H

We do not know if the assumption of normality of & [X] in the following pro-
position is redundant.

ProrosiTION 1.4, If #[X] is normal, then dim% [X] = 0.
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Proof. One easily proves by induction that dimF,[X] = 0 for all n<w. Con-
sequently, dim% [X] = 0 by ([E]; Theorem 7.2.1). &

ProrosiTION 1.5. F[X@Y] is homeomorphic to
x F[TY)).

Proof. Clearly, #[X®7Y] is a disjoint union of open subsets

A= {FeF[X®Y]: FcX},

={FeF[X®Y]: Fc Y} and

C={FeF[XQY]: FnX # @ and Fn Y # @}.
Moreover,

A= F[X],

B =~ #[Y] and

CeFX|xF[Y]. @

Propositions 1.3 and 1.5 are also proved in [L].

FXle 7Y@ (FIX1x

§ 2. Characterization of paracompact and hereditarily paracompact Pixley-Roy
hyperspaces. In this section we shall prove the following two theorems characterizing
paracompact and hereditarily paracompact PR - hyperspaces Applications of these
results will be given in the next section.

THEOREM 2.1. The following conditions are equivalent:

() F[X] is paracompact;

(i) #F[XT is paracompact for all n<w;

(iii) F[X] is collectionwise Hausdorff;

(iv) for every non-empty finite subset F of X one can choose a neighbourhood Vg
so that the inclusions F<Vy and HcVy imply Fn H # @.

THEOREM 2.2. The following conditions are equivalent:

() #[X] is hereditarily paracompact;

(i) F[XT is hereditarily paracompact for all n<w;

(iii) F[X] is hereditarily collectionwise Hausdorff;

(iv) for every non-empty finite subset F of X one can choose a neighbourkood Wy
so that the inclusions Fe Wy and Hc Wy imply F<H or HcF.

Remark. M. G. Tkadenko [T] introduced, for quite a different purpose, the
notion of a weakly separated space: X is weakly separated if for every point x e X
one can choose a neighbourhood ¥, so that if ye V, and xe ¥V, thep x = y (cf.
also [A,] and [HJ]). One easily sees that %,[X] is (hereditarily) paracompact if
and only if X is weakly separated. Thus conditions (iv) in Theorems 2.1 and 2.2
are natural strengthenings of this notion. H

ProBLEM 1. Find similar charactcnzatlons of (hereditarily) normal PR-hyper-
spaces.

ProBLEM 2. Suppose that & [X] is paracompact. Is # [X]” paracompact?
Is & [X?] paracompact?


GUEST


204 : T. C. Przymusifski

Before proving Theorem 2.1 we shall need the following definition and two
lemmas. Let m<w. We say that a family of open subsets of # [X] is m-proper
if it covers &,,[X] and consists of mutually disjoint sets of the form [F, V], where
|Fl<m.

LemMA 2.3. Every m-proper family is discrete.

Proof. Let % = {[F,, W,]: s€ S} be m-proper. Since % is disjoint and consists
of clopen sets it suffices to show that every F e % [X] has a neighbourhood [F, W]
intersecting finitely many elements of %.

For every x € F put

W(x)=U{W,;: FFcF,xe W, and teS}
and
W= {W(x): xeF}.

We shall show that if [F,, W] n [F, W] # @, then F,<F, which will complete
the proof. We have F,c W, Fc W, and |F,|<m. Thus there exists an Hc F, with
|H|<m, such that

FeU{W@): xeH}.

There exists a t€ S such that H e [F,, W], hence F,c Hc W,. We infer that
U {W(x): xe H} =W, and therefore F,< W, and F,c HcF<W,. Thus [F,, W,] n
n [F,, W] # @& which implies s = ¢ and F,cF. B

Lemma 2.4, Let & be an open covering of ¥ [X]. If for all m< w every m-proper
family refining 9 can be extended to an (m-+1)-proper family refining %, then 4 has
a disjoint refinement consisting of basic open sets.

Proof. Put %, = @ and let %,,., be an (m-+1)-proper extension of %, re-
fining ¢. The family % = |J %, clearly has the desired properties. B

m<w

Proof of Theorem 2.1. The implications (ii) — (i) and (i) — (iii) are obvious.

(iii) — (iv). Let % be an m-proper family in #[X]. By 2.3 % is discrete and
o =% is clopen. Let B = {Fe F[X]: |F| = m+1 and F¢ of}. Clearly & is
a closed discrete subset of #[X]. Let ¥ = {[F, W]: Fe %} be a disjoint family
of basic open sets separating points of #. We may obviously assume that
A ¥ =@ The family % U ¥ is an (m+1)-proper extension of %.

Put ¢ = {#[X]}. From 2.4 we infer that there exists a disjoint covering #°
‘of #[X] consisting of basic open sets. Let %" = {[F,, W.]: se S}

For every Fe#[X] there i$ exactly one s€ .S such that Fe[F,, W, Put
Vi = W,. One easily checks that the family {Vp: Fe & [X]} satisfies (iv).

(iv) — (i). Let ¢ be an open covering of & [X]. By 2.4 it suffices to show that
every m-proper family % refining ¢ has an (m+1)-proper extension refining 4.

Let % ={[F,W]:seS}, « =U% and @ = {FeF[X]: |F| =m+1
and F ¢ o/}, Since by 2.3 & is clopen it suffices to show that points of & can be
separated by disjoint basic open sets (we can always require that those sets refine &
and are disjoint from ).
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Take Fe % and for every x e F put

Wi(x) = Ve 0\ {W,: F,.cF,xe W, and se S}
and .
Wp =\ {Ws(x): xeF}.

We claim that the sets {[F, Wy]: Fe #} are disjoint. Suppose that [F, Wg] A
NIK, Wyl # 0, F,Ke#® and F# K. By (iv) we have H=Fn K # & and
naturally |[H|<m. There exists an se S such that H e [F,, W,]. We get

U{Wsx): xeFAWicW, and U{Wix): xeKn WlcW,.

Since F,K¢of the sets 4 = FN\W, and B = K\W, are non-empty and
AnBo(F\NH)n(K\H) = &. There exist t,ueS such that Ae|F,, W] and
BelF,, W,]. Since A n B =@ we have t # u and also

UiWe(x): xed}cW, and U {Wi(x): xeBjcW,.
This implies
AcFcWyxcW, U W, and BcKcWy,cW,u W,

and thus AcW, and Bc W, which shows that F,c W, and F,cW,. Thus

[F,, Wl [F,, W,] # ©@. This contradiction eompletes the proof of the equivalence

of (i), (iii} and (iv).
(iv) — (ii). From Proposition 1.5 and simple induction it follows that

Fl® X)), where X; = X for i = 1,2, ..., n, contains # [X]" as a clopen subset.
i=1

One easily checks that if X satisfies (iv) then so does Z = @ X; (cf. Corollary 3.5).
i=1

Hence, by (i), #[Z] is paracompact and thus & [X]" is paracompact. &

Remark. From the above proof it follows that each of the conditions (i)—(iv)
in Theorem 2.1 is equivalent to the existence of a disjoint covering of # [X] con-
sisting of basic open sets. B )

Proof of Theorem 2.2. The implications (ii) — (i) and (i) — (iii) are obvious.

(ii) — (iv). Suppose that sets Wy satisfying (iv) have been already assigned to
all sets F of cardinality <m. The set & = {Fe #[X]: |F| = m+1} is closed and
discrete in F[XINF,[X], hence by (iii) there exist disjoint basic open sets
{[F, Gg]: Fe %)}.

For xe Fe % put

W(x) =Gy (N {Wy: xe HgF}  and Wy =U{W(): xeF}.

Suppose that Fe @, |H|<m+1, F # H, Fc Wy and Hc Wy. From the con-
struction of the Wp's it follows that [H|<m. There exists a K< F, |K| = m such
that Hc ) {W(x): x € K} = Wg. We have KcF= Wy and Hc Wy, which by the
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inductive assumption, implies that either Kc H or H<= K. But |[K| = m and |H |<m,
thus Ho K« F, which completes the inductive construction.
(iv) — (i). Let U be an open subset of # [X] and let % be an open covering of U,
We can clearly assume that for every F e U there exists a G € ¢ such that [F, WrlcG.
Let us put

'Vo =0,
Vowrr = {(IF, We\NU U ¥ |F| = m+1 and Fe U},

i<m

and

Vo=V

m<ao

Clearly " is a covering of U refining 4. In order to show that %" is open and
locally finite in U it suffices to verify that for all m<e:

(*),, the family ¥, is locally finite in U and consists of clopen subsets of U.

Clearly (#), is true. If (x); holds for all i<m, then clearly the elements of ¥, ,
are clopen in U. It is enough to check that ¥, is locally finite in U. Let K e U.
If Ke UU ¥ = W, then W is a neighbourhood of K intersecting no elements of

i<m

¥ 'me1- Otherwise, [K|>m+1 and if [K, Wy] n [F, Wyl # @, for some F of cardi-
nality m+1 then, by (iv), either F<K or K<F. But |F| = m+1 and |K|>m+1,
hence Fe K. Thus [K, W] intersects only finitely many elements of ¥ m+1 Which
proves (x),,+; and completes the proof of the equivalence of (i), (iii) and (iv).

(iv) — (ii). As in the proof of the implication (iv) — (ii) in Theorem 2.1, one
easily sees that it suffices to show that if X satisfies (iv) then so does Z = él) X,
where X; = X, fori = 1,2, ..., n. This, in turn, can be reduced by inductioni t; the
case of Z = X, ®X,, where X; = X, = X

For a subset 4 of X by 4, and 4, we shall denote the corresponding subsets
of X and X, respectively. Let K, LeX and P = K; U L, be an arbitrary element

of #[Z]. We shall assign to P a neighbourhood Wpin Z = X, @X, so that (iv) is

satisfied.
Let us put
Wp = (Wiot\INK))y U (Wi, . NEND), .

N Suppose that K* L*cX, P* = K¥ UL} and that Pc Wpe and P*c Wy,
Then

18] K*e W, tNINK); - L*e Wy NBNL) ;

10)) KWt \L™K*)  and L Wy oKLY .
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This implies that K* u L*< Wy, and K U L Wg., 1., thus, by (iv), either
KuLcK* uL* or K* UL*cK U L. Suppose e.8. KU LcK* U L* and assume
that P:P*. Then either K\NK* # @ or L\L*  &. Suppose e.g. K\K* # &. This
implies that & # K\K*<L* hence K n (L*\K*) # @. But K n (L*\K*) = &
by (2); contradiction. All other cases are dealt with similarly. This completes the
proof. &

Remark. From the above proof it follows that each of the conditions (i)-(iv)
in Theorem 2.2 is equivalent to the following condition:

(iv)’ for every m<w and every m-element subset F of X one can choose a neigh-
bourhood Vg(m) so that inclusions FeVy(m) and HeVy(m) imply F= H. B

§ 3. Applications. This section contains a number of applications of Theorems 2.1
and 2.2 mostly concerned with the invariance of paracompactness and hereditary
paracompactness of PR-hyperspaces under continuous mappings and the opera-
tions of union and product of spaces.

ProrosITiON 3.1. Let (S; <) be a partially ordered set and suppose that
X=U{X,: seS}, where X,n X, =@ for s 5 t and |) {X,: t<s} is open in X
for every se S.

If #F[X,] is paracompact for every s€ S, then & [X] is paracompact.

Proof. By Theorem 2.1 for every se S and every non-empty finite subset F
of X, one can assign .a neighbourhood Vg of F in X so that if Fc V3 and H= V3,
then Fn H # @. :

For every subset F of X put F, = F X, and define

Ve=U{Vi,oUX,: seS and F, # @}
. t<s

for every non-empty finite subset of X. One easily checks that Vp is a neighbourhood
of F in X. Suppose that FcVy and HcVe. We have to show that F n H # .
Let 4 = {seS: F, # @ or H, # B}. The set 4 is finite and thus 4 contains
a maximal element so. Suppose e.g. F, # @. Since F,,= Vy, there exists an s such
that H, # @ and F,, 0 (Vg, v U X, # &. From the maximality of s, and the
i1<g
inequality s,<s we infer that s = 5, and that F,c Vg, . Similarly, we prove that
H,< V3, Therefore, Fn HoF,,n H, # @. B
CoroLLARY 3.2 [BFL,]. Suppose that X can be partially ordered by < in such
a way that {y: y<x} is open in X for every xe X. Then F[X] is paracompact. B
COROLLARY 3.3. Suppose that X = \J A, and the sets K, = ) {4;: f<a} are

x<x
open (or closed) for every a<i. .
If #A4,] is paracompact for every a<x, then F[X] is paracompact.
Proof. Putting 4’ = 4,\ | 4, and using Proposition 1.2 we can always make
B<x

the sets A, disjoint. If the sets K, are open then also the sets U {4;: f<a} = K4y
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are open. If the sets K, are closed, then the sets () {4;: fa} are open. Now, it
suffices to apply Proposition 3.1. B '

CoroLLARY 34. If X is a o-locally finite union of closed subspaces whose
PR-hyperspaces are paracompact, then % [X] is paracompact. B

CoROLLARY 3.5. If every point of X has a neighbourhood whose PR-hyperspace
is paracompact, then F[X] is paracompact. B

COROLLARY 3.6. If X is scattered, then F[X] is paracompact.
Proof. Clearly, for some x X =& @ Y1) (*) and the sets
o<x

ﬂL<) (XPNXP* Dy = X\X@ are open for every a<x. Our assertion follows now
a

from Corollary 3.3. B

The following corollary generalizes one of the results obtained by M. E. Ru-
din [R] for X being a subspace of a Suslin line.

COROLLARY 3.7. Suppose that X = \J A,, where sets A, are countable and the set

a<ewy

S = {a:ﬁU Ay is not closed} is not stationary. Then F[X] is paracompact.
<q "

Proof. Let C be a closed unbounded subset of o, disjoint from § and put
By = LJ#AM, for B e C. Then sets B, are countable, X'= () By and (J By is closed for
a peC B<y
every ye C. By 3.3 % [X] is paracompact. B
Our next corollary concerns products of PR-hyperspaces.

CoroLLARY 3.8. If F[X] is paracompact for i = 1,2,...,n, then P & [X]] is
i=1

paracompact.

Proof. By Proposition 1.5 the space P F[X]] is a closed subspace of #[Z],
i=1

where Z =i£431Xi. By 3.5, #[Z] is paracompact. M

Remark. No one of the above results 3.1-3.8 is valid for hereditary paracom-
pactness. There exist spaces X" and ¥ such that & [X] and #[Y] are hereditarily
paracompact, but FIX®Y] and F[X]xF[Y] are not (see Example 6.6). B

With regard to the (inverse) invariance of paracompactness under continuous
mappings we have the following corollaries to Theorems 2.1 and 2.2.

COROLLARY 3.9. Let f: X — Y be a continuous bijection. If [ Y] is (l'zereditarﬁ ly)
baracompact, then F[X] is (hereditarily) paracompact.

Proof. Use (iv) of Theorems 2.1 and 2.2, respectively. B
COROLLARY 3.10. Let f2 X — Y be a closed Jinite-to-one mapping of X onto Y.

If F1X] is (hereditarily) paracompact, then F[Y] is (hereditarily)  paracompact.

® X denotes the ath derivative of X ; sets XN X(+1) are discrete,

icm®

Normality and paracompactness of Pixley-Roy hyperspaces 209

Proof. Suppose that X is paracompact. By Theorem 2.1 for every finite sub-
set K of X one can choose an open neighbourhood Vg so that (iv) is satisfied. Let
us put :
Vi = INF(XNV - 1ty)

for every non-empty finite subset F of Y. Clearly the sets Vj are open neighbour-
hoods of Fin Y. If F= ¥V and He Vg, then [~ (F)= V-sypand f~HH) < V - 1py,
hence f™Y(F) nf~ (H) # . Therefore Fn H # .

The proof for hereditary paracompactness is analogous. H

PrOBLEM 3. Let f: X' — Y be a perfect mapping of X onto Y. Is #[Y] (her-
editarily) paracompact if #[X] is such?

This problem has an affirmative answer if X is either locally Cech-complete
(see Theorems 4.2 and 4.6) or metrizable (see Theorem 5.2 and also Problem 9).

As it follows from the next result, hereditary paracompactness of % [X] in many
cases implies that & [X] is perfectly paracompact.

COROLLARY 3.11. If X contains a countable non-discrete subset and if F[X] is
hereditarily paracompact, then % [X] is perfectly paracompact. }

Proof. By 2.2 & [X]? is hereditarily paracompact. It is easy to see that & [X]
also contains a countable non-discrete subset. Now, it suffices to apply Katetov’s
theorem (see [E]; Problem 2.7.15). B

Also the relation between normality and paracompactness of PR-hyperspaces
is delicate. Assuming MA + "ICH there exists a separable metric space M such
that & [M] is normal but not paracompact [PT]. On the other hand the following
corollary is an immediate consequénce of Theorems 2.1, 2.2 and a theorem of
Fleissner [F].

COROLLARY 3.12. (V = L). If & [X] is (hereditarily) normal and its character
is <c, then F[X] is (hereditarily) paracompact.

ProOBLEM 4. Give a “real” example of a normal non-paracompact Pixley~Roy
hyperspace # [X].

It follows from Theorem 4.2 and Corollary 3.12 that X can be neither locally
Cech-complete nor first countable.

§ 4. Pixley-Roy hyperspaces of compact spaces. In this section we investigate
(hercdi’rary) normality and (hereditary) paracompactness of PR-hyperspaces of
locally Cech-complete (in particular, compact) spaces.

LemMa 4.1. If X has a closed irreducible mapping onto the Cantor set C, then
F[X] is not normal. X

Proof. Let f: X — C be such a mapping and suppose that & [X] is normal.
Let C = AU B, where 4 n B = @ and both 4 and B are of the second category
in every non-empty open subset of C (see e.g. [E]; Problem 5.5.4). Put K = f )
and L = f~(B). Since K and L are disjoint subsets of X, there exist disjoint open
subsets U and ¥ of #[X] such that {{x}: xe K}c U and {{x}: xeL}=V. For
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every x € X choose a neighbourhood V. such that [{x}, ¥,] is either contained in U
or in. V.

Let us notice that sets ¥, have the following property:

(1) if xeX and zeL then either x éV,orz¢V,.

Indeed, if xe K, zeL, xeV, and ze V,, then {x, 2} el{x}, Vil n [{z}, V]
cUn V= @, which is impossible.

For every y e C find a neighbourhood U, of y such that

@ FHU)=U Ve xef ()}

For every open subset W of X let W = U {f~'(3): f* 1)< W}. Since f is
closed f (W) is open in C and W = f~1f (W). Since f is irreducible, for every non-
empty W, we have W # @.

Put W, = U,n U {f(7): x e/~ Y»)}. The set W, is open and contained in U,.
. Let us observe that ’
(3) W, is dense in U,.

Indeed, let G be non-empty and opeh in U,. Then, by (2),
o)<V (7 xef ().
There exists an x such that W = f~Y(G) n V, # B. We have

B #£fW)=Gnf(V)=GnW,.

) Letusput 4, = {ae 4: B(a, l/n)c U,}, where B(a, 1/n) denotes a ball in C of
radius 1/f1 and center at a. Since 4 is of the second category, there exists a k such
that 4, is' not nowhere dense. Find an open subset G of C such that

9 # Gc4d,
and let Q be a countable dense subset of Ay Hence QA4 c( = 4,. By (3) the set
T=U{UNW,: ae 0}

is of the first category. Therefore there exists abe(B\T)nG.

) We _have b e_B(b, 1/k) n G n U, # O, hence by (3), B(b, 1/k) n G n W, 5 @.
Since @ is dense in G, there exists an a € QN Bb,1k)ynGn W,. Wehave ae 4
hence be U,, but b¢ To UNW,, hence be W,. “

Finally, we obtain ae W, and b e W,. Th

F £ erefore there exist x ef~(d) and
z ef_ll(b) such that aef(¥,) and besf(7). We have z ef (b)) I(f) and
xef " Na)cV,, xe K and zeL, which is impossible by (1). & x

equiv’i;:i(:?m 4.2. For a locally Cech-complete space X the following conditions are
() #[X] is normal,
() FIX] is paracompact,
(i) X is scattered,
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Proof. Implication (jii) — (ii) follows from Corollary 3.6 and implication
(ii) — (i) is obvious.

(i) — (iii) (cf. [A,]). Suppose that X is not scattered. Then X contains a dense-
in-itself, closed and C‘ech-completc subspace, which implies that there exists a perfect
mapping f: ¥ — C of some (closed) subspace Y of X onto the Cantor set. We can
assume that f is irreducible (cf. [E]; Exercise 3.1.C). By Proposition 1.2 #[¥]is
normal, which contradicts Lemma 4.1. &

LemMa 4.3. Let X be an uncountable compact space with exactly one non-isolated
point xq. Then F[X] is not hereditarily normal.

Proof. Let A4 be an arbitrary countably infinite subset of X not con-
taining xo. We claim that disjoint closed subsets K = {{xo,a}: ae 4} and L =
{{x0, B}: be B = X\(4 U {xo})} of & [XI\F,[X] cannot be separated by disjoint
open subsets U and V of & [X]. Suppose the contrary. For every xe 4 U B find
a neighbourhood ¥(x) of x, such that the set [{xy, x}, V(x) U {x}] is either con-
tained in U or in V. Clearly if e 4 and b e B then either a¢ V(b) or b¢ V(a),
since otherwise we would have

U Vol{xs, a}, V@) U @]  [x0, B}, VB U (B)]> {5, 0, B} # 8.

Clearly the complement of every V(x) is finite, thus there exists
abeBn (N{V(a): acd}. Since |[X\V(b)|<w, there exists an ae 4 such that
ae V(b). We have b e V(d) and ae V(b), which is a contradiction. &

Remark. There exists an uncountable Lindeldf space X with exactly one non~
isolated point such that & [X] is hereditarily paracompact (see Example 6.5). &

THEOREM 4.4 For a compact space X the following conditions are equivalenti

() F[X] is hereditarily normal,

(i) F[X] is hereditarily paracompact,

(iiiy F[X] is metrizable,

(iv) X is countable.

Proof. The implications (iii) — (ii) and (ii) — (i) are obvious. The impli-
cation (iv) — (iii) follows from Proposition 1.1, because & [X] is then countable
(bence Lindeldf) and X is first countable.

(i) — (iv). Since X is compact, it suffices to show that X is locally countable.
Let o be the first ordinal such that there exists an x € X\ X“**? with no countable
neighbourhood (Theorem 4.2 implies that X is scattered). Find a neighbourhood ¥
of x such that 7~ X@ = {x}. For every neighbourhood W of x in ¥ the set V\W
is compact and contained in X° X, From our assumption on & we infer that \W
is countable for any such W. If \W is finite for all neighbourhoods W of x, then,
applying Lemma 4.3, we infer that & [V] is not hereditarily normal, which is a con-
tradiction.

If there exists a W such that VR W is infinite, then VAW is compact, metrizable
and infinite, hence it contains a non-trivial convergent sequence. Using the fact that
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a complement of every neighbourhood of x in ¥ is countable, one shows, as in the
proof of the implication (i) — (iii) in Theorem 6.2, that & [V] is not hereditarily
normal, which again is a contradiction. B . i

Remark. In fact, Theorem 4.4 is valid for Lindelsf (fech—complete spaces.

ProPOSITION 4.5. Let X be a space of point-countable type (e.g. a p-space).
If #[X] is hereditarily normal, then X is first countable and hence & [X] is perfectly
normal.

Proof. By the definition of a space of point-countable type for every point x ¢ X'
there exists a compact set K x of countable character in X. Since #[K] is her-
editarily normal, K is countable by Theorem 4.4. Thus the point x has a countable
character in X (cf. [E]; Exercise 3.1.E). Hence % [X] is perfectly normal by Prop-
osition 1.3. B ‘

THEOREM 4.6. For a locally Cech-complete space X the Jollowing conditions are
equivalent: <

() F[X] is hereditarily normal,

(i) #[X] is hereditarily paracompact,

(iii) & [X] is metrizable,

(V) X is first countable and scattered.

Proof. The implications (jii) — (i) and (ii) — (i) are obvious. The impli-
cation (i) — (iv) follows from Proposition 4.5 and Theorem 4.2. The implication
(iv) — (iii) follows from Proposition 1.1 and Theorem 4.2. B

Remarks. 1. There exist first countable, paracompact, scattered and Cech-
complete spaces which are not locally countable, e.g. the real line with all non-zero
points isolated.

2. Since normality and paracompactness in PR-hyperspaces of metric spaces
do not, in general, coincide [PT], Theorems 4.2 and 4.6 are not valid for (locally)
p-spaces. B '

§ 5. Pixley-Roy hyperspaces of metrizable spaces. In this section we investigate
the normality (= perfect normality) and metrizability (= paracompactness) of
PR-hyperspaces of metrizable spaces. Throughout this section M always denotes
a metrizable space.

PROPOSITION 5.1. If % ,[M] is collectionwise Hausdorff, then M is o-discrete.

Proof. For every x e M find an n(x)<w such that the family

{[{x}’ -B(x: 1/"(x)] n 'g;z[M]}xeM

is disjoint. One ecasily checks that sets A, = {xeM: n(x) = n} are closed and.

discrete. B

Metrizability of the hyperspaces & [ ] is fully characterized by the following
theorem, which is a consequence of Proposition 5.1 and Corollary 3.4.

THEOREM 5.2. & [M] is metrizable if and only if M is o-discrete. H

icm

Normality and paracompactness of Pixley-Roy hyperspaces 213

Theorem 5.2 as well as Proposition 5.1 are valid for semimetric spaces. As
for the normality of hyperspaces & [M] the following result is known (the “if” part
proved in [PT] and the “only if” part in [R]).

THEOREM 5.3. If M is separable, then % [M]is normal if and only iff M is a strong
Q-set. H

Recall that M is a Q-set if M is separable and all subsets of M are Gy's and
that M is a strong Q-set if all finite powers of M are Q-sets.

THEOREM 5.4. The following conditions are equivalent:

(i) there exists and uncountable Q-set;

(ii) there exists an uncountable strong Q-set;

(iii) there exists a separable M such that & [M is normal but not metrizable.

Proof. By [P;] the existence of an uncountable Q-set is equivalent to the
existence of an uncountable strong Q-set. Thus it suffices to apply Theorems 5.2
and 5.3. @

In an attempt to generalize Theorems 5.3 and 5.4 for the non-separable case it
is natural to introduce non-separable Q- and strong Q-sets. However, as we shall
see, the generalization will not be complete. We say that a metric space M is a g-set
if all subsets of M are G;’s and that M is a strong gq-set if all finite powers of M
are g-sets. Thus, Q-sets are separable g-sets.

PROPOSITION 5.5. F,[M] is normal if and only if M is a q-set. B

COROLLARY 5.6. [Re,] (V = L). Every g-set is o-discrete.

Proof. Let M be a g-set. By 5.5 &,[M] is normal and hence, by [F], #,[M] is
collectionwise Hausdorff. Thus 5.1 implies that M is o-discrete. B

Lemma 5.7. If M is a strong g-set and dim M = 0, then & [M] is normal.

Proof. By a result of Herrlich [H], the space M is linearly ordered. Now the
proof on page 294 of [PT] applies with obvious modifications. &

Lemma 5.8. If # [M ] is normal and if f: X — M is a one-to-one continuous map-
ping of a metric space X with dimX = 0 onto M, then & [X ] is normal and X is a strong
g-set. ‘

Lemma 5.8 will be proved at the end of this section.

THEOREM 5.9. If dimM = O, then F [M] is normal if and only if M is a strong
q-set.

Proof. This is an immediate consequence of Lemmas 5.7 and 5.8. B

ProBLEM 5. Can the assumption that dimM = 0 in Theorem 5.9 be omitted ?

PrOBLEM 6. Is every g-set strongly zerodimensional?

Remark. From Propbsition 5.5 it follows that a positive answer to Problem 6
implies a positive answer to Problem 5. Since every Q-set is-obviously strongly
zerodimensional, Theorem 5.9 in fact generalizes Theorem 5.3. B -
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LeMMA 5.10. For every non o-discrete metric space M there exists a non-c-discrete
metric space X with dim X = 0 and a one-to-one continuous mapping f> X — M of X
onto M. Moreover, if M is a (strong) q-set, then also X is such.

Proof. By ([E], Exercise 4.4.) there exists a strongly zerodimensional metric
space Z and a perfect mapping g: Z — M of Z onto M. Let X be a subspace of Z
such that f = g|X: X~ M is one-to-one and onto. Suppose that X = | 4, is

n<aw
a union of countably many discrete subspaces 4,. For every n, 4, is an open sub-

space of Clz4,, hence 4, = |J F, ,, is a union of countably many closed discrete
m<w

subspaces of Z. Thus M = U g(F,, ) is o-discrete, which is impossible. The last

nm<o

assertion is obvious. E
The following theorem (partially) generalizes Theorem 5.4.

THEOREM 5.11. The following two conditions are equivalent:
(i) there exists a non-c-discrete strong q-set;
(i) there exists an M such that & [MY] is normal but not metrizable.

Proof. If (i) holds, then by 5.10 there exists a strongly zerodimensional non-
o-discrete strong g-set M. By Theorems 5.9 and 5.2, #[M] is normal but not
metrizable.

If (ii) holds, then by 5.2 M is not o-discrete and by 5.10 there exists a strongly
zerodimensional non-o-discrete metric space X and a continuous one-to-one
mapping f: X — M of X onto M. By 5.8 X is a strong g-set. B

ProBLeM 7. Is the existence of a non-o-discrete g-set equivalent to the existence
of a non-o-discrete strong g-set?

ProBLEM 8 (). Is the existence of a non-o-discrete g-set equivalent to the
existence of an uncountable Q-set?

A comparison of Theorems 4.2 and 5.2 suggests the following problem (see also
Problem 3).

PrOBLEM 9. Let X be a paracompact p-space. Is & [X] paracompact if and
only if X is o-scattered?

Proof of Lemma 5.8. By Lemma 5.7 it is enough to show that X is a strong
g-set. Take n<w and assume that we have already proved that X" is a g-set.
Let < be a linear order on X generating the topology of X [H]. Let

Z = {(15 0is Xpig) X" x <<,y )

One easily sees that X™** is a finite union of its G; subspaces which are either
homeomorphic to Z or to some X* for k<n. Thus in order to show that X**! is

® Reoently‘ G. M. Reed answered this problem in the negative by showing that the existence
of non-o-discrete g-sets is consistent with GCH [Re,].
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a g-set it suffices to show that Z is a g-set. Since S is one-to-one we can identify the
points of X and M. Let AcZ, B = Z:A and let g: Z— F[M] be defined by

g(x.l’"'9 n+1) = {xn-'-: n+1}-

Clearly the sets g(4) and g(B) are disjoint closed subsets of & [M NZ.[M]1,
hence there exist open and disjoint subsets U and ¥ of & [M] such that Usg(4)
and Vog(B). Define 4, = {ze4: [9@, Blg(2), Ym)]< U}, where B(F, 1/my
= UF.B(y, 1/m) and B(y, 1/m) denotes a ball in M of radius 1/m.

ye

0
Since A = |J 4, it suffices to prove that Cl,

m=1
and let z* € Cl;4,, N B. There exists a k>m such that [9=%), B(g (=), 1k)]<V
n+1 N
and a ze 4,, such that ze P B(zf, 1K), ie. z; e B(2}, 1/k). Thus z} € B(z;, 1/k)
i=1
& B(zy, 1/m), for all i<n+1. This implies, however, that

9(2) Vg(=B(g(2), 1/m) n B(g(z*), 1/k)

Am<=A. Suppose the contrary

and hence

8 # [9(2), B(g(), 1/m)] ~ [¢(z*), B(g(=*), YK)]<U A ¥,
which is a contradiction and completes the proof. &

§ 6. Pixley-Roy hyperspaces of spaces of ordinals. In this section we shall con-
sider PR-hyperspaces of spaces of ordinals. By a space of ordinals we mean an
arbitrary subspace of some ordinal. From Corollary 3.2 immediately follows

THEOREM 6.1 ([BFL,], [P,]). If X is a space of ordinals, then ¥ [X] is paracom-
pact. B

The following theorem, however, sharply contrasts with Theorems 4.4, 4.6
and 5.2 which may suggest that hereditary normality (hereditary paracompactness)
of #[X] is always equivalent to perfect normality (metrizability) of & [X].

THEOREM 6.2. For a space of ordinals X the Sollowing conditions are equivalent:

(i) F[X] is hereditarily normal;

(i) #[X] is hereditarily paracompact;

(i) characters of all non-isolated points of X coincide;

(iv) F[X] is v-metrizable (*) for some .

() A regular space Z is v-metrizable (see [Ha}, [S]) if it has a z-Jocally finite base (i.e. a base
being a union of  locally finite families) and if the intersection of less than = open subsets of Z is
open. A space is w-metrizable if and only if it is metrizable. All z-metrizable spaces are hereditarily
paracompact.

Theorem 6.2 can be generalized in a natural way: the equivalence of conditions (i)-(iv) takes
place in every space X such that g [X] is paracompact and all points have a well-ordered by
inclusion base of neighbourhoods.

o
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COROLLARY 6.3 (cf. also 4.6). For an ordinal x, the hyperspace & [x] is her-
editarily normal if and only if x<w,. @

ExaMmPLE 6.4. Consider T' = {o: a<w, and cf(x) = w,} as a subspace of w,.
By 6.2, & [T] is hereditarily paracompact, w;-metrizable and not perfect. Moreover,
T contains w, non-isolated points. H .

ExampLE 6.5. Consider Y = {o: w<«¢<w,; and o is isolated or « = w,}
as a subspace of w;+1. Then, ¥ is Lindelof with exactly one non-isolated point,
F[Y] is hereditarily paracompact by 6.2 and F[Y] is not perfect by 1.3. BE

ExaMPLE 6.6. The space Z = X@ Y, where X = w+1, is a Lindeldf subspace
of @4 +1 with exactly two non-isolated points and Y is as in 6.5, # [X] is metrizable
and countable, # [Y] is w;-metrizable and hereditarily paracompact, but & [Z] is
not hereditarily normal, by 6.2. Thus, by 1.5, F[X|xF[Y] is not hereditarily
normal (cf. Corollary 3.8). H ‘

Proof of Theorem 6.2. The implications (iv) — (ii) and (ii) — (i) are obvious.

(i) — (iii). Suppose that there exist non-isolated points x,yeX, say x<y,
such that y(x) =t # % = x(y), where x(x) denotes the character of x in X. Thus
there exist sequences {X,},<. and {»,},<, such that x,<x;<x<y,<y;<y, for all
a<f and y<d, x = sup{x,: a<t} and y = sup{y,: y<x}. Of course, both 1
and » must be regular.

Suppose that t<x and let us put ¥ =4 U B, where 4 = {x} U {x,},,
and B = {3} U {»,};<«- Then Y is a subspace of X and ¥ = A®B. From (i) and
Proposition 1.5 it follows that the space % [4] x # [B] is hereditarily normal but this
contradicts Katetov’s theorem since {y} is not an intersection of ¢ open subsets of
F[B] (cf. [E]; Problem 2.7.15).

(ili) — (iv). Suppose that 7 is such that y(x) = t for every non-isolated point
x e X. That the intersection of less than v open subsets of # [X] is open follows
immediately from the analogous property of X. It suffices to show that #[X] has
a t-locally finite base. For every non-isolated x e X fix a sequence {X.}«<: of points
of X such that x,<x;<x, for all x<f<7 and x = sup{x,: a<t}. Define

(x) {x}, if x is isolated ,
) (%, x], otherwise ,

and
Ve = {VF): Fe F[X]}, ViF) = [F, U {U(9): xe F}].

Let 4, be a locally finite open refinement of ¥, existing by virtué of 6.1, One
easily checks that the family # = () 4, is a base of F[X]. ®

a<te

where

§ 7. Tterated Pixley-Roy hyperspaces. In this section we define iterated PR-hy-
perspaces and examine their properties. Let us deﬁne FUX] = F[X]and &F ntiry]
= #[#IX]]. ‘

TuEOREM 7.1. If n>2 then FX] is paracompact.
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Proof. From n2 it follows that #"[X] = & [%"1[X]]. Since FrUX]T is
a PR -hyperspace it is a union of countably many discrete subspaces {4,,}., such
that K,, = U 4, is closed for every m<a. Now, paracompactness of Z"[X] follows

i<m

from Corollary 3.3. B

CoroLLARY 7.2. If X is first countable, then F"[X] is metrizable Jor every
n=2. B

Let D(z) denote a discrete space of cardinality = and let p e D(z). By 0(7) we
shall denote the subspace of .D(z)” consisting of those points of D (7)® all coordinates
of which, except for finitely many, coincide with p. Clearly, (1) does not depend on
the choice of p e D(7).

The following theorem is a natural generalization of the well-known fact about
the space of rational numbers Q and has a standard proof.

THEOREM 7.3. Every non-empty o-discrete metric space, all non-empty open subsets
of which have weight (or cardinality) t, is homeomorphic to Q(%).

For the sake of completcness we include a short proof of Theorem 7.3 at the
end of this section.

COROLLARY 7.4. The space Q of the rationals is homeomorphic to Q(w). B

COROLLARY 7.5. The space Q(7) is universal in the class of o-discrete metric spaces
of weight (cardinality) z.

Proof. Let M be a o-discrete metric space of weight (cardinality) 7. By 7.3,
M x Q(r) is homeomorphic to Q(z) and contains M. B

COROLLARY 7.6. Every metrizable Pixley—Roy hyperspace # [X] is a subspace
of Q2), where © = |X|. Moreover, & [X] is homeomorphic to Q0 (<) if and only if all
non-empty open subsets of X have cardinality <.

Proof. Every first countable Pixley-Roy hyperspace is o-discrete and clearly
w(F[X]) = |X|. Non-empty open subsets of X have cardinality ¢ if and only if
non-empty open subsets of & [X] have cardinality . B

COROLLARY 7.7. If M is metrizable, then % [M] is homeomorphic to Q (7) if and
only if M is homeomorphic to Q(%).

Proof. This is an immediate consequence of 7.3, 7.6 and 5.2.

From Corollaries 3.2, 7.6 and 7.7 it follows that #"[S12 0 (c), for all n21,
where S is the Sorgenfrey line.

COROLLARY 7.8. If X is first countable, then F*[X] is a subspace of Q(),
where © = |X|. Moreover, #*[X1 is homeomorphic to Q(z) if and only if all non-
empty open subsets of X have cardinality ©. B

From Corollary 7.8.is follows that #"[R] = Q(c), for every n>2, where R
denotes the real line. The space & [R], although not metrizable, also contains g (c)
homeomorphically [PI].

ProsrEM 10. [vD]. Is the square of & [R] homeomorphic to % [R]?
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Proof of Theorem 7.3. Let M be a non-empty metric space all non-empty
open subsets of which have weight (or cardinality) « and let M = ) D,, where

. n<o
the sets D, are closed and discrete and Dy = @. Assume also that M is well-ordered.
Put %, = {X}, fix n<o and suppose that an open partition %, of X has been
defined in such a way that no two distinct elements of |J D; belong to the same

isn
element of %,. We shall define %, ,.
Fix Ue, and let m = min{k: U n D, # @} and let x, be the first clement
of D,, belonging to U. Let {U},<. be a partition of U consisting of non-empty
open sets of diameter less than 1/(n+1) and such that no two distinct points of

U D, belong to the same element U,. Additionally we require that Xo € Uy. One
iSnt1

easily sees that such a partition exists. Put %, = {U,: a<r, Ue,).
For every n>1 let f,: M — D(z) be a continuous function defined by

filx) = o

where D(z) is identified with the set © = {a: a<1},
It is routine to check that the diagonal

if xeU,, for some Ue%,_,

f=2_§lf;,: M — D(z)*

of mappings f, is a- homeomorphic embedding of M onto Q). B

Added in proof. A different characterization of normal Pixley-Roy hyperspaces and other
interesting results involving PR-hyperspaces were obtained independently by M. G. Bell (“Hyper-
spaces of finite subsets”, to appear). Second part of Problem 2 has been solved by H. Tanaka
(“Paracompactness of Pixley-Roy hyperspaces I and 11", to appear) who showed that #[X] is
(hereditarily) paracompact iff Z#[X™]" is (hereditarily) paracompact for all m, n<w. H. Tanaka
also proved that the assumption, that dimM = 0 in Lemma 5.7 is redundant,
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