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Local expansions on graphs
by
J. J. Charatonik and S. Miklos (Wroclaw)

Abstract. A necessary and sufficient condition is proved under which a linear graph admits
a local expansion.

§ 1. Introduction. This paper is motivated by a short note of Rosenholtz [11]
who studied local expansions on metric continua and proved that every open local
expansion on a metric continuum onto itself has a fixed point. Showing that openess
of the mapping is essential in the result, he has constructed a fixed point free local
expansion on the union of three circles ([11], p. 3 and 4). On the other hand it is
easy to point some particular examples of metric continua which do not admit any
local expansions onto themselves at all. Such is e.g. the unit segment of reals.
Therefore it is very natural to ask about a criterion under which there exists a local
expansion of a given metric continuum onto itself:

ProBLEM. Characterize metric continua X which admit a local expansion of
X onto itself.

This paper does not answer the problem, however, it is a contribution to the
attempt to find such a criterion for some special continua. Namely a partial answer
is given by showing a necessary and sufficient condition of the existence of local
expansions on linear graphs (i.e. one-dimensional connected polytopes) equipped
with a convex metric. .

§ 2. Definitions and preliminaries. Let ¢ be a metric on a metric space X. The
statement that the mapping f* X — X is a local expansion means that f'is continuous
and that for each point x € X, there is an open set U containing x and a real number
M>1 so that if y and z belong to U, then

&) e(f (). f(@)=Me(y.2)

(see [11], p. 1). We say that a metric space X admits a local expansion if there exist
a metric g that is equivalent to the original one given on X, and a surjection f: X — X
satisfying the conditions of the above definition. )
Let a metric space X with a metric ¢ be given. Let x, y, ze X. The point z is
said to lie between the points x and y provided that g(x,y) = o(x, 2)+e(z, )
(cf. [3], p. 317). The point z is said to be a center of the pair x, y provided that ¢ (x, z)
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= a(y, 2) = }o(x,). We say that the set A=X is linear if there exists an isometry
¢: A— R of 4 into the space R of all real numbers, i.e. g(x, y) = lo(x)—o ()]
for every x, y € 4 (cf. [6], p. 183). An arc means any subset of X that is homeomor-
phic to the closed unit segment [0, 1] of reals. An arc contained in X is said to be
a metric segment if it is linear.

A metric space X is said to be convex (in the well-known sense of Menger [7],
p- 81) provided that for each two distinct points x and y of X there exists a point
ze X different from x and y which lies between x and ». It was proved by Menger
([7], p. 89; see also Aronszajn [2]; cf. [3], p. 41) that in every complete convex metric
space X each two points of X can be joined by a metric segment. Moreover, it is
known (cf. [9], 2.3, p. 116) that a complete metric space is convex if and only if for
every x, y € X and for every f, where 0<7<1, there exists at least one point ze X
such that

e, 2= (1=00(x,») and oz, = t-g(x,).

If a metric space X equipped with a metric @ is convex, then the metric ¢ is called
a convex metric.

Let X be a metric space and let # be a positive integer. A point p e X is said to
be of order less than or equal to n provided that if W is any open neighborhood of Ds
there exists an open neighborhood U of p with Uc W and such that the bound-
ary U\U of U consists of at most # points. Clearly this amounts to saying that for
every positive number ¢ there exists a neighborhood U of p of diameter less than ¢
whose boundary has at most # points. 1f P is of order less than or equal to n but
not of order less than or equal to n—1, then it is said to be of order n (cf. [12],
Definition on p. 48 and Note on p. 50), in writing ord, X = n. In particular, if
ord, X = 1, then p is called an end point of X. We admit
) . ordX = max{ord,X]| pe X}
if such the maximum exists.

A connected set X is said to be semi-locally connected if for each its point x and
for each number &0 there exists a neighborhood U of x in X of diameter less than &
such that X\U has only a finite number of components ([12], p. 19).

If X'is a connected space and p is a point of X such that X \{p} is not connected,
then p is called a cut point of X’ ([12], p. 41). A continuum means a compact connected
m(-:jcric space. A simple closed curve is defined as a continuum homeomorphic to the
unit circumference, i.e., to the set of all complex numbers z with |z| = 1.

We shall use here some notions from Whyburn’s cyclic element theory (see
¢.8. [12], Chapter IV, p. 64-87). For the reader’s convenience we recall here the basic
concepts needed in the sequel.

. Two points a and b of a connected set ¥ are said to be conjugate provided no
pomt separates @ and b in X. If p e X is neither a cut point nor an end point of
a connected set X, the set consisting of P and of all points of X conjugate to pis
called a simple link of X (see [12], p. 64). Simple links are closed subsets of X ([12],
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1.4, p. 65). In case when X is a semi-locally connected continuum, simple links coin-
cide with non-degenerate or true cyclic elements of X (see [12], p. 66). A collection I of
sels is said to be coherent if for each proper subcollection I of it, an element of I"'
intersects an element of I'\I" (see [8], P. 46). Let a semi-locally connected con-
tinuum X be given. A link of X means the union of a maximal coherent family of
sirrple links of X (here “maximal” means that the coherent family is not a proper
subfemily of another coherent family of simple links of X); compare this definition
with one of an H-set in [12], p. 72. A link L of a semi-locally connected continuum X~
will be called an end link if the set X\L is connected.

We recall that a connected set X is a linear graph provided it is the union of
a finite set V of points, called vertices and a finite number of arcs, called edges, so
that the end points of each edge belong to ¥ and that for every two edges their inter-
section is contained in ¥ (i.e. every two edges have at most end points in common).
If ve V and E is an edge such that v € E, then we say that Eis the edge incident to
the vertex v. Note that the above definition of a linear graph is equivalent to one given
in [12], p. 182; however the edges in [12] are defined as open free arcs in X (i.e. arcs.
without their end points, with the property that each such an arc without iis end
points is an open subset of the whole space X). But it is more convenient to us to
understand each edge of a linear graph as an arc, i.e., together with its end points.
It is known (see [12], p. 182) that a continuum X is a linear graph if and only if every
point of X is of some finite order and almost all points of X are of order less than or
equal to 2. Thus it follows that every linear graph is a regular curve, whence we con-
clude by Whyburn’s classification of curves ([12], p. 99 and Corollary (13.21), p. 20)
that every linear graph is a semi-locally connected continuum. Note further that in
the graph theory the order of a point p is sometimes called the degree or the valency
of p (see [1], p. 16 and [10], p. 13).

A linear graph with a fixed set of vertices is said to be simple if there is at most
one cdge joining the same pair of vertices (cf. [1], p. 20).

Remark. Let us observe that if a linear graph is given with a convex metric and
with a set of its vertices, then we can enlarge the set of vertices taking as new vertices
the centers of the pair of end points for every edge, to obtain the same linear graph X
(with the same convex metric) which is a simple one. Thus we can assume without
loss of generality that the considered linear graphs with convex metric are simple.

An edge of a linear graph is called a bridge if the removal of its interior discon-
nects the graph (cf. [1], p. 67). In other words, an edge ab of a linear graph X is
a bridge provided the set X\(ab\{a, b}) is not connected. In particular, if an edge E
is incident to an end point of a linear graph, then E is a bridge. Let us observe that
every point of a link L of a linear graph X lies in some simple closed curve contained
in L. Thus every link of a linear graph is the union of a finite number of simple closed
curves, and hence it can be defined as a maximal subgraph of X containing no bridge
(thus no end point) of X. A linear graph containing no simple closed curve is called
a tree. A (finite) sequence C = {Ey, E,, ..., E,} of edges of a linear graph is said to
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be a chain provided E; n E;,, is a one-point set composed of the common end-
vertex of E; and E;., for i=1,2,..,k—1. If x and y are vertices such that
x € E\\FE, and y € E\E,_4, then we say that the chain C joins x and y, or that C is
a chain from x to y. Given a finite number r of chains C; = {E{,E{, ..., E,'!J} from x;
to y; respectively, with y; = x;,, for each j=1,2,..,7~1, we can join them
together in one chain C called the join of chains C; which is defined as a sequence
composed of all terms of C; ordered linearly with respect to j:

6) C={E},E} ... B B} B}, .. B, ..., EL}.

If end vertices of an edge are ordered (i.e. if one of them is distinguished as the
beginning and the other as the ending of the edge), then the edge is said to be directed
(or oriented).” A linear graph is called directed if all its edges are directed (cf. [1],
p. 64). By a directed path we mean a chain whose edges are oriented in such. a manner
that the ending of the edge E; coincides with the beginning of E,.,, where
i=1,2,..,k~1. Given a directed path p, i.e., a sequence of directed edges
E., E, ..., E, with the property mentioned above, we define a sequence o (P) of
consecutive vertices ordered along P, that is

(4) G(P)={x1’x21'“’xk+1},

where x; is the beginning, and x;,, is the ending of E;, for every i = 1,2, ..., k.
If the edges of a directed linear graph are oriented so that each vertex is access-
ible from each of the other vertices along a directed path, then the graph is called
strongly connected ({11, p. 67).
" The following lemma is known (see [1], Problem 18, p. 69):
Lemma 1. Directions can be ass¥gned to the edges of an arbitrary linear graph
without bridges to make it strongly comnected.
We shall use this lemma to prove the next onec.

LevMA 2. If a simple linear graph X contains no end point, and if x and y are
vertices of X (not necessarily distinct), then there is a chain from x to y containing all
the edges of X.

Proof. The proof runs by induction with respect to the number # of links con-
tained in X. To show the conclusion in case n = 1, let us-assign directions to the
edges of X according to Lemma 1 and take an arbitrary finite sequence of all vertices
of X such that x is the first and y is the last term of the sequence:

X = Vp, Vg ey Unjegs Vg vney Vg = Y,

and, for each j = 1,2, ..., m the pair of consecutive vertices (v3)-1, vz;) Is composed
of the beginning and the ending of the directed edge E; (here m denotes the number
of all edges in X). Now it is enough to consider a sequence of 2m—1 directed paths
from v; to v, (where i = 1,2, ..., 2m—1) such that

(5)  the directed path from v,,_ 1 t0 v, is a one-term sequence, necessarily composed
of the directed edge E;. .

i
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This condition (5) guarantees that each edge of X does occur indeed in the chain
to be defined. We arrange all edges of X in the sequence

®) B, Eyy s By Eyyy oy By o o)

relabelling them in such a way that 1) E, is the only (i.e. the first and the last) edge
in the directed path from x = v, to v,; 2) if E; is determined as the last edge of the
directed path from v, to v, then E,,, Egy2, ..y Egyj are sequential edges in the
directed path from v; to v, , (obviously, according to (5), we have j; = 1 if index 7 is
odd). Therefore the intersection of any two sequential edges in this sequence is not
empty (it contains their common vertex, say v), and, moreover, since the first edge
of these two is directed to v (i.c., v is the ending vertex of it) and the second is directed
from v (i.e., it has v as the beginning), the vertex v must be the only point of the
intersection. Thus sequencé (6) is a chain, and therefore the proof is finished for
the case n == 1.

Now let us assume that the conclusion of the lemma holds for every simple
linear graph which contains at most 7 links, and consider a simple linear graph X
without end points that contains 7+ 1 links. Let L be an end link of X (the existence
of such a link follows from [12], Theorem 8.1, p. 77 and Theorem 4.23, p. 129).
Thus X can be represented in a form X' = YU By L, where Yis a subgraph of %
which contains n links and B denotes the union of all bridges of X between ¥ and Z..
Obviously B is an arc. Let u and w denote its end points, with e ¥ and we L.
Therefore by the induction hypothesis there are chains from a point of ¥ to any other
point of Y containing all edges of Y. The same holds for the link L. To construct
the chain C from x to y that contains all the edges of X, let us consider some parti-
cular cases. If both x and y are in Y, we take a chain C; from x to u composed of
all edges in ¥, a chain C, from u to w composed of all edges contained in B, 2 chain Cy
from w to w whose terms are all edges of L, a chain C, from w to %, again of all
edges in B, and finally a chain C; from u to y. The chain C is defined just as the join
of these five chains C;, C,, C;, Cy and Cs in the sense of (3). If the points x and y
both are in L we proceed analogously. If x is in ¥ and y is in L, we need only three
chains: C; and C, as above, and C; from w to y composed of all edges of L. Then
the join C of C;, C, and Cj is a chain from x to y containing all the edges of X.
Ifx is in B andy is in L, then the chain C'is defined as the join of the following chains:
C, from x to u, with edges contained in B; C, from u to u covering the whole ¥;
Cy from w to w covering B, and C, from w to y-composed of all edges of L. The
reader can easily construct the proper chains C for the rest cases, which are similar
to ones considered above. The proof of the lemma is thereby complete.

Given a directed path P from a vertex « to a vertex b in a linear graph X, we
denote by P~ the directed path from b to a oriented in the opposite manner as P is,
i.e., composed of the same edges as P but taken in the inverse order and with the
inverse direction. Given an arc 4 joining in X a vertex a with a vertex b, we denote
by P(4; a, b) the directed path from a to b such that the union of all its edges is
just the arc 4. Similarly, given a simple closed curve S in X and a point p € S, we
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denote by P(S; p) one of the two possible directed paths from p to p such that the
union of all its edges is equal to. S.

We shall need also the following

LeMMA 3. Let a simple linear graph X be given which is not a simple closed curve.
Let ce X be a point of the maximal order in X, i.e., ord, X = ordX, such that for
every component of X\{c} its closure contains a simple closed curve. Then for any two
edges ca and cb (not necessarily different) there exists a directed path P from ¢ to ¢
in X such that ca (directed from c to a) is the first, and be (directed from b to ¢) is the
last edge of P. Moreover, the number of edges of P can be arbitrarily lurge.

Proof. Let v be an arbitrary natural number. First, assume that « and b both
lie in the same component K of X\{c}. We consider the following two cases:
(i) @ # b, and (ii) a = b.

In case (i) there exists a nondegenerate arc ab< K. Denote by P, the join of
P(ca; ¢, a), P(ab; a, b) and P(bc; b, ¢), and define P as the join of the directed paths
PiP,, .., P, where P, =P, for i=1,2,...,v.

In case (ii) we discuss the three possibilities:

1° otd K = 1; 2° ord K = 2; 3° ord K>3.

If 1° holds, take a simple closed curve ScK and an arc cd such that caccd
and edn S = {d}. Put Py = P(cd; ¢, d) and P; = P(S;d) for i = 1,2, ..., v, and
define P as the join of Py, Py, P,, ..., P,, Py L.

If 2° holds, let ca and cx be the two different edges in K incident to the vertex c.
Then a # x and, as in case (i) above, there is a directed path P, from ¢ to ¢ having ca
as its first and xc as its last edges. Since X is not a simple closed curve, we have

ord, X>2, and by ord,K = 2 we see that there is another component, say XK', of

X\{c}, and by-hypothesis there is a simple closed curve S’ in K". Let ¢d’ be an arc
in K’ joining ¢ with §’, i.c., such that ¢d' N S’ = {d'} (this arc can be degenerate
if ce S’). Let P’ be the join of P(cd’; ¢, d'), P(S';d") and P(ed’; d', ¢). Define P as
the join of the directed paths Py, P,, .., P,, P, Pyt where P, =P, for
i=1,2,..,.

If 3° holds, then there are three different edges ca, ex and ¢y in K. Thus the
vertices a, x and y are distinct and, as in case (i) above, there are a directed path P,
from ¢ to ¢ having ca (directed from ¢ to a) as its first and xc (directed from x to ¢)
as its last edge, and a directed path P’ from ¢ to ¢ having ¢y (directed from ¢ to y)
and ac (directed from a to c¢) as its first and last edges correspondingly. Putting
P, =Py fori=1,2,..,v we define P as the join of Py, P,, .., P,, P,

-Second, assume that @ and b lie in two different components K and X' of X e}
Using the same argumentation as previously one can find two directed paths P,
and P, both from c¢ to ¢, such that ca (oriented from ¢ to a) is the first edge of P,
and all edges of P, are contained in K, and that be (oriented from b to ¢) is the last
edge of P’, and all edges of P’ are in K. Let P;fori=1,2,..,v be the join of P,

and P'. Then we define P as the join of Py, P,, ..., P,. The proof of the lemma is
finished. :
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§ 3. Standard mappings. It is known that every linear graph X can be remetrized
by a convex metric: it was shown by Borsuk [4], Section 6 and 7, p. 329-332, that for
every polytope P of dimension less than or equal to 2 there exists a metric ¢ such that
(P, @) is a convex (and locally strongly convex) metric space.

Let By ard B, denote two closed intervals of reals. A surjection g: B; — B,
is called affine if there are reals o % 0 and f§ such that g (x) = ox+ f for every x € B;.
For k = 1 and 2 let X}, be a convex metric space and let 4, be a metric segment
cor.tained in X),. Thus there is an isometry ¢,: 4, — B, where B, is a closed interval
of reals. We say that a surjection f: 4, — A4, is linear if there exists an affine sur-
jection g: By — B, such that f = ¢@;'gp,. We say that a mapping f: X; — X,
of X into X, is piccewise linear if there is a partition of the domain X into a finite
number n of metric segments 41, i.e., X; = U {44] j = 1,2, ..., n} such that 1 (47)
is a metric segment in X, and that the restrictions f|4] are linear-for every
Jj=1,2,..,n Obviously each piecewise linear mapping is continuous.

Let ¥ be a complete convex metric space with a metric g,. Consider a finite
sequence of n+1 not necessarily distinct points

(@) by, by, ey by

in ¥, and for every j = 0, 1, ..., n—1 take an arc b;b;,; which is a metric segment.
Further, let a metric segment pg be given in a complete convex metric space X
with a metric g, and put

-1
®) "= —Z_:ng(bja b+3)les(p, @) -

Tt

We define n+1 distinct points p = aq, dy, ..., @, = ¢ in the metric segment pg
putting for every k =1,2,..,n :

® wrey(psa) =:=Z: 0:(by> bj+1) -
Thus we have pg(a;, a;4q) = 0a2(b;, bj4y) for every j=0,1,..,n—1. The
mapping
(10) I P‘I"’U'{bjbnﬂJ'=0,1,---»”—1}
defined in such a way that the partial mapping
(11) flaapey: aa; 1 —>bybyey
is linear, with
(12) fla) =1

will be called the standard mapping associated with sequence (7). In particular we
see that for the standard mapping f just defined we have

13) fpy=by and [f(g)=by.

for every j=0,1,..,n—1,
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The number p defined by (8) will be called the coefficient of the standard
mapping f, ard will be denoted by (/).

It is manifestly evident that the standard mapping f is piecewise linear, and
thereby continuous. Further, it follows from the linearity of the partial mapping (11)
that, for every j=0,1,..,n—1,

(14)  if y,z€a;a,4;, then g,(F (), (=) = pos(y, 2).
Hence we have

STATEMENT 1. Let X and Y be simple linear graphs with convex metrics g,
and @, respectively and let an edge pq be given in X. Let f: pg— Y be a standard
mapping associated with sequence (1) of distinct points by such that for every
J=1,2,..,n~1 the point b; lies between b;_, and b;.,, and let p = v(f). Then
Jor every point x € pg\{p, q} there exists a neighborhood U of x such that if y, z e U,
then

b ' 0x(f (). /(D) = poy(y, 7).

Indeed, if x is an interior point of a segment a;a;44 for some j = 0,1, ..., n=1,
where the points ¢; are defined by equality (9), then taking U = a;a;4\{ay, a4}
we sec that U is a neighborhood of x and that the conclusion follows from (14).
If x =a; for some j=1,2,..,n~1, then take U = a;_ya;.\{@j—y, ajss}. IF
both y and z are in a;_;a, or in @;a;. 1, the argumentation for (15) is exactly the same
as previously. If yea;_,a; and Z€a;a;,,, then f(j/)ebj_lb, and f(z) € b;by44.
Since b, lies between b;_; and b;,, and since b;-y # b,,; by assumption, we con-
clude from [9], 2.2, p. 116 that b;.. 1b; U b;b; ., is a metric segment. Hence we have
by (12) and (14) that

Qz(f(y),f(z)) = o(f (), bj)"'QZ(bjsf(Z)) = Qz(f(y)’f(ﬂj )+Ql(f(aj):f(z))
= 11(y, @)+ pe1(a;, 2) = poy(y, 2),
and (15) follows.

STATEMENT 2. Let X and Y be simple linear graphs with comvex metrics 01
and g, respectively. Given a vertex p e X of a finite order n, let pgy, pqy, ..., pq, be
edges in X incident to the point p. For every i = L2, ., nletfy: pg,— Y beaston lard
mapping with the coefficient ©(f}) = ;> 1 and such that there exists a point re ¥
with f(p) = r. Assume further that for every i = 1, 2, .., n there is an edge rr; in Y
such that rri= f(pq;) and that rr; are distinct Sor distinct indices i. Let a mapping
JrU{pgd i=1,2,..,n} = ¥ be defined by

(16) flegr =7+

Then there is an open neighborhood U of p and a real number M>1 such that
if y and z are in U, then

an (S, f @)= M 0,(p,2).

icm®

Local expansions on graphs 243

Proof. Fori=1,2,..,nlet a; be the nearest to p point of the edge pq; such
that fi(a) = r;. Let U be the component of the open set X\{g]i=1,2, ..., n}
which contains the point p. In other words, we put U = (J {pa{a}| i = 1,2, ..., n}.
Hence U is a neighborhood of p in X. Further put A = min{u,| i =1, 2, ..., n}. Since
w;>1 for every i, we have M>1. Take two arbitrary points y and z of U and con-
sider two cases. Firstly, let y and z be in the same arc pa; for some i = 1,2, ..., n.
Then by (14) we have that

0:(f (0,7 @) = 0:(fi3). f12) = m01(», 2)= Moy (3, 7)

and (17) follows. Secondly, let y € pa; and z € pa;, where i # j. Since rr; and ey
are distinct metric segments by hypothesis, we see that 2.2 of [9], p. 116 can be applied,
and thus rr; U rr; is a metric segment. It follows from assumptions that f(»)
= f{(») e filpa;) = rr; and f(2) = fi(z) e fi(pa;) = rr;, and since f(p) = r, we have
by (14) and (16) that

Qz(f(y):f(z)) = Qz(f()’): ")‘l'Qz(r:f(Z))
= 0:(/ . D)+ S (0), f(2)
= 0:( /i), p) +ea( £3(p) . £(2)
= w01(y, P)+10:(p, 2)
- = Moy, P)+ou(p. 2)) = Mey(9,2),
and thereby (17) follows in this case, too. Thus the proofis complete.

§ 4. Existence of local expansions-sufficiency. Now let a linear graph X endowed
with a convex metric ¢ be given. We can assume without loss of generality that (i)
every edge of X is a metric segment of X, and that (ii) every such edge is uniquely
determined by two its end points (i.e. that thers is at most one edge between the two
vertices). Indeed, both (i) and (ii) can be realized simply by enlarging of the number
of vertices in a proper way, e.g. by taking as new vertices the centers of the pair of
the end points of every edge. In other words condition (ii) says that the linear graph X
is simple (compare the remark in § 2). Since now, in the present paragraph, X always
will mean a convex metric space being a simple linear graph that satisfies con-
dition (1). .

Now we are going to prove some sufficient conditions for the existence of a local
expansion on such an X. The existence depends heavily on the structure of the linear
graph. Namely if the graph contains a point of the maximal order which does not
disconnect the graph, then a local expansion does exist. If every point of the maximal
order in the graph disconnects the graph, but if there is one such that the closure of
every component of its complement contains a simple closed curve, then also the
graph admits a local expansion.

Invertedly, it will be shown in sixth paragraph that if there exists a local
expansion on a linear graph metrized by a convex metric, then either there is a point
of the maximal order which does not disconnect the graph, or there is one which
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disconnects the graph in such a way that the closure of no component of its com-
plementary is a tree. Therefore a characterization of linear graphs that admit local
expansions will be obtained.

THEOREM 1. Let a simple linear graph X metrized by a convex metric be given.
If there is a point ce X of the maximal order in X, i.e.,

(18) ord, X = ord X

such that for every component of X ¢} its closure contains a simple closed curve,
then there exists a local expansion f: X — X of X onto itself.

Proof (*). Since the unit circle {z: |z| = 1} admits a local expansion, e.g. z — z2,
we may assume that X is not a simple closed curve. To d:scribz the local expansion f
mentioned in the conc¢lusion of the theorem we distingnish some subsets of the
graph X. Every of them will be the union of some edges of X. -

The set X is defined as the union of all end edges of X: an edgs E of X'is con-
tained in X if and only if there is an end point of X which belongs to E. Note that
we can assume without loss of generality that

(19)  all edges of X contained in X, are disjoint.

In fact, take two edges p, g, and p,q, contained in X 1» where p, and p, are
end points of X. If g; = ¢,, i.e., if these edges have a common vertex g, then we take
centers ry and r, of the pairs (p,, ) and (p,, g) respectively as some new vertices of )X
Such an improvement does not violate conditions (i) and (ii) assumed on X, and it
let us to consider only the new edges pyry and p,r, as contained in X, Obviously
they are disjoint, and therefore we may assume that the set X, | satisfies (19) indeed,

Observe that if the graph X has no end point, then the set X, is empty by de-
finition.

Further, define X, as the union of all edges E of X such that E is contained
either in some link of X or in some arc whose end points are in two different links
of X. Thus X, is a subgraph of X which contains no end point of itself. Note that X,
can never be empty, because X contains a simple closed curve by assumption, and
every edge of X which lies in a simple closed curve is contained in X Apart from
this we have ¢ e X,. Finally put X3 = X(X 1 W X,). Thus

(20) X=X uX,uX,.

Now we are going to define /1 X — X. To.describe S1X 0 Xy — X we dafine
it separately on each end edge of X the set X, is composed of. Let pg be such an
edge, where p denotes an end point of X. We denote by T the closure of the com-
Ponent containing the point p of the set X X 2, and by b the only point of the inter-
section T'n X,. Let pe be an arbitrary but fixed arc from p to c. Obviously we have

() The authors thank Kirzysztof Omiljanowski for valuable suggestions concerning a part
of this proof.
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pg=pbepe and pb 0 X, = {b}. Observe that it can happen g = b or b = ¢ but
never ¢ = ¢ because otherwise we would have a component pe\{c} of X\{c} such
that its closure pc = pg would contain no simple closed curve, contrary to the
hypothesis. Thus

(21)  pq is a proper subset of pe.

Take the sequence of all vertices of X lying in the arc pc and ordered from p
to ¢: ¢

(22) Dyq, b, e,
and define
(23) Slpg: pg— pc

‘as the standard mapping associated with sequence (22). It follows from (13) by the
definition of a standard mapping that

24 f(p)=p and fl@=c.

Further, since f'|pg maps pg onto pc by its definition, we conclude from (21)
that
(25) ©(flpg)>1 for every edge pgcX, .

Since T'is a tree by definition, with p and b as its end points, hence each point
of T lies in some arc p'b for some end point p' # b of T, whence we conclude

(26) Tef(XynT).
Taking the union over all end points p of X we infer from (26) that
27 X, vX;cf(Xy).

To describe the mapping f|X, U X3 we need some preliminary constructions.
First, we arrange all vertices of X which are not end points of X in a (finite) sequence

(28) €= 01,02, wers Ugsvers Oy

such that i; s i, implies v;, 5 v,,. Second, we set up all edges of X contained in X,
or in X in a sequence

(29) E(, Eyy s By oy B,

such that j; # j, implies E,, # E;, and that E, is an edge incident to the vertex
¢ =v,. Now we are going to assign to each edge E; of (29) a directed path P, from ¢
to ¢ in X,. This is done by the finite induction. Then we define f| Ej: E; — X as the
standard mapping associated with the sequence o' (P;). This is realized in such a way
that not only the auxiliary partial mappings f | E; are local expansions, but also the
resulting mapping f* X — X is. For this purpose we use Statements 1 and 2. To
4 ~ Fundamenta Mathematicae CXIIX/3
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guarantee that all assumptions of Statement 2 are fulfilled, we define, again by the
finite induction with respect to j and simultaneously with P;, a sequence of families Mi
of some edges incident to the vertex ¢ (here i=1,..,m and j=0,1,2,.., n),
and we choose the directed paths in such a way that either the first or the last edge
of the path just being defined is taken from out of the corresponding family M/ in
a proper manner. '

To begin with, for every i = 1, 2, ..., m we define M? as follows. If a vertex v
from sequence (28) belongs to an end edge pu, (i.c. if v, € X, 1 N (X, U X)) we put
M{ = {cx}, where x is the last point in (22) that is different from ¢. Otherwise we
put My = @. Now recall that X, is a subgraph of X which contains no end point of
itself, whence by Lemma 2 there is a chain C from ¢ to ¢ containing all edges of X, e
Choose an orientation on C to get a fixed directed path P from ¢ to ¢. Consider the
first edge Ey in (29) and let E; = cv,. If the last edge of P is not a member of MY,
then we define P; = P. In the opposite case we take an arbitrary edge cy incident
to ¢ and distinct from E;, we construct a directed path P’ having ¢y (directed from ¢
to y) as the first edge and ye (directed from y to c) as the last one (such a path does
exist in X, by Lemma 3), and we define P, as the join of P and P’. Next we define
flE; = flvyv,: vy0,— X as the standard mapping associated with the sequence
o(Py). Since the directed path P runs over all edges of X, by construction, the same
holds for Py, and it follows from the definition of f|E, that

30) fE) =X,

and since E, is a proper subset of X, we conclude from (30) that

By ({1 E)>1.

Further, if 4 and B denote the first and the last edge of the directed path P,
respectively, we put

(32)- Mi=M u{d}, M'=M)U{B} and M!= M

for every ie{1,2, .., miN{1, r}.

Now let us fix some k & {1, 2, ..., n—1} and assume that for all j & {1,2,..,k}
there are defined directed paths P; from ¢ to ¢ and standard mappings f [E;: B — X
associated with the sequences o(P;) and such that

(33) t(fIE)>1.

Furthermore, we assume that, for every pair of standard mappings defined on
Fwo edges incident to the same vertex, the assumptions of Statement 2 are satisfied,
Le., the following assertion is assumed:

(349)  For every vertex' v, where i = 1,2, .., m, if two distinct edges E; and Ej,
v_/ith 1<j; <j,<k are both incident to v; and considered as directed from v,
(it means that the vertex v, is the common beginning of E;, and E,,), then the
first directed edges of directed paths Py, and P, are distinct, too. Further, if

icm

Local expansions on graphs 247

pv; is an edge contained in X;, then the first directed edge of P;, and the
element of M} also are distinct.

Moreover, we assume that

(35) for every i =1,2,..,m the family MY consists of all edges incident to ¢
which are either the first edges of a directed path P; for some j<k if E; is
considered as directed from v; or the last edges of P;, if the corresponding
edge E; is considered as directed to v;, or — finally — belong to M.

Now we are ready to go to the next step, i.e. to define P,,,. Suppose
Eyy.q = 00, where v, and v, are some vertices taken from sequence (28). Note that,
by the induction hypotheses (34) and (35), we have card Mi<ord, X—1<ord X
= ord X, and similarly card M¥<ord,X. Therefore we can find an edge ca which is
not in M¥ and an edge cb not in M¥, By Lemma 3 there is a directed path Py,
from c¢ to ¢ such that ca (directed from ¢ to ) is the first, and be (directed from b to c)
is the last edge of P, and that the number of edges of this path can be arbitrarily
large. This condition guarantees that for the mapping f|Ep.; = flvs0,: 90, — X
defined as the standard mapping associated with the sequence o(Py.;) we have

(36) ([ B )>1.
Finally, put

BN MU= MO {cal, MI*'=MFU{cb} and Mit'= M}
for i ={1,2,..,m\{s,}.

Therefore the inductive procedure is finished, both for the families M7 (see (32),
(35) and (37)) and for the directed paths P;, and so the mapping f'is defined on each
edge E of X, U X5 with the property ©(f|E)>1 (see (31), (33) and (36)), from which
we see by (20) and (25) that )

(38) w(flE)>1

Let us recall that X has already been defined, separately for each edge of X;
(which are disjoint — see (19)), in such a way that each end point of X is a fixed
point and each vertex of X which is not an end point is mapped onto the point ¢
(see (24)). Similarly every vertex in X, U X5 is sent to ¢ under f|X, U X5 Thus
mappings f|X; and f|X, v X3 do agree on the common part X; n (X, L X3)
which is a subset of the set of vertices of X, and it follows from (20) that f is well-
defined on the whole X. The continuity of f follows from continuity of every partial
mapping f|E, where E is an edge of X (see [5], Theorem 9.4, p. 83). It follows
from (20), (27) and (30) that f is surjective.

To see that fis a local expansion it is cnough to apply Statements 1 and 2. In
fact, let us observe that the inequality ©(f|E)>1 holds for all edges E of X. If
a point x € X is not a vertex of X, then a suitable neighborhood U mentioned in the
definition of a local expansion (see the very beginning of § 2) exists by Statement 1.
8*

for each edge E of X.
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If x is a vertex of X, then U is constructed in Statement 2, and the existence of the
constant M>1 follows from (38) in both the cases. Thus the proof is complete,

§ 5. Some properties of-local expansions on linear graphs. To show that the
condition mentioned in Theorem 1 is not only sufficient but also necessary for
a linear graph to admit a local expansion, we shall use some properties of these
mappings. We will prove them now.

PROPOSITION 1. Let f: X' — X be a local expansion on a metric space X. Then f is
locally one-to-one: for every point x € X and for the open neighborhood U of x that
exists by the definition of the local expansion, the restricted mapping f1U: U f(U)
is one-to-one.

Indeed, let U be as in the definition of the local expansion (scc §2). T hen,
if y and z are distinct points of U, we have ¢(, 2)>0, whence o(f (3,7 @)>0
by (1), and the conclusion follows.

ProPOSITION 2. Let f: X — X be a local expansion on a metric space X, Then
Jor every point x € X and for the open neighborhood U of x that exists by the definition
of the local expansion, every arc abe U is mapped onto an arc f(a) £ (b) homeomor-
phically under f.

In fact, it follows from the previous proposition that if abc U, then
Jlab: ab - f(ab) is a homeomorphism.

ProposITION 3. Let f: X' — X be a local expansion on a metric space X. Then
Jor each simple closed curve S contained in X its image f (S) does not contain end points
of itself.

To see this, let pef(S) and let a point x & S be such that P = f(x). Take the
open neighborhood U of x that exists by the definition of the local expansion, and
choose two points xy, x, in S A U both different from x and such that x lies in the
arc x; x, =8 N U. Then the arc x;x, is mapped homeomorphically under f (see
Proposition 2) onto the arc f(x,)f (x2) which contains p = f(x) with f(x,)
# P # [ (x,), whence p cannot be an end point of f(S).

PROPOSITION 4. Let f: X — X be a local expansion on a metric space X. Then
Jor each arc ab contained in X no point of ab\{a, b} can be mapped on an end point
of f(ab).

Indeed, as in the proof of the previous proposition, we take

pef(@\{f(@),f®)}
and xe ab\{a, b} such that p = £(x); in the open neighborhood U of x as in the
x!eﬁnltlon of the local expansion we choose two points X1, X5 of ab\{a, b} such that x
lies between them. The rest of the argumentation is exactly the same as for the proof
of Proposition 3.

PROPOSITION 5. Let f: X — X be a local expansion on a linear graph X. Then
Jor every point x e X we have

ord, X'Sord ) X .
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Local expansions on graphs 249

To see this, let us consider the points x and f(x) as vertices of the graph X-
Let n = ord, X and m = ord,X be the numbers of edges of X incident to x and
to f (x) respectively. Further, let U be the open neighborhood of x as in the definition
of the local expansion f. For every i = 1, 2, ..., n choose exactly one point a,eUn K,
where E; is an edge of X incident to x. Thus, according to Propositions 1 and 2, the
union U {xa;l i =1,2,..,n} is mapped homeomorphically under f onto the
union U {f(x)f(@)| i =1,2,..,n}, whence we conclude that the number m of
edges incident to f(x) must be greater than or equal to n.

PROPOSITION 6, Let f: X — X be a local expansion on a linear graph X. If
a point e e X is an end point of X, then also f(e) is an end point of X.

Indeed, recall that the set F of all end points of X is finite, and put k = card F.
Suppose, on the contrary, that there is a point e € F with f(¢) € X\\F. Since the
mapping f is a surjection, there is a set of k points of X, say x,, x,, ..., X, with the
property that f(x), f(x2), ...,f (%) are all k end points of X. Thus at least one
of Xy, Xy, ..., X is not an end point of X; call it x. This means that X is of order
greater than 1 at x and of order 1 at f(x), contrary to Proposition 5.

Let X be a simple linear graph with a convex metric g, and let an arc A = abc X’
be given. Consider the sequence of all vertices of X lying in 4, ordered from « to b:

agoy <0, <. <, <b
and put

n—1
A(4) = g(a, ”1)“'2:19(”1: vir)+Q(y, ).
It is evident that if we take, instead of {v;}, some other finite sequence of points,
say {p;)] i =0,1,..,k}, lying in 4, ordered from a to b:
a=po<p1<p;<..<pp=1b

and such that the consecutive points p;, p;+y lie closely enough, e.g.,

(39) Q(p,,p;+1)<%min[g(a, Ul)» Q(Ul» 1)2)5 LR Q(Un—-13 ”n)9 Q(Dn; b)]

for every i = 0,1, ..., k~1, then we have

k=1
40) A(4) =‘Z,OQ(P1, Diwg) -
PROPOSITION 7. Let f: X — X be a local expansion of a simple linear graph X
(with a convex metric) onto itself. If an arc A= X is mapped onto an arc f(A4) under f,
then

“n MA <A/ A)) .

Proof. Every point x € 4 has an open and connected neighborhood U, with
the property as in the definition of the local expansion # Furthermore, we can take
neighborhoods U, sufficiently small, e.g. such that the diameter of each U, is less
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than the minimum of the lengths of edges of the graph X. The family {U,) xe A}
is an open covering of 4. Take a finite subcovering of 4 such that no its element i
contained in another, and let U, , U,,, ..., U,, be a sequence of all elements
of the subcovering ordered in such a way that if @ and b are end points of 4,
then ae U,,, be U, and U, n Ugor # D foreveryi=1,2, ..., k—1. Let M>1,
where i = 1,2, ..., k, be tlie constants mentioned in the definition of the local ex-
pansion, i.e. such that if y, ze U,,, then (see (1))

“2 e(f0),f @)z My 0(, 2) .
Put M = min(My, M, ..., M}). Thus M>1. Choose points p,e Uy, n Uy,
fori=1,2,...,k—1 and define p, =  and P = b. The sets U, being connected

by construction, we have PPy = Uy, forevery i = 0,1, .., k—1, and, by (42)
“3) Q(f(pi)’f(Pi+l))>1‘li+1'Q(pi:plvhl) .

Ifur.ther, we see that points f(p,) lie in the arc f (4) in the same order as points p,
lie in 4. The neighborhoods U,, are small enough so that condition (39) holds and
thus (40) can be applied. Therefore by (43) we have

k~1 k—1 k-1
A4 =l§9@"pi+1)<M"%Q(Php.iﬂ)giZOMin'0(171,1’:4-1)
= =04
k=1
Sﬁ;}g(f(ﬁi)’f([’in)) =M f(4),

the last equali.ty being an easy consequence of the uniform continuity of f so that
formula (40) is applicable to the image f (4). Thus (41) follows.

§ 6. Existence of local expansions-neces;sity. We are ready now to prove our
second main result. '

THEOREM 2. Let a simple linear graph X metrized by a convex metric be given.
If there exists a local expansion f: X — X of X onto itself, then there is a point ce X
of the maximal order in X, i.e., satisfying (18), such that for every component of
XN\{c} its closure contains a simple closed curve, i

Proof. Suppose the contrary. This means that for every point ¢ of the maximal
o.rder in X there is a component of X° \{c} such that its closure T'(c) containg no
§1mp1e closed curve (in other words, T{c) is a tree). Let P denote the set of all points ¢
in X which are of the maximal order n = ord X in X. Thus ord, X = » for every
ceP. It follows from Proposition 5 that f(P)=P, For each poi;t ce P take the
f)pen neighborhood U of ¢ as in the definition of the local expansion f and, for cach
index i = 1,2, .., n choose exactly one point q;e U n E;, where E, is, an edge
of‘vX incident to ¢. We distinguish two kinds of arcs ca;< E;. Namely, an arc ca, is
Fal.d to be of the first kind if it is contained (together with the edge Ey) ;11 a tree T(lc)
it is sf'a.id to.be of the second kind if it is contained (also together with the edge E,
containing ca;) in the closure K(c) of a component of X\{c} such that K(c) contain;
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a simple closed curve. Given a point ¢ € P, let n,(c) or n,(c) denote the number of
arcs ca; which are of the first or of the second kind respectively. Thus,
44 ny(€)+ny(c) = n

Let us recall that, by Proposition 2, every arc cq, is mapped homeomorphically
onto an arc f(c) f (a;). We claim that

(45)  if ca; is of the second kind, then its image f (ca,) is of the second kind, too.

for every point ceP.

Indeed, if not, then consider two. cases. If ca, lies on a simple closed curve S,
then, since f (ca;) is contained in some tree T f(c)), the image £ (S) has a nondege-
nerate intersection with T(f(c)). Thus f(S) n T'(f(c)) is a tree as a subcontinuum
of T( f (¢)), and hence f (S) contains an end point of itself, contrary to Proposition 3.
If ca, is contained in no simple closed curve, then, since it is of the second kind, there
is an arc ¢b such that -

ca;cEjccbech u S"<K(c)

and ¢b n S’ = {b}, where K(c) is the closure of the component of X\{c} containing
ca;, and S’ is a simple closed curve contained in X(c). Since no point of cb\{¢, b}
is mapped to an end point of f (ch) by Proposition 4, and since f (cb) is a subcontinuum
of a tree T(f (¢)), hence f(cb) is an arc with f(B) # f(c). Thus f(S’) has a non-
degenerate intersection with T ( f (c)), which implies, as in the previous case, a con-
tradiction with Proposition 3. So claim (45) is proved.

The restricted mapping f| U being a homeomorphism by Proposition 1, we con-
clude from (45) that

(46) na(€)<ny( £ (€) -
Let us take a subset Q of P composed of all points ¢ & P for which the number

ny(c) is maximal. Since ord, X = ord;,X =n, both (44) and (46) imply that
ny(c) = ny(f(c)) for every point ¢ € @, whence we conclude at once that

@7 if ce Q and if an arc cq; is of the first kind, then its image f(ca;) is of the
first kind, too.

Finally take a subset R of Q composed of all points ¢ & Q =P with the property
that for all end points e of all trees T'(c) the distance ¢(c, €) is maximal. In other
words, a point ¢ & Q is in the set R if and only if there is a tree T'(c) and an end
point e e T'(¢) such that

48) o(c', e)<ole, e) for all points ¢’ € Q, all trees T(¢’) and all end points ¢’ of
T(c").

Consider an arc ce with ¢ € R, with an end point e € T(¢) and with the maximal
distance g(c, ¢). Thus the arc ca;<ce is of the first kind, and we see by (47) that its
image f (ca;) is also of the first kind. Since f (e) is an end point of X by Proposition 6,
and since the image f(ce) does not contain end points of itself except of f(c) and
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£ () by Proposition 4, we see that f (ce) is an arc contained in a trec T(f(c)) being
the closure of some component of X\{c} So the ares ce and f(ce) are contained in
the trees 7'(c) and T(f (c)) respectively, and thereby we conclude from the convexity
of the metric g that

(49) e(c,e) = A(ce) and o(f(©),f(©) = A (o)) .

Further, /'(c) is a point ¢’ of Q and f (¢) is an end point ¢’ of T'(¢"), and therefore
we have A(f (ce))<A(ce) by (49) and (48), contrary to Proposition 7. The contra-
diction completes the proof. :
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