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A characterization of expandability of models
for ZF to models for KM

by

Zygmunt Ratajezyk (Warszawa),

Abstract. In this paper we characterize KM-expandable and KM-non-f-expandable models
by means of certain games. Also another characterization is given. It is proved that KM-expand~
ability and KM-non-f-expandability are equivalent in a wide class of models for ZF.

§ 0. Introduction. The primary aim of our paper is the characterization, with
the aid of a certain closed game, of those KM-expandable models for ZF whose
height has a cofinality character equal to w.

We characterize KM -expandable models in a way similar to that of Bielinski [3]
in the case of countable models. We do this by means of approximations for recursive
closed game formulas considered by Barwise in [1].

The investigation of properties of KM-expandable models was initiated by
Marek and Mostowski in [6]. The authors focus their attention on KM - f-expandable
models and- give their full characterization. Among other.things, they show that
KM-expandability is not an elementary property in a 1-st order language. In that
paper a characterization of KM-expandable standard models whose height has
a cofinality character > is given. In fact, it is shown that any model for KM
possessing such a set universe is automatically a B-model, hence KM ~expandability
can be reduced to KM-fB-expandability in that case.

Let K be a language. By K, we shall denote the class of all infinitary formulas
of the language K. Let L,: « € Ord be the hierarchy of constructible sets. By X, we
‘shall denote K., N L, and by ZFS* the class of all formulas ¢ from language
(%2F)«e Such that their relativization ¢" is a theorem in KM. By ZF™ we shall
understand the intersection of ZFXM and L,. Note that for admissible a>w,

ZFM = (o e (Lzp)et L F (KM F 0"}

K. Bielifiski, in [3], shows that although KM -expandability is not an elementary
property (in language (£zp)yy), nevertheless it can be characterized in a uniform
manner in the class of countable models M by a theory which is Zy in HYPy.

Namely: -
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THEOREM. Jf M is countable model for ZFC, o = o (HYP,,), then M is KM-ex=
pandable < M £ ZFM, B )

The above theorem is a special case of a more general theorem proved by
Bielifiski and giving a characterization of a very general problem of T-expandability,
where T is an arbitrary, recursively enumerable theory. An investigation of expand-
ability to theories other than KM is also presented by Barwise and Schlipf in [2],
where a characterization of models for arithmetic expandable to models of weaker
fragments of analysis is given.

A related problem of characterization of models of arithmetic expandable to
models of ZF is studied in Wilmers [11]. )

Let us mention that the first known paper devoted to the characterization of
countable models expandable to KM by properties possible to describe in HYP,,
is a paper by Marek and Srebrny {7]. The authors show, among other things, that
the KM-extendability for countable models can be described by IT, sentence in
HYP,,. This is a weaker result than that obtained by Bielifiski and can be obtained
directly through the application of the completeness theorem to HYP,,.

If K is a sublanguage of the language of a theory T, then-(K)T = {p EK: Tt}

The theorem of Bielifiski can be formulated in the following way:

If M is a countable K-structure and a0(HYP,) is an admissible ordinal,
then M is T expandable iff M k (K)7. ‘

The above theorem does not generalize to uncountable models provided
o(HYPy)>w. If o(HYPy) = w we can replace the countability assumption by
that of resplendency, cf. [3], Theorem 2.7.

In the present paper it is shown that if we restrict our attention to theories such
as KM or KM,, (fragments of KM), we obtain a similar - characterization for
certain classes of uncointable models. The statement of results and the proofs are
given-only for KM; in the case of KM, the proofs must be modifiéd by using the
results of Ratajezyk [10].

Here, among other things, we show the following:

THEOREM. If M F ZF and the height of M has cofinality character w, then M is
KM-expandable iff Mk ZFS™, where a = o (HYP,,).

The author would like to thank Mr K. Bieliiski, Prof. W. Marek and

Dr P. Zbierski for fruitful discussions concernig the subject of the present paper as .

well as for their valuable suggestions, which played an important role in giving this
paper its final shape.

This paper contains parts of the author’s Ph. D. thesis, written under the super-
vision of Professor W. Marek and accepted by the University of Warsaw.

§ 1. Preliminaries. We use the standard set and model-thegretical notation.
In particular, by KM we mean set theory in a two-sorted language with classes and
full comprehension schema, but without any form of the axiom of choice. By r.a(7,.)
we shall denote the formula describing the ramified analysis hierarchy.in X M-and
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by RAY we shall denote the ramified analysis hierarchy over model M in the world.
The formula r.a%(T,.) determines the relativized hierarchy, starting from {U}.

Following Barwise, by HYP,, we shall denote the least admissible set with-
urelements A, such, that Me Ay, where by 4, we denote the structure
M; 4, e, ...),ﬁwith M as the set of urelements.

If M = {M,e) is a model for ZF, &# <P (M), then by {F, M, E*) we denote
a structure for a two-sorted language with relation E* defined by the expresion
E*=Eu{{x, A): Ae F &xed}. Note that any model for KM whose set
upiverse is <M, E is isomorphic to a model of the form (&, M, E*>. # is the set
of proper classes of this model. Hence, we shall say that a model (M, E) is KM-
expandable if there exists a family # <P (M) such that (&, M, E*) F KM.

We say that #,SF is codable in & iff there exists a class X e & such that
Fo = {X: ae M}, where X = {b: {a, b) € X}.If the class X can be chosen
in such a way that & F (Dom X e V), then we say that &, is codable by a class with
a set domain.

The height of an admissible set 4, is denoted by o(4 1‘1’_) IfM=<{M,E)EKP
then by sp(M) we shall denote the standard part of the model and by osp(M)
= sp(M) n Ord, the height of the standard part. Similarly if & = (&, M, E*)
F GB+Zi-comprehension then by osp(Z) (or osp(F)) we denote the upper bound
of those ordinals o which are representable in &, i.e. such that there exists a T'e F
which is.a wellordering in & ((F, M, E*) F W.O(T)) and that the ordinal type of
the linear ordering relation Ty = {{x, > <x, YME*T} is equal to o

We shall also say that & is not a B-model if in the model there exists such
a wellordering 7, in the sense of &, such that T is not a wellordering in the world.,

By the content of element x € M, where M = (M, E)> F KP, we shall under-
stand the setx; = {y € M: yEx}. This notion will be used rather freely. For cxamPle,
if h e M is a function in M, then by the contents of & we shall understand the functioh
{<x, > Lx, )Y ER}, whenever this does not lead to confusion. '

Any notion relativised to M is denoted by the superscript M. Hence,
o ={xeM: Mk Ord(x)}, RX is an element a belonging to M and such that
M E“q = R,” provided ae On™.

We shall also adopt the following convention: the notation {M, Ry, ..., Rp>
does not imply that R, is a relation in M, but denotes' the structure

(M, R} M,y RN MY

For any linear ordering T the notion of the index of cofinality of T will be useful.
We define it, as for ordinals, as the least ordinal which can be cofinally embedded
in the ordering T. .

If M = (M, E) F ZF, then we assume cf O = cf(On¥, EY).

For any language K, K, denotes the set of all finite formulas, an.d wa t}le
set of all proper and infinite ones, i.e. the least class of formulas possesing a ﬁm.te
number of .variables and closed with respect to finite operations and infinite
alternative — \/\/ and conjunction — A\ A.
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The language K, g, similar to that introduced by Moschovakis in [9], is obtained

by the use of all the above rules of building the formulas together with the following:

If @o(x0), @1(X0,s X1), @2(Xg, X1, X3), ... is such a sequence of formulas that for
every formula @(xo, Xy, ..., X;), its free variables other than x, ..., x; belong to
a fixed finite set (independent of i), and if Q,, Qy, O, ... is an infinite sequence
of quantifiers, then

{(Qox0)(Q1%:1) (@ x3) ...} /} /\(oi(xo s s X1) 5
{(Qox0)(Q1%:)(Q2x3) -} \/ \\/((’i(xo: ey X7)

are also formulas.

For the formulas of this language, as in K, satisfaction has a recursive
character. For the formulas with an infinite sequence of quantifiers at the beginning
satisfaction is defined with the aid of the game connected with such a sequence. Now
we shall distinguish formulas of the form

x) (V) (3x3) .. /\ /\(Di(xn wey Xp,)

such that {(x,,..,x,): iew} is a recursive subset of K,,, which, following
Barwise [1], we shall call recursive closed games formulas.

‘We shall denote by ¥X the sequence of quantifiers (Ax,)(Vx;)(3x,) ... A simple
interpretation of formula ¥X¢(X) can be formulated with the aid of the Skolem
function:

(M, Ry, .., ROEFXe(X) iff {@f)ESNH) ..},
{M,Ry, ... ROE {(Vxl)(Vx,,) 3@ (fos X2, f1(%3), Xq5 o) s
This should be sufficient for an accurate presentation of our results.

§ 2. Approximations of models for KM. In this section we shall consider some
model-theoretic consequences of the reflection principle related to the problém of
expandability. As is well known, the theory KM does not have the property of
reflection. Note, however, that the class of KM-expandable models coincides with
the class of models expandable to the theory KM+ (VX)r.a(X) — a theory pos-
sessing the reflection property.

Before, formulating the theorem characterizing KM-expandable models, we
shall recall two theorems from the paper of Marek and Mostowski [6] concerning
reflection:

TrEOREM 2.1 (The reflection principle in KM+ (YX)r.2(X)): If 6(X) is a formula
of language ¥y, Wwith one free variable X, then

KM+ X)raX) F VAT [W.0T) = W.OT) &
&T,>T&(VX)(ra(ly, X) = (87)(X) < o(X)))] .
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Substituting for & the conjunction of the formula universal for X} formulas
and the formula which is a basis for this universal formula, we can represent the above
theorem in the following, model-theoretical form:

If # =(F,M,E¥>KM+(VX)r.a(X), new, XeZ, then there exists
a subset &, of & codable in & such, that

(Fo, M, ED<INF , M, E*y and XeZF,.

Let KM, denote the fragment of KM with the comprehension scheme restricted
to X! formulas. KM, is finitely axiomatizable, hence we can additionally assume that
{Fo, M, E*) E KM, in the above remark.

The following theorem we present directly in the model-theoretic version:

TrEOREM 2.2. If F = (F, M, E*) kKM, #, is a subset of & codable in &,
FcFyand F, is codable by a class with a set domain, then there exists o € On*,
FeM and a mapping H codable in & which is an elementary embedding of
(Fy, (RM)g, E*y in {(Fo, M, E*). H is constant on elements of the set (R and
it is such that ¥, < H''Fy.

Theorems 2.1 and 2.2 hold also for the relativized ramified analysis hierarchy.

LEMMA 2.3. If M = (M, E) E ZF, ¢f. On" = o, then

(a) M is KM-expandable iff there exists a direct system:

g1 {Ft, Ry, EXY<I{F 141, Rigy, E®), o e,

such that for all ie w, {F, R, E¥) F KM,, where &, Ry, g; are the respective
contents of elements F;, Ry, h; belonging to M, o;€ On¥, g;} R, = idg, and the
sequence ¢y, ¢y, ... is cofinal with the height of M.

(b) M is expandable to a model for KM which is not a f-model iff there exists
a direct system:

g2 {F 1, Ry, Ti, E¥<i{Fis1, Rivas Tin1s B 5
iew such that for all iew, {(F;, Ry, E*y E KM, (&, R, T;, E*) F W.O(T),
F1, Ry, gy, T are the respective contents of the elements Fi, RE, by, t, belonging to M,
a, € On, g, R, = idg,, the sequence ay, 0y, ... is cofinal with the height of M and
there exists a sequence of different elements ay, ay, ... belonging to M such that for
every i€ ®.
{F, R, T;, E¥) F q; E*DomT;
and
{Fir1s Riwts Tigg, ¥ F s g, aD E*Tiyy

Proof. Assume that M = (M, E) is KM-expandable and possesses all the
properties mentioned in the assumption. )

Let F = (F, M, E*) F KM+ (VX)r.a(X) and let #, <7, ... be a sequence
of codable subsets of &, such that (F;, M, E¥)</{(F,M,E*): ien. The
existence of such a system follows from the above mentioned Theorem 1.

B
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Let By, B2, ... be a sequence of elements On* cofinal with the height of M.
Applying Theorem 2.2 mentioned at the beginning, we conclude that there exist
sequences: a Sequence oy, d,,.. of elements On¥; F,, F,,.. — a sequence of
elements of M and H,, H,, ..., and a sequence of mappings codable in &, having
the following properties: for every : o;> f;, a1 >0, H; is an elementary embedding
{(F)e» (RYYg, E® in (F;, M, E*), H, is an identity on the elements of set (RE),
and H}'(F)y< Hity(Fivr)e. ‘

Let us denote by g, the mapping HiY o H,. Obviously g, is a mapping from
{(Fg. (RY), E¥) into {(Fisy)p, (R ), E*> which is constant on the elements
of (R%)E. It remains to show that g, is a X} elementary monomorphism. In order
to do this, note that g; can be représented as a composition of three mappings:

Hi_+11 } Hi”(Fi s idz,: <-9“:i’ M, E*><il<§i+1a M, E*)
‘and H;. Hence, from the fact that H; and H;,, are elementary we infer that g, is
a I} -elementary monomorphism.

Next, since g; is a composition of mappings codable in & it is & -codable,
hence, as a subset of a content of some element of M it is a content of a mapping
h;e M. If we now put &, = (F)g, R; = (RI)g, this, together with g, is the desired
direct system.

To prove the converse implication let us assume that

(F,R,Efy = Lim(F,, R, E*»

is a direct limit of our system supplied with the missing monomorphisms g,; defined
as follows: g;; = gj_; e ... o g, for i<j. By g;, let us denote the natural mono-
morphism from (&, R,, E*) into (%, R, E¥).

From the accepted model-theoretical facts we infer that g,,, is a X} -elementary
monomorphism.

Hence, because of the fact that (V)((&,, R;, E¥) E KM,), (&, R, EX> E KM.
Thus, if suffices to show, that (R, E;> = (M, E}. Assuming that g(x) = g;,,(x)
for x € M, where i is the least natural number such, that x e (.R,',‘—:)E, we conclude
that g is the desired isomorphism. Indeed, if x # ¥ or xEp,g(X) = gio(%),
9()) = gju(¥), 1<, then g (x) = g,,(x) = gjco(gij(x)) = gjeo(x). Hence g(x) = gjo0(x)
# Giw(¥) = g(y). Similarly g(x) = g;,(x) E, §;0(») = g(y). Finally if ze R, then
z = g;(x) for some x € R;. Thus z = g(x).

The proof of (b) is similar to the proof of (a). The main differences in the proof
of the implication = are as follows:

Having a model (&', M, E*) for KM which is not a f-model, we choose
Te ' such that (&', M, E¥) F W.O(T), Ty is not a wellordering in the world.
Next we “cut out” # <& in such a way that the structure (F,M,T, E*)isamodel
for KM +(VX)r.a"(X). Finally, we choose a sequence ay, a,, ... of different ele-
ments of M which shows that T’ is not well-founded. The construction of an adequate
“tower” is analogous, with one difference, namely that in the ith step we extend the
set universe in such a way that in the next step it contains the element Qg

icm

A characterization of expandability of models for ZF to models for KM 15

To prove the converse implication, assume that <%, R, T, Ef> is a direct
limit of the system {(%, R, T;, E*>, ...} with the required properties. As in the
proof of (a), we conclude that (R, E;> =~ (M, E> and that{#F, R, T, E{'> E W.O(T).
Let b; = g,,(a;) for i € . Since b; = g;(@) = Gi4100(@) and (4.1, ADTELE* Ty, 4,
we have

<bl+1;b(>£ = Gi+10({i41, ai>&ﬂ)E:gi+1w(Ti+1) =T.
This proves, that (%, R, Ef) is not a f-model.

§ 3. Characterization of KM -expandability by a game formula. Now we shall
prove that the existence of a direct system with elements codable in the set universe
and “approximating” the model for KM can be described by a recursive game.

THEOREM 3.1. There exists a recursive and closed game, formula %3¢ (%),
belonging to language (£z5)we Such that

(1) M is KM-expandable => M E 9%p (%), .
() (M FZF & cfOnt = w & M F 959 (%)) = M is KM-expandable.
Proof. We define

gip ) = {@ay, F1)'(Vﬂ1)(3°‘2;F2, hO(VB3) ... ‘
e @ity Frogs B) oo (VBiss) o} /} /\ [#41>Bi &
&(hi: <FiRanE>'<11<Fi+1:Rau+1’e>)& ' N
& (CFy, Ry €9 FKM) & Iyt R,, = idg, ]
Now let assume that M is KM-expandable; (¥, M, E*) F KM. To simplify
the description of the winning strategy, we assume that (3) chooses two additional

elements in each move. Assume that player (V) has chosen element f, e On¥ and
that (cty, Fy, Bys 0y Foy Byyeees &, Fyy By, B,) is a fragment of the already com-

_pleted part of the play. Let &, Hy, ..., ¥,, H, be the sequence of the additional

elements already chosen by (3), satisfying the following conditions:
1) (V)eul{F i, M, EXY<I{(F, M, E*)),
2) (V) F1EF 141),
3) (Vi)enHy: {(F)g, (RE)g, EX<(F 1, M, E*) .
Then (3) chooses an additional & -codable element &, such that #,S &, SF

and {(F,, M, E*)<}1.,(F,M,E*), and chooses elements G4, Fppy1, s €M
and one additional element H,,, such that a,,;>max(a,, f,),

Hyp 1t {ForOns (RE s EXD<LF sy ML E*)
H,,, is codable in &, H,,,} (RE, )p = id, H, Y o H, is the content of h,. From

Onk 1

the proof of the lemma it follows that player () can always choose the elements
described above. This leads (3) to winning the game. We must add that the property
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“UFes (Rf_—: 5, E*) EKM,” is absolute with respect to M because of the finite
axiomatizability of KM, and can be expressed in the following form:

Mk “(F,, R,,,e) FKM,”.
For similar reasons, property <} can also be expressed in M in the required form,
Now, let M £ ZF, ¢f. On¥ = o and let M satisfy the recursive closed game

formula defined above. Let y,, 75, ... be a fixed sequence of elements of On¥ cofinal
with the height of M.

. Fet player (V) play as follows: B, = y, for all n € w, and let player (3) use his
winfiing strategy. Hence, as a result of the described game, we obtain a sequence
&y, Fy, 99,05, Fy, by, ys, ... such that for all ie w:

M E (hi <Fl’ agd E>< < +11 w412 €>) H

ME(F, Ry, €) F KM!)& (A Ry, = 1dR¢‘) ,

ViEaiyy .
This means that the sequence oy, o, ..
sequence,

. is cofinal with the height of M and in con-

{Fdes (Ro)p, E*y, (h)g: ico
is a direct system described in the lemma. Hence, from this lemma we infer that M is
KM -expandable. N

Referring to Lemma 2.3 (b) we can, by a similar reasoning, obtain the following
theorem.

THEOREM 3.2. There exists a recursive closed game formula gx(al(x) belonging
to language (Lz5) Such that

(M) If M has an extension & such that (&, M, E*y is not a B-model, then
M E 93¢, ().

(2) If Mk ZF, of. On™ = @, M & 9%p,(%), then M has an extension 1o a model
of KM which is not a B-model.

The following theorem, proved by Barwise [1], is the key to further consider- -

ations.

THEOREM (Barwise). If ¥%p(X) is a recursive closed game formula belonging to
Ko, then there exists a A" "™-operation o: On— K., such that

(1) for every new, o, K,,, and if M is a structure for K, then

@ (MEgip@E) = ME /\A%,

®) (a= o(HYPM)&MF /\/\aﬁ) = Mk &%p(3).

TreoreM 3.3. If M k ZF, cf on = o, a = o(HYP th
y U= £ M -
pandable iff Mk ZFXM, G5 e KM
Proof. Let ¢3¢ (%) be the formula from Theorem 3.1 describing the expand-
ability to KM for models of cofinality character w. Let o, be the approximations
%o (%) mentioned above. Obviously, for every a, 04 € (L28)we- We shall show that

icm®
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for countable o, KM kY. Indeed, if (&, N, E¥> F KM, then {N, E) k g3p(X)
hence (N, EY F A\ /\o,. This proves that KM oy for a<w,. Applying the com-

a<wy
pleteness theorem to formulas from language K,,,, we conclude that KM F oy
for countable o€ On.

Since the relation KM F ¢ for ¢ € K, is of class 4, (see Barwise [1]), employing:
the Lévy principle we obtain (Va)(KM o).

Now, let us assume that o = o(HYPM)>w, of On™ = w, M E ZF*™, Since o
is a 4P+ operation, a>w is an admissible ordinal, we have (Vf)<q (05€L,).
Hence (V)< (ZF™ |- o), and in consequence M /\/\os. Thus, by the quoted

B<a

Barwise Theorem, M k %o (%). This proves that M is KM-expandable.
If o HYP) =o, ¢f. Ont =0, M EZFXM then, from the fact that
(V1)u(0, € (Lrr)en) Wwe infer that Mk A Ao, Hence we find that M s

KM -expandable.
TuroreM 3.4. If M k ZF, of On™ = w, M is KM-expandable, then it admits

an expansion to KM which is not a -model.

_ An example of a model for ZF with an uncountable height expandable to a non-
B-model of KM was given by Marek and Nyberg in [5]. They proved that, for the

least « such that R, is KM-expandable, R, is not KM-f-expandable. Let us note

here that the conclusion of Theorem 3.4 can be strenghtened, since as is shown in
the present author’s thesis, under the assumptions of Theorem 3.4 the intersection
of all KM-expansions is included in HYP,, (this is a direct generalization of the
Gandy Kreisel Tait result for the case of KM-expansions). This result will be pub-~
lished elsewhere.

Theorem 3.4 is also a generalization of the known result that every countable
and KM -extendable model for ZFC has an extensmn which is not a S-model
(see [8]).

In the proof of 3.4 we shall employ the fact, that this theorem holds for count-
able models. We can not, however, refer dlrectly to the quoted result, since our
assumptions are weaker. Therefore we shall first prove the following auxiliary lemma:

LemMA 3.5. If M = (M, Ey = ZF, M is countable and KM-expandable, then M
possesses an extension to XM which is not a B- model and whose standard part is of
a height equal to the height of HYPy,.

Proof. If M is a nonstandard model, then, because of the expandability to KM
(compare Barwise, Schlipf-[2], Bielifiski [3]), osp(M) = o(HYPM) Also, for every
expansion & such that (&, M, E) k KM, osp(¥) = osp(M) = o(HYPM) Assume

that M is standard and assume that the lower limit of osp(#) for ZF such that
(F,M,E¥>EKM is 2a>0(HYP,). It follows from the absoluteness of R. A—

for ordinals B representable in a model for KM, that
VF)(F,M,E*) F KM = R. AlcFy,

2 — Fundamentha Mathematicae CXIII/1
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Hence the required contradiction is a consequence of the following theorems:

1. Grillot [4]: (M, E) is KM-expandabIe = N{F:(F,M,E*F

» . > N KM
SHYP, n P(M). i ’ )

2. AI}doschovakis 1: If M is acceptable, x = o(HYP,yy), then HYPy N P(M)
= R.A;. - -

We shall not recall the definition of acceptable models. Roughly speaking,
the.y are models possessing a definable copy of @ and a definable function coding
finite sequences. For our purposes it suffices to note that standdrd models for ZF
are acceptable. .

( 3}.1 Marek and Mostowski [6]: If R.A’;—t = R.A%l, M is R.A;M-amenable
i.e. the image of a set by a class in R.AX is also a set), then (R.AY%, M, E*
And the known fact that ’ ) ¢ o M BRI

4. If v = o(HYPA_‘) then (R.AY, M, E*y not F KM.

Thus we have shown that there exists a model (&, M, E*) k
. , KM such that
osp(F) = o(HYP,_,) which evidently is not a f-model. ,

Proom;of Theorem 3.4: Assume, that M = (M, E) is KM-expandable and
that'cf. On™ = . Let 6p: B € On be the class of formulas from Theorem 3.2 approxi~
ma.tmgithe formula 9%¢ (%) characterizing the expandability to a model for KM
which is not a f-model. From the preceding lemma we conclude that, for every
cquntable M, if (F,M,E*)FXM, then {(M,E)E GX (). This, together
with the completeness theorem for formulas from language (& ,) gives
(VB <oi(KM F (o7)"). Applying the Lévy principle, we obtain (Vﬁ)(lz;dmi-a(a')v)
Thus (M, E F 9%¢,(%), and hence we infer that (M, E) F GX@(%). This cﬂon:
sequently, means that (A, E) has an extension to KM which is ;mt.a f-model

1Notc: that an alternative proof is also possible. Namely, the part of the result 3.5-
:‘1)1;1; ?yed above can be expressed by a single formula from (#7g),.¢ in the following

(VM){M is countable = M F[AA ZF = (93¢ (%) = G20,(®)] .

Applyil'ng.the Skolem-Lowenheim  theorem for language Ko (proved by
Moschovakis in [9]) in a version- similar to the Lévy principle, we -infer that

VMM E[ANZF = (930(3) = 95p,®)]).
Hence, we immediately obtain the required result.

) The technique presented in this part of the paper may be useful in generaliz-
ations of: tl-leortems on countable models to the uncountable case. Moschovakis 9]
used a smplar idea w.hen he proved the existence of countable structures with some
f;operty if therebe)ﬂsts an uncountable model with that property, provided that

e property can be ex i ) i
e pro ty expressed in the language K, by a heredltgry countable set of

The following theorems, proved orgi r
‘ 3 ginally for the countable models, can be
generalized to the case cf(M) = w by means of the above technique: '

icm®

A characterization of expandability of models for ZF to models Jor KM 19

. Treorem (Felgner). If (M, E) k ZFC, M <y, then there exists an A e P(M)
such that (M, 4, EY £ ZFEC(A)+“A well orders V™.

TreorEM (Hutchinson): If (M, E) k ZFC is A}-ZFC expandable (4%-ZFC
is GB+A4}-comprehension schema), then M = (M, E)Y has an elementary end
extension with a first new ordinal “equal” to onM, .

The following theorem can also be proved.

ThEOREM 3.6. If M = {M, E) is KM-expandable, cf. On™ = o, then M has
an. expansion whose ordinal standard part is of a height equal to the height of FIYPy.

We mentioned this result when discussing our Theorem 3.4. B
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