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Abstract. It is well known that the theorem of Tychonoff, that a product of compact spaces
is compact, is equivalent in standard (ZF) set theory to the axiom of choice. The purpose of this
paper is to point out that here, as elsewhere in general topology, the role of the axiom of choice
is only to enable us to pick out the points of a given space, and that if we adopt the “locale-
theoretic” view that what matters about a space is its lattice of open sets and not its points, then
we can prove the theorem without any use of choice. We also give a choice-free construction of
the Stone-Cech compactification of a locale, and discuss some topos-theoretic applications of
these results.

0. Introduction. It is well known that the theorem of, Tychonoff [25], that
a product of compact spaces is compact, is equivalent in standard (ZF) set theory
to the axiom of choice [17]. The purpose of this paper is to point out that here, as
elsewhere in general topology, the role of the axiom of choice is only to enable us
to pick out the points of a given space, and that if we adopt the “locale-theoretic™
view that what matters about a space is its lattice of open sets and not its points,
then we can prove the theorem without any use of choice. We also give a choice-free
construction. of the Stone-Cech -compactification of a locale, and discuss some
topos-theoretic applications of these results. Proofs of the Tychonoff theorem
for locales already exist in the literature [20, 7], but both of these use the axiom of
choice. Our approach is to be distinguished from that of Comfort [4], who eliminated
the axiom of choice from the Tychonoff and Stone-Cech theorems by redefining
compactness so that they both became trivial; with us it is the concept of space which
is redefined, but that of compactness stays the same.

1. Locales and sublocales. The basic theory of locales or frames has been de-
veloped by Bénabou [3], Dowker and Strauss [5, 6, 7], Isbell [14] and Simmons [23];
but since there are considerable differences in terminology between these four, and
since our own terminology differs in parts from all four of them, we begin with the
definitions. A frame is a complete lattice 4 in which the infinite distributive law

an(\/8) = \/ {ans| se S}
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holas for all ae 4, S=A. A frame homomorphism A — B is a map preserving finite
meets and arbitrary joins; thus we have a category Frm of frames. If X is a topological
space, the lattice 2(X) of open subsets of X is a frame; and if /: X' — Y is a con-~
tinuous} map, then 1 Q(¥)— Q(X) is a frame homomorphism. Thus £ is a con-
travariant functor from the category Sp of topological spaces to Frm.

Following Isbell [14], we shall write Loc for the opposite category Frm", and
call its objects locales. The reason for this dual terminology is that, by'making
Q: Sp — Loc into a covariant functor, we are entitled to use the names of familiar
concepts in topology for their natural generalizations in Lec. For instance, we shall
be able to talk about closed and dense sublocales of a given locale, whereas we
should have had to refer (as in [5]) to quotient frames. We adopt the convention
that if f* 4 — B is a morphism in Loe, f*: B — 4 denotes the corresponding frame
homomorphism, and f its right adjoint (called an antimap by Dowker and Strauss),
defined by .

‘ fu@) =\ {be B| f*®)<d}.

A point of a locale 4 is a locale morphism 2 — 4, where 2 is the two-element
locale {0, 1}. If pt(4) denotes the set of points of 4, there is a natural map ¢* from 4
to the power-set of pt(4), which sends ae 4 to {p e pt(4)| p*(a) = 1}. Tt is easily
checked that ¢* is a frame homomorphism, and so its image is a topology on pt(A),.
Moreover, for every locale morphism f: 4 — B, the map pt(4) — pf (B)‘fnﬁ:ééd by
co{nposition with f is continuous, and so pt is a functor Lec — Sp. In fact pt is right
adjoint to Q; we calla space X sober (following Grothendieck [11]) if the unit map
X — pt(Q(X)) is a homeomorphism, and we call a locale 4 spatial (Isbell uses
primal) if the counit ¢: Q(pt(4)) — A is an isomorphism. The functors @ and pt
restrict to an equivalence of categories between sober spaces and spatial locales.
Every Hausdorff space is sober and every séber space is Ty, but sobriety is incom-
parable with the T, axiom.

i Monomorphisms in Loe (i.e. epimorphisms in Frm) are badly behaved —
indeed, Isbell has shown that the locale Q(R) has a proper class of non-isomorphic
subobjects. However, regular monomorphisms (= equalizers), which correspond to
sutjective frame homomorphisms, are more manageable. If f*: 4 — Bis a surjective
frame homomorphism, then the composite j = Jef*: A— A satisfies the con-
ditions

j@=a,
J@) = j@
and
Janb) = jl@nj@)

for all @, b € A; following Simmogs [23], we call such a map a nucleus on A. Con-
versely, if j is a nucleus on A, we write 4; for the set {a € 4] j(a) = a} with its in.duced

o.rder; t].ne‘n A4 %s a locale, and ;j is a surjective frame homomorphism 4 — A (its
right adjoint being the inclusion 4 ;— A). Thus the regular subobjects of 4 in Loe
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may be identified with locales of the form 4;; we call these sublocales of A (Isbelt
uses the term “part”, but we prefer to follow the tradition whereby in Sp the term
“subspace” denotes a regular subobject and not an arbitrary subobject).

For any element « of a locale 4, the map ¢(a) = av(~): 4— 4 is a nucleus;
the corresponding sublocale is the set 4(a) = {be 4] b>a}. Such a sublocale is
called closed. A nucleus j (or the corresponding sublocale 4)) is called dense if
J(0) = 0. It is easily verified that for a T, topological space X, the continuous maps
Y — X which induce regular monomeorphisms Q(Y) — Q(X) are precisely the in-
clusions of subspaces of X, and that in this context the words “closed” and “dense”
restrict to their usual meanings in topology. However, one respect in which locales
differ sharply from spaces is that every locale 4 has a smallest dense sublocale;
the corresponding nucleus is the “double negation” map which sends a € 4 to the
largest element disjoint from all elements disjoint from a.

Bénabou [3] showed that the forgetful functor Frm — Set has a left adjoint.
We shall make use of the following more general method of constructing frames
from “generators and relations”. Let 4 be a meet-semilattice; by a coverage on A
we mean a function C assigning to every a € 4 a set C(a) of subsets of {.(a), called
“covers of a”, such that if Se C(q) for some a, then {sAb} s €S} & C(b) for every
b<a. (Cognoscenti will recognize here the essential part of the definition of
a Grothendieck pretopology [12].) Given a coverage C, we define a C-ideal in 4
to be a subset 74 which is closed downwards (i.e. a €] and b<a implies b & I)
and closed under covers in C (i.e. S<I for some Se C(a) implies a€l).

ProvosiTioN 1.1. Let (4, C) be a meet-semilattice with a coverage. Then the
set C-1d1(A) of C-ideals of A, ordered by inclusion, is a frame; and there is a Sunction
A — C-Id1(A) which is universal among meet-semilattice homomorphisms ffrom A to
a frame B which transform C-covers to joins (i.e. satisfy f@=\{f@) seS}
Sor every S e C(a)), in the sense that every such f factors uniquely through A — C-1d1(4)
by a frame homomorphism. .

Proof. Consider first the case when C is trivial, so that a C-ideal is just a down-
ward-closed subset of 4. In this case the set C-Idl(4) (which we shall denote by
$Cl(4)) is a sub-complete-lattice of the power-set of 4, and hence a frame; we may
embed A4 in }Cl(4) via the map which sends a to {(a), and then any semilattice
homomorphism f: 4 — B, where B is a frame, extends uniquely to f: $Cl(4) — B,
where F(S) = \/ {f(s)| se S}

In the general case, consider the map j¢: §Cl(4) — § Cl(4) which sends a down-
ward-closed subset to the intersection of all C-ideals containing it. Since an inter-
section of C-ideals is a C-ideal, it is clear that we have SSjc(S) = jc(Je(S)), and
that the image of j is precisely C-Id1(4). So to prove that C-1d1(4) is a sublocale
of JCl(4), it suffices to prove that jo commutes with finite meets (intersections).
Cleatly jo(S N T)Sje(S) N jo(T), since the right-hand side is a C-ideal containing
S A T. Conversely, let I be a C-ideal containing S n T, and consider the set

J={aecd| ansel for all seS}.
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Jis a C-ideal, for if Ue C(b) and U<J, then {uns| ue U} e C(bs) for all se S,
{uns| ue UycTand so baseIforall sesS,ie beJ. And T<J, since SN Tsl.
Similarly, we have a C-ideal

K={acAd|l anjel for all jeJ}

which contains S. But by construction it is clear that J A K&l so we deduce
Jel8) mje(T)=1 and hence j(S) N jo(T) Sje(S N, T). .

Now it is clear that is .S e C(g), then the join in C-1dI(4) of the C-ideals
Je(4(s)), s €S, must contain @; hence the composite map

=) J
, fe: A——> }Cl(4) ——> C-1dI(4)
“has the properties described in the statement of the proposition. But if f: 4 — B
is any map with the same properties, we may first extend it to f: | Cl(4) — B as
-above, and then observe that the surjective part of f gives rise to a larger nucleus

on {Ci(4) than j; (equivalently, a smaller sublocale of {Ci(4) than C-Idl(4)).
So f factors uniquely through jc, as required. B :

As an application of Proposition 1.1, we give the constriiction of products in Loc
(i.e. of coproducts in Frm). This construction has been given before by Dowker and
Strauss [7] (though there is an easily rectifiable error in their description, concerning
the least element of the product locale), but the use of Proposition 1.1 helps to make
the reasons for the construction more transparent.

Let (4,] yeT) be a family of locales. Write B for the Cartesian product of
the 4, (which is of course their product in Frm), and p,: B— A, for the yth product
‘projection.: p, has a’ right adjoint 4y, which sends ae 4, to the I'-tuple with a in
the yth place and 1°s elsewhere. Let 4 denote the sub-meet-semilattice of B generated
by the union of the images of the 4y, i.e. the set of all (a,] yeI)in B such that
ay, =1 for all but finitely many yeI'; then 4 is easily seen to be the coproduct
of the A4, in the category of meet-semilattices. Now if F is the coproduct of the 4,
in Frm, the universal property of coproducts yields a semilattice homomorphism
Jf: A — F, which is clearly universal among homomorphisms with the property that
Fg@) =V {f(g,) s€S} whenever S is a subset of A, with join a.

The covering families in 4 which appear in the above equation do not themselves
form a coverage, since they fail to satisfy the stability condition; but if f preserves
these covers, it will clearly also preserve any cover obtained from one of them by
taking meets with a fixed element of 4. We therefore define a coverage C on A by
letting C(a) comsist of all sets of the form

S,[al = {anq,(s)] se S}
where a = (a,| yeI') and S is a set in A, with join a,. Then it is clear from the
above argument that we have

PROPOSITION 1.2. Ler (A, v €T) be a family of locales, and let C be the coverage

defined above on the semilattice-coproduct A of the 4,. Then C-1d1(4) is the product
of the A, in Loc. &
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2. Tychenoff’s theorem. A locale A is said to be comp'act if,. given anynSs'A
with \/ S = 1, there is a finite F&S with \/ F = 1. In this section we sha glvte
a choice-free proof .of the theorem that a product of ct?ml?act loc.ales is corzrl(}aa;:]:
As we have already remarked, proofs of this theorem e?ust in the lfterat}lre [ : ,1
but both of these use the result that a locale is compact 1f- and onlyllf a'll its ?;’“m?
ideals are principal, whose proof requires a fairly obvious a.p'pl:cat;on o tozr;ss
lemma. To give a proof which proceeds directly fr.om the dei?mtlon od.comjzlac nver;
we shall find it convenient to deal separately with 'fhe finite and u-e.c.te (iot i
in the coverage C of Proposition 1.2; so, in the .notauon of t.hat proPosglon, et Cp
be the sub-coverage of C such that C{a) consists of all finite sets in C(a).

Lemma 2.1. Let S be a downward-closed subset of 4, and let P(S) be Zte set f;f
all those (a,) yeI) in A for which there is a finite set {71, -0 %} 1~§F Z:reza-fZ; e
cover Sy, of a,, for each i, such that every element of t_he form.(syl y Z ):dwal memwg
isin S, and s, =a, 7 ¢ {y!, vees Tu}s 15 in S. Then P(S) is the C-ideal g
by S. . ‘

’ Proof. It is clear that every member of P(S) musF be in evety.C,-ldeal whlfih
contains S; so it suffices to prove that P(S)isa C_,-lfieal. But th.ls. follcl)ws 1eaila§
from the fact that any finite set of finite covers of a given element in a locale
a common finite refinement. B .

CORC)'LLARY 2.2, For any family of locales (4, yeID, the locale C;-1d1(4)
is compact. ‘ .

Proof. Let X be a set of C/-ideals. The join of X in C‘,-Idl‘(A‘) is the ;S-Igf:;
P( X) generated by the union of the mefnbers of X But if 1, is ;‘ntPlg L')S a;ld "
only finitely many members of U X are involved in the proof that it is,

1,eP( Y) for some finite- YcX. &

Next we consider directed joins. If S'is a downward-closed subset of 4, let D(S)
denote the set of all joins (in 4) of (upwards) directed subsets of S.

Lemma 2.3. D(S) is contained in every C-ideal which contains S. o

Proof. Let a = (a,) & D(S) and suppose @ = \/ T where TS 1ls) ctllrefciie;ctie.
Pick 1 e T; since ¢, = 1 for all but finitely many. 7, We have t, = a, for all ue:. e
set F="{y1, > v, of indices. Moreover, filrectedness of T er;sr:liat o
a=\/{t'eT| t'>t}, soby .cutting dowx; .to thtlsos;‘u;s:;:;e may assum
memllzle:wo?o{ (ti’l f;e;f af;c:lmoi}lif idne(}jrtxet ;l’s[ js]e to be the result of substitutilng ay,
for 1, in ¢', for 1<i<. (Thus '[0] = t'and t'[n]=a.) Nolw sirllce‘ a, =\ {T“‘t,ty[ 6—11}],
it is clear that every ¢’[j ] is C-covered by elemen'ts YVthh lie be.low somf:t Y A
So by induction on j we deduce that each #'[f] is in every C-ideal containing 5,
and hence t[n] = a is in every such C-ideal. B

Lemma 2.4 If I is a Cy-ideal, so is D). 1

Proof. It is sufficient to consider C-covers With just two 'elemen;sI. Sc;1i :1:
a=\/S,b =\ T be clements of D(I} (where S, T are directed subsets of I) W
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differ only in the yth entry. For s€ S, teT, define fi(s,t)e 4 by

s;vis for o =19,

(£,(s, )5 =
55> D)s 55t otherwise.

Since I'is a C-ideal, each f,(s, ¢) is in I; and since £, is an order-preserving function
of each variable, it is easy to see that {f,(s, )] s€ S, te T} is directed. But finite
meets in A5 (6 # y) distribute over arbitrary joins, so that

\V {ffs, ) seS,teT} =avb.
Hence avbe D).

LemMMA 2.5. 4 Cy-ideal I is a C-ideal if and only if I = D(I).

Proof. This is trivial from Lemma 2.3 and the fact that arbitrary joins can be
constructed from finite joins and directed joins.

LemMa 2.6, Suppose the locales A, are all compact. Then a downward-closed
subset S of A generates the whole of A as a C-ideal if and only if it generates 4 as
a Cy-ideal.

Proof. Given S, we define an ordinal sequence (Z,] a € On) of C,-ideals by

I, = P(S),
Liys = D),
I, = {l| B<o} if a is a limit ordinal.

The sequence (I,) is clearly increasing, but since there is only.a set of distinct
C,-ideals it cannot be strictly increasing; i.e. there must exist an o with 1, = I, ;.
Tl}cn 1, is a C-ideal by Lemma 2.5; but it is contained in every C-ideal which :o;-
tains S, by Lemmas 2.1 and 2.3, and so it is the C-ideal j(S) generated by S.

Now suppose j(S) = 4, and consider the least o for which 1, € Z,. Clearly,
a cannot be a limit ordinal. Suppose « = f+1; then we have a directed T< 1, with,
\/ T = 1. Going through the argument of Lemma 2.3 and using the compactness
of each 4,,, we may now deduce inductively that #[j] e I, for every ¢ € T and every j
(Where we take @ = 1). Hence 1€ y; so the least « is not a successor. So we must
have a = 0; i.e. 1,eP(S) and so S generates 4 as a Cp-ideal. H

Combining Lemmas 2.2 and 2.6, we at once obtain
] TreoREM 2.7 (Tychonoff’s theorem for locales). 4 product of compact locales
is compact.

Proof. Let X be a set of C-ideals whose join in C-Idl (A) is A. Then the set
© 8= X generates 4 as a C-ideal, so by Lemma 2.6 it generates 4 as a Cy-ideal.

Then by Lemma 2.2 there is a finite ¥< X such that |J ¥ i
= (3 -
and hence as a C-ideal. B U Vesnersies das e Carideal

I
i 3. Local compactt.less. The proof of the Tychonoff theorem given above, whilst
g] oes n.ot use .the axiom of choice, does use just about the full strength of ZF set
eory: in particular, the axiom of replacement is used in the assertion that the
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increasing sequence (I,) of Lemma 2.6 is eventually stationary. The proof would
clearly be simpler if we could be assured that the sequence becomes stationary after
some definite number of steps; but in general there seems no reason to suppose that
this should be so. However, if we add the further hypothesis that the locales A, are
locally compact, then the sequence becomes stationary after a single step.

Let a and b be elements of a complete lattice 4. We write a <b (read “a is way
below b™) if, whenever we have a directed SS4 with \/ S=b, there exists s € .S with
sza. We say a locale 4 is locally compact if every a e A satisfies

N a=\/{bed| b<a}.

Locally compact locales (under the name «distributive continuous lattices”) have been

studied by Hotmann and Lawson [13] and Banaschewski [2]. They have shown (using
the axiom of choice) that every locally compact locale is spatial, and in fact the category
of locally compact locales is equivalent to that of locally compact sober spaces.-

It is easy to show that for any ae 4 the set

1@y = {be4] b<a}
is actually an ideal of 4, so that the join appearing in the definition of local com-
pactuess is directed. Moreover, if a is the join of a directed set S, then every element
way below a is below some member of S. Thus if Iis a downward-closed set and we
know a = \/ S for some directed § <1, there is a canonical way of choosing such
an S, namely S = }(a). This idea is used to prove

Levma 3.1. With the notation of Section 2, suppose that all the locales A, are
locally compact, and all but a finite number are compact. Then D(I) is a C-ideal
Sor every Cy-ideal IS A.

Proof. The semilattice 4 is not in general a locale (it has no least element
if I is infinite); but it does have joins for all nonempty subsets (in particular for all
directed subsets) and so we can interpret the relation < in it. Now it is clear that
a,<b, forallyel’ implies (a,| y € I) <(b,] y € I'), and compactness of 4, is equiv-
alent to the asscrtion that 1<1 in 4,; so it is clear from the hypotheses of the
lemma that 4 itself is “locally compact”. '

Now let S be a directed subset of D(I), and leta = \/ S. By the remarks above,
we have J(s)<[ for each s S, and

a=\i{Vi6lses}=VU {1@l sesh.

So it suffices to show that the set T'= U {f(s)l seS§}-is directed. Let ty, 2, €T,
and suppose #,<s; € S. Then there is an upper bound s, for s, and s, in S, and we
have 1, <53, 1, €53 and hence (7, V1) <s3. So t,vt,eT.

Thus D(I) = D(D(I)); hence by Lemmas 2.4 and 2.5 it is a C-idcal. H

THEOREM 3.2. For compact and locally compact locales, the Tychonoff’ theorem
holds in Zermelo set theory (i.e. without the axiom of replacement). B

In fact for locally compact locales we can say rather more than the Tychonoff
theorem:
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PrOPOSTIION 3.3. Let (A,I yeI) be afamily of locally compact locales, of which
all but a finite number are compact. Then the product of the A, inLoc is locally compact,

Proof. With the same mnotation as before, let ae 4 and let I(a) denote the
principal C-ideal generated by a (i.e. the smallest C-ideal containing a). We shall
show that b<a in 4 implies I(b)<I(d) in C-IdI(4), and that

I(@) = \/{I®)| b<a in 4} ;

since every C-ideal can be represented as a union (and hence a join) of principal
C-ideals, this will suffice.

For the first assertion, suppose we have a directed family S of C-ideals with
I(@)s\/ S. Now directedness of § clearly implies that the union of the members
of S'is a C,-ideal; and so \/ S, being the C-ideal generated by (J S, is equal to
D(U S) by Lemma 3.1. So there is a directed family T<|J § with g = V/ T. Now
b<a implies b<t for some te 7, and hence b e[ for some IS,

For the second assertion, observe that we have

a=\{bedl bga}

and that this join is directed; so a e D(U {I(b)| b<a}). So by Lemma 2.3 the join
of the I(b) in C-IdI(4) contains a, and hence equals I(z). &

Now a product of spatial locales need not coincide with the open-set locale of
the corresponding product of spaces (for counter-examples, see [14] and [7]); but
the adjunction (Q { pt) ensures (for sober spaces X;) that T[X; , is the space of points
of the locale product of the Q (X;), and hence the two do coincide whenever the locale
product is itself spatial. So recalling the theorem of Hofmann-Lawson and Bana-
schewski that locally compact locales are spatial, we recover a special case of the
classical Tychonoff theorem: )

THEOREM 3.4. dssume the axiom of choice. Then a product of compact, locally

compact sober spaces is compact. B .

Even with the axiom of choice, it does not seem possible to recover the full
Tychonoff theorem directly from Theorem 2.7 in this way, since a compact locale
nee.d not be spatial. For example, Isbell [14] has observed that if aQ denotes the one-
pc?lnt compactification of the space of rationals, then the locale product of Q(«Q)
‘Xflth itself is not spatial, and so cannot be isomorphic to Q(aQ xa). (However
since the first draft of this section was written, D. Strauss has shown the emthoxt
a proof - using the axiom of choice — that if (X, yer)is any family of compact
spaces with open-set locales 4, = Q(X,), then the canonical map

o(T1x,) — C-1di(4),

which sends an open set to the C-ideal of open rectangles which it contains, pre-

serves families with join 1. Using thjs, one may immediately deduce the full Tychonoff
theorem from Theorem 2.7.)

It is not clear whether the special case of Tychonoff’s theorem given above
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is already sufficient to imply the axiom of choice: one certainly cannot prove it by
the method of Kelley [17], since the latter makes essential use of non-sober topologies.
It is known that the Tychonoff theorem for compact Hausdorff spaces is equivalent
to the Boolean prime ideal theorem [18]; and it seems quite likely that the same is
true of the slightly more general result above. However, I do not know how to prove
Theorem 3.4 using only the Boolean prime ideal theorem.

4. The Stone-Cech compactification. We wish to construct a left adjoint for the
inclusion in Lec of the category of compact “Hausdorff” locales. Unfortunately,
theve are difficulties in saying “Hausdorff” without mentioning points (for a discussion
of these difficulties, see Isbell [14]); and although Simmons [24] has succeeded in
giving a lattice-theoretic condition which is equivalent in spatial locales to the
Hausdorff axiom, bis condition seems rather unwieldy for use in the non-spatial
case. We therefore follow the approach of Dowker and Strauss in taking regularity
as our basic separation property; for’compact Jocales, this is justified by the well-
known facts that a compact Hausdorff space is regular, and that a regular T)-space
(in particular a regular sober space) is Hausdorff.

We say a locale A4 is regular if every ae 4 satisfies

a=\/{bed| Iced with bAc=0 and avc=1}.

We write b<a as an abbreviation for “there exists ¢ with bac= 0and ave =17}
in a spatial locale this relation holds iff the closure of the open set & is contained in a,
from which it is easy to show that the above definition is equivalent to the usual
notion of regularity. ’

Lemma 4.1. In a compact locale, b< a implies b <a. Hence any compact regular
locale is locally compact. .

Proof. Suppose b<a, and let S be directed with \/ S>a. Then (if ¢ satisfies
bac = 0and avc = 1) the set {svc| se S} is directed and has join 1; so by com-~
pactness there exists s € S with sve = 1. Then

b= (sve)Ab = (sAb)v(cAb) = sAb,

i.e. b<s. So b<a; and the second statement is immediate from the first. &
Lemma 4.2, (i) A product of regular locales is regular. (i) A sublocale of a regular

locale is regular. .
Proof. (i) is proved by Dowker and Strauss [7, Proposition 6]. (ii) Let 4 be

a regular locale, j a nucleus on 4, a € 4. Since j: 4 — 4; is a lattice homomorphism,

b<a in A4 implies j(b)<a in 4;. So
a=\/{bed| bza} =\/{j®) jB)<ain 4}. B
A Ay
Unlike regularity, compactness is not inherited by axbitrary sublocales; but it is

inherited by closed sublocales, since the join of any nonempty set in }(g)S 4 is just
its join in 4. Moreover, we have . :
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LemMa 4.3. If A is pegular, then the equalizer of a pair of maps

in Eoc is a closed sublocale of B.

Proof. Isbell [14, 2.3(1)] showed that a regular locale is “strongly Hausdorff”
in the sense that the diagonal 4 — Ax 4 is a closed sublocale of 4 'x 4. Since the
equalizer of f and g may be obtained by pulling back the diagonal along
(f,9): B— A x4, it suffices to prove that a pullback of a closed sublocale is a closed
sublocale. But the latter fact follows easily from the observation that, given h: C— D
and de D, k factors (uniquely) through the closed sublocale 4(d) iff the nucleus hyh*
fixes fewer elements than (—)vd, iff d<h,2*(0), iff A*(d) = 0. B

Combining all the above results with Theorem 3.2, we deduce

THEOREM 4.4. The full subcategory KReglloc of compact regular locales is closed
under the formation‘“’sof arbitrary limits in Lec.

Proof. It is sufficient to check products and equalizers [19, p. 109]; but products
follow from 3.2, 4.1 and 4.2(j), and equalizers from 4.2(ii), 4.3 and the remark
between them. H

Since the category Loc is complete and has small hom-sets, all that remains is
to verify the “solution-set condition” [19, p. 117] for an application of the Adjoint
Functor Theorem. This tufns out to be straightforward: recall that an element of
a locale A4 is said to be regular if it is fixed by the double-negation nucleus (equiv-
alently, if it is a member of every dense sublocale of 4). Then we have

LemMA 4.5. A regular locale is “semi-regular”, i.e. every element is a Join of
regular elements. )

Proof. It is easily verified that b<a implies ~1-1b<a; so
a=\/{bl bga} = \/ {171b} "1b<a}.

But elements of the form *171b are regular. B

COROLLARY 4.6. Let f: A— B be a morphism in Loc, where B is regular and the
image of f is a dense sublocale of B. Then B is isomorphic to a sub-poset of the power-
set of A.

Proof. Since the image of f is dense, every regular element of B is fixed by the
nucleus f, f*. So the (order-preserving) map which sends be B to

{f*@®)| ' regular, b'<b}s 4
has a one-sided inverse, namely
SI—-’\B/ {fols) ses};

in particular, it is one-to-one. B
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THEOREM 4.7 (Stone-Cech compactification for locales), The inclusion functor
KRegLoc — Loc has a left adjoint f.

Proof. Given a locale 4, Corollary 4.6 enables us to construct a set I” (in fact
a subset of the power-set of A4) indexing the isomorphism classes of morphisms
fy: A— B,, where B, is compact regular and the image of f, is dense in B,. Let B
denote the product of the B, in Loc, and f: 4~ B the morphism induced by the f,.
There is a smallest closed sublocale of B through which f factors, namely 2(£:0));
we define this to be 4.

Now if h: A— C is any map from A4 to a compact regular locale, we may
factor it through the closed sublocale +(h4(0)), and this factorization has dense
image; so 4(h,(0)) is isomorphic to B, for some y € I', and we can construct a com-
mutative diagram

A

BA e
//' \
B Py ) By ~ y

= 4(40)) c
Fig. 1

So there exists a factorization of & through 4 — f4. Uniqueness follows from the
fact that the equalizer of two such factorizations would be a closed sublocale of BA
(and hence of B) containing the image of £, and hence would be the whole of pA. &8

The reader may wonder why we have chosen to follow what is surely the least
explicit and most “abstractly nonsensical” of all the many constructions of the
Stone-Cech compactification available in the literature. (Its spatial equivalent may
be found on p. 121 of [19], or as Exercise 1E in [27].) The reason is that all the other
constructions rely upon the fact (made explicit on p. 127 of [19]) that the unit in-
terval [0, 1] is a cogenerator in the category of compact Hausdorff spaces, i.e. that
compact Hausdorff spaces are completely regular. This in turn rests on Urysohn’s
Lemma [26]. Now Urysohn’s Lemma may easily be proved for locales [6] (see also [10]
for a purely localic definition of the real numbers), but its proof does involve a fairly
obvious use of (countable) dependent choice, in that we have to construct an infinite
sequence of elements of the locale in which there is an arbitrary choice at each step,

One way to sidestep this problem would be to work with the category KCRegLoc
of compact completely regular locales, instead of KRegLot. (It is not hard to define’
complete regularity for locales; one simply takes the definition of regularity and

replaces the relation “b<a” with “there exists a family of elements (c,l 9e 0)

with b<c,€¢,<a whenever p<g”. Alternatively, one may follow the approach
of Reynolds [21], who axiomatizes the properties of cozero-set lattices under the
name “Alexandroff algebra”, and defines a locale to be completely regular if it is
generated by an Alexandroff algebra. It is not hard to prove that the two approaches
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are equivalent.) Having done this, it is then possible to follow one of the classical
constructions of BX (for example, Cech’s original construction by embedding X
in a product of copies of [0,1]) to obtain a left adjoint for the inclusion
~ KCRegLoc — Loe. (See, for example, Theorem 12 of [7].)

Thus we are faced with the possibility that, in the absence of the axiom of choice,
there may be two different functors on the category of locales, both of which gener-
alize the usual Stone-Cech compactification for spaces. (I have to admit that I do
not know any example of a compact regular locale which is not completely regular;
but it should not be impossibly difficult to construct one in some Fraenkel-Mostowski
model of set theory.) It is not at all clear which of the two constructions actually
deserves the name “Stone-Cech compactification”. (A frivolous suggestion: perhaps
one could be called “Stone-Cech compactification” and the other “Cech-Stone
compactification”!)

5. Topos-theoretic applications. The author’s interest i the subject of this paper
was originally aroused by the study of internal locales in a topos, and it may be helpful
to give a brief account of the reasons for this study, and the way in which the results
of this paper may be applied to it. For topos-theoretic definitions and notation, we
refer the reader to [15]. .

We shall say a geometric morphism f: F— E is localic if 1 is an object of
generators [15, 4.43] for F over E. In this case the relative Giraud theorem [15, 4.46]
may be stated in a more explicit form: F is equivalent to the topos of E-valued
sheaves (for the internal “canonical topology”) on an internal locale A4 in 13‘; more-
over, 4 is determined up to isomorphism by f; being f,(Qp) [15, 5.38]. Inspection
of the proof of Lemma 4.4 in [15] shows that both halves of the lemma remain true
with “bounded” replaced by “localic”; in particular, if F is a Grothendieck topos
satisfying (SG) [15, 5.31] (and hence localic over Set), then any geometric morphism
from F to another Set-topos E is localic.

Let f: ¥ — X be a continuous map of topological spaces, and let [ also denote
the geometric morphism Shv(¥) — Shv(X) which it induces. By the remarks above,
this geometric morphism is localic, and so is entirely determined by the internal
locale f4(Qy) in Shv(X). (The underlying sheaf of sets of J«(Ry) is the assignment

Ul {rea(m) vef ).

Now, just as many. interesting topological properties of X’ may be viewed as proper-
ties of the topos Shv(X) (or equivalently of the locale Q(X)), so it seems plausible
that many interesting properties of the map f (at least those which are “local on the
base”) may be viewed as properties of Shv(Y) as a Shv (X)-topos, i.e. of the internal
locale fi(Qy).

(Of course, the same techniques can be used when X and Y are replaced by
locales; the point is, however, that even if we start with “honest” spaces X and Y,
the internal locale f,(Qy) will not in general be spatial. In fact points of f,(Qy)
correspond to sections of f; 5o — under mild separation assumptions on ¥— -f+(Qy)
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is spatial iff f has “enough local sections”, in the sense that every y € ¥ is in the image
of a section of f over an open neighbourhood of f(»).)

In particular, the techniques described above can be applied to the notion of.
propriety. Recall that a map f: Y— X is said to be proper if

(i) For every x € X, the fibre f~(x) is compact.

(i) f is closed, i.e. the image of a closed subset of Y is closed in X.

(ili) f is separatedy i.e. the diagonal map 4: ¥— Y'xyY is closed.

It can be shown that under mild separation conditions on X (the Tp-axiom of
Aull and Thron [1] is sufficient) f is proper iff the locale £, (Qy) is compact regular.
(Details of the proof will appear elsewhere [16].) It therefore seems reasonable to
define a map of locales f: B— A (or more g\enerally a localic geometric morphism
J: F— E) to be proper iff the internal locale f,(f) is compact regular in Shv(4)
(respectively E). .

To apply the Tychonoff and Stone—Cech theorems in a topos, we need to know
that their proofs are not only choice-free but also constructively valid, i.e. that
they do not make unjustified use of the law of excluded middle. Now the proof of
the Tychonoff theorem given in Section 2 is not constructive, because of the trans-
finite induction involved in Lemma 2.6; but that in Section 3, by reducing the
induction to a single step, is constructive at least as far as the locales 4, are concern-
ed. As presented, however, the proof did make use of the law of excluded middle
for the index set I', in definitions like that of f,(s, ) in Lemma 2.4.

In fact what is wrong here is our definition of the semilattice coproQuct A;
if the index set I does not obey the law of excluded middle, we cannot identify A4
with a subset of the semilattice product B. So we have to regard its elements as
formal finite meets of elements of the form ¢,(a,), subject to the obvious identifica-
tions; and then it will be found that all the relevant arguments in Sections 2 and 3
can be carried out constructively (though at some cost in added notational com-~
plexity), with the exception of the proof of Lemma 2.4. For arbitrary locales 4,,
the latter appears to be illegitimate if I" does not satisfy the law of excluded middle;
but in thé case which interests us, when the 4, are compact and locally compact,
we can tepair the damage by arguments like those of Lemma 3.1. As an example
of the methods employed, we shall give a constructive proof of a lemma which covers
both 2.4 and 3.1. First, however, let us remark that the word “finite”, as applied
to subsets of I', must be interpreted in a topos as “Kuratowski-finite” [15, 9.11];
and Theorem 9.20 of [15], which asserts that Kuratowski-finite objects are “finitely
enumerable”, is required to justify both the finite induction used in the proof of
Lemma 2.3 and the notation used in what follows. }

LreMMA 5.1. With the notation of Section 2, suppose the locales A, are compact
and locally compact. Then for any Cy-ideal I'in A, D(I) is a C-ideal.

» .
Proof. Let a = /\ g,(a,,) be a typical element of 4, and suppose we have an
fa) . -

expression a,, = \/ S in A,, such that each g¢,,(s)Aa is in D(I). Then for every
3 — Fundamentha Mathématicae CXIII/1
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n
choice of b,, <a, for each i and ¢ <s for some s € S, we have g, (A A @by el
i=1

And since I is a C,-ideal, we deduce that every element of the form
) "
4,5V VB A i/\lqw(b],,)

is in I But the family of all such elements is directed, apd their join in 4 is
4,/ S)A ‘/_\lq,‘(a,‘) =a. So ae D(I). B

Thus we may prove the Tychonoff theorem for arbitrary (E-indexed) families
of compact and locally compact locales in an arbitrary topos E. The arguments of
Section 4 are all constructive,so we deduce that the Stoné—Cech theorem holds too.
Applying this to the concept of proper map which we discussed earlier, we deduce

THEOREM 5.2. Let f: F— E be a localic geometric morphism. Then there .exists
a (unique) best possible factorzzatton of f through a proper map f': F'— E.

Proof. Let F' be the topos of E-valued sheaves on the Stone—Cech com-
pactification of f*(.Qp) The unit map f*(Q ) - B( f*(QF)) induces a geometric mor-
phism F— F' over {;‘ with the required “universal property. H

In fact the word “localic” could be dropped from the hypotheses of the theorem,
since it is well known that any geometric morphism f has a best possible factorization
through a localic one, namely that which corresponds to f,(Q) (cf. [12], TV 7. 8(d)).
For spatial toposes, the factorization of Theorem 5.2 is that constructed by
Dyckhoff [8, 9], and it seems likely that many of thie properties of Dyckhoff’s fac-
torization can be obtained directly from known properties of Stoneé-Cech com-
pactifications. Further applications of this idea will appear in [16].

Added in proof. Since this paper was submitted, I have learned that the Stone-Cech com-
pactification of locales in 2 topos has been considered independently by B. Banaschewski and
C. J. Mulvey [28]. Their methods are different from those of the present paper, and do not
involve the Tychonoff theorem (although, of course, the Tychonoff theorem for compact
regular locales may be deduced from their work).
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