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Theorems on common fixed points
by

Brian Fisher (Leicester)

Abstract. It is proved that if $ and T are continuous mappings of a complete metric space
(X, d) into itself satisfying the inequality
d((ST)"x, (TS)%y) < c. max {d ((STY, (T5)%), d(S(TSHy, T(ST)"x), d((STYx, T(ST)"'x),
d(STSY'y, (TS)): 0<r<p; 0<r'<p; 0<s<q; 0<s'<g}

for all x, y in X, where 0<c<1 and p, g are fixed positive integers, then S and T have a unique
common fixed point z. Further, if g = 1, the condition that T be continuous is not necessary.

In a recent paper, see [1], the following theorem was proved
TuroreM 1. Let T be a continuous mapping of a complete metric space (X, d)
into itself satisfying the inequality
d(T?x, T%)<c.max {d(T"x, T*), d(T"x, T %), d(T*y, T* y):
0<r, r'<p; 0<s,5'<q}
Sor all , y in X, where 0< c<1 and p, q are fixed positive integers. Then T has a unique
fixed point z.

A generalization of this theorem was given in {2] for bounded metric spaces
with the following theorem

* THEOREM 2. Let S and T be continuous, commuting mappings of a complete,
bounded metric space (X, d) into itself satisfying the inequality
d(STT" x, §°T% y)
<c.max{d(S"T" x, S*T*y), d(S"T" x, S°T% x), d(S°T* y,S°T° y):
0<r, 0<p; 0<r, ¢'<p'; 0<s,0<g; 0<s, 0'<q’}
Sor all x, y in X, where 0<c<1 and p,p’,q,q >0 are fixed integers with p+p’,
g+q'=1. Then S and T have a unique common fixed point z. Further, if p’ or q' =0,

then z is the unique fixed point of S and if p or q = 0, then z is the unique fixed pont
of T.
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It was also shown in [2] that the condition that § and T commute was necessary

in this theorem. It is possible however that the condition that X be bounded is not
necessary in this theorem. . .

We now prove a theorem which does not require S and 7' to commute or X

to be bounded.

THEOREM 3. Let § and T be continuous mappings of a complete metric space (X, d)
into itself satisfying the inequality

(1) d((ST) x, (TS)"y)
<c. max{d((ST)'x, (TS)'y), d(S(T'SY"y, T(STY"x), d((STY'x, T(STY" ),
d(S(TSY"y, (TS)’y): 0<r, s<p; O<r', s'< p)

Jor all x, y in X, where 0<c<1 and P is a fixed positive integer. Then S and T have
a unique common fixed point z.

Proof. By increasing the value of ¢ if necessary, we may assume that <c<1.
Inequality (1) will still hold but we will then have c/1—c)>1.
Let x be an arbitrary point in X and define the points x, inductively by

Xo =X, Xapeq = Txy,, Xomt2 = SXgyyy

for n=0,1,2, ... The sequence of points {x,:in=1,2, ..} is bounded. For if
not, the set of real numbers {d(xans X2p41), d(Xppe1s X2p): m=1,2,..} is un-
bounded and so there exists an integer n such that '

@ (=) max{d(esn, Xzp41), Az 1, ¥2)) e oy
>c.max {d(x,, x5,), d(%,, Xyp01): 0<s<2p}.
We will suppose that this » is the smallest such n so that
(3) max {d(xZn ’ x2p+ 1) ’ d(x2n+ 1s xlp)}
>max{d(x2r! x2p+ 1)’ d(x2r+1 ) xzp): 0 <r<n}

and since ¢/(1--c)>1 inequality (2) implies that #>p. It now follows from in-
equalities (2) and (3) that .

(1-c). max {d(x,,, X2p+1)> A(Xapt15 X3,)}
>c.max{d(x;,4y, Xop+1)s d(Xa4, Xop): 0<s<p}
Zc.max{d(xz,4.1, X5,) ~d(%,, X2p+1)s A(ag X204 1) —d(Xp 41, X3p):
. 0<s<p; 0<rn}

Ze.max{d(x41, X5,), d(x,,, X2r+1): 0<s<p; 0<rn}—

. —c.max{d(x,,, Xap+1)s A(Xany s, xz,;)}'

and so

@ max{d(x,, X2p+1) d(Xoniq, X35}

Zemax{d(x,;, X,,), d(X35, X3041): 0<s<p; 0<r<n}.

N
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‘On applying inequality (1) we now have

max{d(Xsy, X2p41)» A X2n+15 Xop)}
<c.max{d(xa, X250, A(Xap415 X25)> d(Xagr 42> Xorrs 0> (29415 X2r42) 5
A(Xges Xzt 1) d(x2;+1 s Xgpi2)s AXag sz Xagr1)s d(x‘zs'+1 » Koo)'t

0<p+r—n,s<p; 0<p+r'—n,s'<p}

<e.max{d(xy, Xz5r1): OSr, s<1}

" and so

() max{d(a, X2p+1)s d(2ns15 ¥2,5)} < c*max{d(xs,, Xp541): 01, s<n}
when k = 1. Now assume that inequality (5) holds for some positive integer k.
Then because of inequality (4)

max {d(Xan, X2p+1)s d(X2n+15 %o,y < cFmax {d(xa,, X547 PST, s<n}.

After applying inequality (1) to the right hand side of this inequality it follows that

max{d Xy, X2pt1)> A(Xni 1, X2} S max{d(x2r, X2541)? O, s<n}. .
Illeqﬁality (5) now follows by induction. However, on letting k tend to inil’nity in
inequality (5) we have

max{d(xz,,, x2p+1)l d(Xans1> xlp)} =0,
contradicting the definition of n. The sequence {x:n=1, 2, ..} must therefore be
bounded and so
sup{d(x,,x): 1,5 =0,1,2,..} = M<o.
For arbitrary £>0, choose an integer N so that
MM <e.

1t follows that for m, n>2Np and on using inequality (1) N times

. A, X< M<e.

i i tric
th= Cauchy sequence in the complete me
hus the sequence {x,: n.=1,2,..} is2 ; .
:paci X an?l so has ; limit z in X, Since S and T are contmuoug it follows that

i i dT.
so z is a common fixed point of S an )
e I\;)ow suppose that S and T have a second common fixed point w. Then

d(z, w) = d((STYz, (TS)*w)<cd(z, W) ’
on using inequality (1). Since ¢<1, z=w and so z is the unique common fixed
point of S and 7. This completes the proof of the theorem.
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COROLLARY. Let S and T be continuou.; m;zppings of a complete metric space (X, d)
into itself satisfying the inequality
©  d((ST)"x, (TS)')
<c.max {d((ST) x, (TS)'y), d(STS)"y, T(ST)" x), d((ST)"x, T(ST)" %),
d(S(TSY y, (TSY'y): 0<r<p; 0<r'<p; 0<s<q; 0<s'<q)

for all x, y in X, where 0< c<1and p, q are fixed positive integers. Then S and T have

common fixed point z.
Proof. Suppose that p>gq. Then

d((ST)"x, (TS)")
<c.max {d((STY x, (TSY'y), d(S(TSY 'y, T(ST)" %), d((ST) %, T(STY %),
d(S(TSY y, (TSYy): 0<r< p; 0<r' <p; p—g<s<p; P—g<s'<p}
<c.max{d((ST)'x, (TS)'y), d(S(TS)"y, T(STY'x), d((ST)"x, T(ST)" %),
a(sas)’y, (TSYy): 0<r, s<p; 01, 5'<p)
for all x, y in X. The result now follows from the theorem. The  same result
holds "if ¢g>p. !

We note that although the mappings S and T in Theorem 3 and its corollary
haye a unique common fixed point it is possible for S and T to have other fixed
points. This is easily seen by letting X = {x, y, z} with the discrete metric and
defining continuous mapping S and T by

Sx=x, Sy=8z=z Ty=y, Tx=Tz=z.
Then ’ »
STx =TSx=STy =TSy = STz =TSz = z
and so inequality (1) is trivially satisfied with ¢ = 1, but S and T each have two
fixed points.

' It is also necessary that both the mappings S and T be continuous in Theorem 3
if ‘p>1 and in its corollary if p, ¢>1. To see this let X be the closed interval [0, 1]
with the usual metric. Define a continuous mapping S by

Sx = %x

for all x in X and a discontinuous mapping T by

ix, ifxs#0
Tx = *
* {1, ifx=0.

Inequalities (1) and (6) are satisfied with ¢ = %, but T has no fixed point,
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In the next theorem it is not necessary for the mapping T to be continuous,

THEOREM 4. Let S be a continuous mapping and T be a mapping of a complete metric
space (X, d) into itself satisfying the inequality

(D d((ST)’x, TSy)

<e.max {d((ST) x, (TS)Y), d(Sy, T(ST)"'x), d((STY x, T(ST)"x),

: d(Sy, (TS)y): 0<r<p; 0<r'<p; s =0, 1}
for all x, y in X, where 0<c<1 and p is a fixed positive integer. Then S and T have

a unique common fixed point z. :

Proof. Let x be an arbitrary point in X and let the sequence {x,: n = 1,2, ...}
be as defined in the proof of Theorem 3. Then since inequality (1) holds if inequality
(7) holds, the sequence {x,: n =1,2,..} is again a Cauchy sequence with a limit z
in the complete metric space X. Since S is continuous, z is a fixed point of S. Further

d(z,Tz) = d(z, TSz2)
< d(z, x3,) +d(x4,, TSZ)
< d(z, x,) +c.max{d(x,,, (TS)'z), d(5z, Xayr41), d(Xars X2r41)s
d(Sz, (TSY'z): 0K p+r—n<p; 0<p+r'—n<p; s =0,1}
and on letting n tend to infinity we have
d(z, Tz2)<cd(z,Tz) .
It follows that z is a common fixed point of S and T. The uniqueness of z follows

as before. This completes the proof of the theorem.

It is still necessary for S to be continuous in this theorem. To see this let X be
the closed interval [0, 1] with the usual metric. Define discontinuous mippings S
and T on X by '

S0=T0=1, o
Sx=1%x, Tx=13%x, ifx#0.
Inequality (7) is satisfied with ¢ = % but neither S nor T have a fixed point.
In the following theorem it is not necessary for either S or T’ to be continuous.

THEOREM 5. Let S and T be mappings of a complete metric space (X, d) into
itself satisfying the inequality

(®)  d(STx, Ty)<c.max{d(Tx,y), d(x, Ty), d(y, Ty), d(x, Tx), d(Tx, STx)}

for all x, y in X, where 0<c<1. Then S and T have a unique common fixed point z.
Further z is the unique fixed point of T.

Proof. Let x be an arbitrary point in X and let the sequence {x,: n = 1,2, ...}
be as defined in the proof of Theorem 3. Then since inequality (1) holds if in-
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eqtfali'ty (8,) holds, the sequenge {x.: n=1,2, ...} is again a Cauchy sequence with for n=1,2,.. Since X is compact there exist convergent subsequences
2 limit z in the complete metric space X. Thus ) = k=1,2,.) and {z, =z k=1,2,..} of {x;n=1,2,..} and
d(z, T2)<d(z, x3,)+d (x,,, T2) {z,: n =1, 2,...} converging to x and z respectively. Letting ¢,, = c; fork= 1,2, ...
we have
<d(z’ xl")+ c’ma‘x{d(xZn—l » Z), d(xZn—Z’ TZ), d(z, TZ),
d(STY 4, (TSY'z})

d(x"“ ,x,,_'),dx,,_ > Xan, .
=22 Fnm 1)y 0=, %)} > ¢l max {d((ST)' x,, (TSY'z}), d(STS)* 24, T(STY %3, -

A((STY x4, T(STY x1), d(S(TSY z;,, (TS)' zi):
0<r<p; 0P <p; 0<s<g; 0<s'<q}.

and on letting 7 tend to infinity we have
d(z, To)<ed(z, T2) .
It follows that z is a fixed point of T and so
d(Sz, z) = d(STz, Tz)

< c.max{d(Tz, 2), d(z, T2), d(z, T%), d(z, T2), d(Tz, ST2)} d((STY x, (TS)*z)
= ed(z, 5. >max {d((ST) x, (TSY'2), d(STS)" z, T(STY"' %), d((STY x, T(STY'x),

Hence z is a common fixed point of § and T. ' d(S(TS),,Z’ (T5)'2): 0<re<p; O<r'<ps 0<s<d; oss<a)
Now suppose that T has a second fixed point w. Then

d(z, w) = d(STz, Tw)<cd(z, w)

Letting k tend to infinity we have

which implies that

d it foll i ; d((ST)"x, (TS)'z) = 0
and it follows that z is the unique fixed point of T, = max{d((STY x, (TS)'2), d(TSY" z, T(STY" %), d((STY'x, T STY'5),

W .
. € now prove a theorem for.compact metric spaces. d(S(TSY" z, (TS)’z): 0<r<p; 0<r'<p; 0<s<q; 0<s'<q}.
HEOREM 6. Let S and T be continuous mappings of a compact metric space (X, d) ’ ,

into itself satisfying the inequality [ ! It follows that z = x is 2 common fixed point of § and 7.
©)  d((STY %, (IS)%) : ¢ Now suppose that S and T have a second distinct common fixed point w. Then
<max{d((STY'x, (TS)'y), d(S(TS)*y, T(ST)"x), d((STY'x, T(ST)"x), 0<d(z, w) = d((ST)"z, (TS)*w)<d(z, w)
S ). . g . v " y 5

- d(SASYy, TS)y): 0<r<p; 0<r'<p; 0<s <¢; 0<s'<q} A on using inequality (9), giving a contradiction. The common fixed point z must

Jor all x, y in X if the right hand side of the inequality is positive and ’ therefore be unique. This completes the proof of the theorem.
. d((ST)"x, (TS)Y) = 0

otherwise, where p, q are fixed positive integers. Then S and T have a unique common ’ References
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