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The equivalence of definable quantifiers
in second order arithmetic

by

Wojciech Guzicki (Warszawa)

Abstract. In this paper we generalize the notion of equivalent quantifiers considered by
M. Dubiel in her paper [2] and show nonequivalent countably additive quantifiers in some model
of second order arithmetic.

Let L be the language of second order arithmetic 4, as described in [1]. If M
is a model of 4, then by Ly, we denote the language L with additional constants to
denote elements of M.

We consider a mapping which assigns to a variable x and a formula
@@, X1, .y %) Oof L, with free variables X, Xy, ..., X,, another formula
W%y, s x,) of L, with free variables X;, ..., X,, which we shall denote by
Oxp (X5 X5 ey Xp)e

If M is a model of A,, we shall say that the mapping O is a definable quantifier
in M iff the model M satisfies the following axioms:

16 (p—¥) — (Qxp— Ox),
@ Ox(pvi) — Oxpv Oxi,
3 Ox(x = x),

@ 13y Ox(x = ).

We call two quantifiers Q; and Q, equal in M iff for any formula @ (x4, ..., X,)
of L the following equivalence is satisfied in M:

Wity oo V6, [0 X0 (X, Xgs vons %) = QX0 (X, Xg5 e )] -

The above notion of equality of quantifiers is exactly the notion of equivalence
of [2]. Our generalization closely corresponds to the following theorem, due to Kri-
vine and Mc Aloon [4].

DerINITION 1. A formula 9(x) of the language Ly, is countable-like in M (for
the quantifier Q) iff for any formula @ (x,y) of Ly

ME Qy3x[8() & o, )] — Ax0yo(x,)) . .
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THEOREM 2. If M is a countable model of A, and Q a definable quantifier in M,
then there exists a proper elementary extension N>M such that any formula 9(x)
of Ly is countable-like in M iff

{xeM: MES[x]} = {xeN: Nk 9[x]}.

DeriniTioN 3. Two quantifiers 0, and Q, are equivalent in the model M iff
they produce elementary extensions via Theorem 2 with the same formulas preserved
and tpe same formulas enlarged. In other words, Q; is equivalent to Q, iff they
have in M the same countable-like formulas.

The proofs of the following facts can be found in [4].

Lemva 4. If 9 is countable-like, then —1Qx9(x).

LemMa 5. If the model M satisfies the Jollowing axioms

® Qy3xp — Ax0yev OxTye

and M E ~10x9(x), then 8 is countable-like in M.

Quantifiers s.atisfying axiom (5) are called Keisler quantifiers in [2]. Let us
observe.that equivalent Keisler quantifiers are equal. Obviously equal quantifiers
are ‘equlvalcnt. Now we shall produce an example of two quantifiers which are
equivalent but different. '

Let Q.xp(x, x4, ..., x,) denote the formula
_lay Vx [(P(xa Xis ey xn) - Si[x = (y)i]] >

where (y); = {n: J(n, 1) ey}, J being the pairing function J(n, m) = 2"2m+1)—1
for natural numbers. Then Q, is a Keisler quantifier which formalizes the notion of
uncountability.

Next, let Qpx¢(x, Xy, ..., X,) be the formula
Vy[Bord(y) — 3x[Bord (x) & y<x & ¢(x, Xgy e 211,

where Bord (x) denotes the fact that x is a well-ordering of a set of natural numbers
and x<y means that the well-ordering x is shorter than the well-ordering y. The
quantifier Q, formalizes the idea that arbitrarily large well-ordering satisfy the
formula ¢. '

The quantifiers 0, and Q, are different in all models of A,. Namely, there are
uncountably many well-orderings of a given infinite length, and so for y’ such that
M F Bord[y] and M F“w=<Xy” we have ME Q.x[x<y] and MF M0 x[x<y]
In fact, one can easily show that the quantifier Q, is never a Keisler cfuanti\ﬁer'

The aim of the paper is to show that in some models of A, the quantifiers Q.
and Q, are equivalent and in some models of A4, they are not equivalent ’

Let us observe that the quantifiers O, and @, are countably additive 1 e. the
iohrmula N(x), which says that x is a natural number, is countable-like fo; e.ac-h of

em. ;

Now let M be a model of 4, and let a formula B(x, y) of Ly define in M a linear
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ordering < of the universe with the property that proper initial segments of M are
countable in M.

THEOREM 6. In the model M all countably additive quantifiers are equivalent.

In view of Theorem 2, in order to prove the above theorem it suffices to prove
the following

LeMMA 7. If N is a proper elementary extension of the model M with the same
natural numbers, then for any formula @(x) of Ly, M F 11Q.xp(x) iff

{xeM: MEop[x]} = {xeN: NEo[x]}. .

Proof. Let us denote by < the linear ordering of the model N defined in NV by
the formula B. Since M<N, it is an extension of the ordering < of M. We prove
that N is then an end extension of M, i.e. for xe M and'y e N— M we have x< y.

Suppose that y<x. Since M<N, the proper initial segments of N are count-
able in N. Thus there exists an a€ N such that ‘

NEVz[z<x = 3ilz = @] .

Since M~<N, such an & exists in M. But then y = (a), for some a, i€ M, and so
y €M, a contradiction.

Now observe that if ¢ defines a subset of M that is countable (in the sense of M),
then it is bounded in M. Any upper bound of ¢ in M is an upper bound of ¢ in N
and so ¢ is preserved. On the other hand, if ¢ is preserved in the extension, then it
is bounded in N by any element y e N—M.

Hence it is bounded in M, and so it is countable in M, Q.E.D.

COROLLARY 8. If MF A;+V =1L, then Q. and Q, are equivalent in M.

Now we shall construct a model of 4, in which the quantifiers Q. and Q, are
not equivalent. The required model will be the continuum of a transitive model
of ZFC. A closer inspection of the proof shows that it is enough to assume the
existence of a transitive model of ZFC™+V = HC. In the proof we use the method

of forcing in the bodlean version.
Let M be a countable transitive model of ZFC+V = L. We consider the usual

Cohen conditions, which add o, generic reals: pe Piff p: a— 2, aSw; X @ finite,

p<yq iff p2g. _
Then P satisfies the countable chain condition. Let GSP be an M-generic

filter and let us consider the model M[G]. We define certain elements of M[G]
together with their boolean mames.
ay={new: UG, n) =0},
dom(ay) = {fi: new},
agf) =Y, {peP: p(&,m) =0},
b = {az f<w)1w} s
dom(p) = {a;: ¢é<alf},
bla) =1.
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Then b is an uncountable set of reals in M [G]. For any real r< o of the model M[G]

we take a boolean term r such that valgr) = r and dom(r) = {#: ne w}. For

each new we choose a countable subset {p\: mew} of P such that

() =Y {ph: me o).

We call boolean terms of form @y, b, £, for x e M and r as above, acceptable
parameters.

An acceptable formula or sentence is a formula or sentence of the forcing
language such that every term occurring in it is acceptable.

We define supports of acceptable parameters.

supp(r) = {¢ e o}': An, m, kK¢, Ky € dom (pC]},
supp (ay) = {&},
supp (b) = supp(£) = 0.

Then for any acceptable parameter ¢ we have
ME [supp(?)|<w.

Next we consider permutations n: @} — ¥, which move only. finitely many
ordinals. They extend in a natural way to automorphisms of P

mp(né,n) = p(&,n),
and thence to automorphisms of the boolean model M. We have
nhb=5b and nf=2%.

Levma 9 (Permutation Lemma). If p |F @ (xy, ..., X,) then mp |F QX1 vuy X,).
For a proof see e.g. [S].
Now we define .

fix(4) = {n: VEe A[nE = £} for

7‘(“{) = Qpps

Aco¥

and observe that for any acceptable parameter ¢ and = & fix(supp (¢)) we have nt = 1.
Lemma 10 (Restriction Lemma). If ¢ is an acceptable sentence and Ao,
A € M such that supp(z)< 4 for any acceptable parameter t occurring in @, then for
any condition p
Pk = ptAxolto.

Proof. Suppose that p I ¢ and p} 4 x wh<gp. We take a condition g<ptAdxo
such that ¢ I+ 71 and a permutation = which makes nq and p compatible. Then
ng [F T1¢, contradicting p I+ ¢, Q.E.D.

By an open interval in P(w) we mean a finite sequence se |J 2" and write

. new
res for a real rcow in the case where

Viedom()[ier = s(@) = 0].
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Lemma 11 (Continuity Lemma). Let ¢ (x4, ..., x,) be an acceptable formula with n
Jfree variables Xy, ..., %, and let A<y, A€M be such that supp(t)SA for any
acceptable parameter t occurring in . Then for any &,,..,&,¢é A such that
MGk @lay,, ..., ag,] there exist pairwise disjoint open intervals sy, ..., s, such
that ag, €5y, ...,05 €S, and, for al ny,..,n,¢4, if a,€s,.., ay, €S,, then
MGk @lay,, .., a,)

Proof. Let B =4 v {{, ..., §,} and take p e G such that p I ¢(ag,, ..., @,)-
By the Restriction Lemma we may assume that p = p} Bxw. By extending p if
necessary we may also assume that it has the following properties:

&, m> edom(p) & m'<m— <&, m"y edom(p),
¢ # e B—A—Am[p(&y, m) # p(&s, m)].

The above properties allow us to define pairwise disjoint open interwals s, ..., 5,
as follows:

Sl(m) =.p(61: m), ..., $,(m) = P(fn: m) .

Then of course ay €5y,...,a;€5,. Let us take #4,..,7,é4 such that

Gy, €515 e, Uy, €5,. We define a condition g as follows:

q(ﬂl: m) = Sl(m)’ ares q(ﬂm m) = n(m) -

Then ¢q € G. We take a permutation = such that = € fix(4) and n€; = 5y, ..., n&, =1,.
Then 7p I+ ¢ (ay,, ..., a,,) and mpe G becausequnp=qupltAdxwe G, Q.E.D.

COROLLARY 12. Let ¢ (x, Xy, ..., X,) be a set-theoretical fornula. If x, , ..., x,e M
are either reals or ordinals or x;=Db, then there exists a countable subset a,,,.. .. =b,
ry....cn € MG] such that for any x € b—a,,,.. ., there exists an open interval s with
the property

MIGIE @@, Xy, s X) 2 VY ED N s—apy, 2, @ (Vs X105 0005 %)

The proof follows immediately from the Continuity Lemma.

Now we shall observe that Corollary 12 remains valid for a large class of generic
extensions of the model M[G]. Suppose that in M[G] we are given a notion of
forcing Q with the following properties:

(@ Both Q and <, are definable in M[G] by formulas with parameters which
are reals, ordinals or the set b.

(b) The elements of Q can be definably coded by reals (in the definition we again
allow only parameters mentioned in (a).)

() QO satisfies ccc.

Then Corollary 12 is satisfied in every extension M[G][F] for an M[G]-generic
filter F< Q. For a proof let us observe that under assumptions (a), (b), (c) on the
notion of forcing Q there exists a coding.of names of reals of the model M [G][F]
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by reals of M[G). Namely for a boolean term fe M[G]? such that dom(r)
= {f: new} we put 1(A) =Y {g{ne O: mew} for some countable antichain
{g: me w}s Q. Since each g, may be treated as a real, the double sequence
{g": n, me w) can be coded by a single real. We also observe that the assignment
x— % is M[G]-definable. Now it is enough to observe that for any formula ¢ the
relation {{g, Xy, ., %0t ¢ @ (x4, .., X,)} becomes an M[G]-definable relation
between reals and standard elements £. We apply Corollary 12 and for any formula
®(x, Xy, ..., %,) there exists a countable subset ¢,,,...x, S0 in the model M[G][F)
with the following property:
for each x €b—c,y,,...x, there exists an open interval s such that if

gl @R, %y, .., %,) then Vyeb ns—cyp,..xld F (9, %;, oy X))
This immediately implies that Corollary 12 holds in M[G][F].

We are particulary interested in the case where the set b is definable in M[G][F).
In order to do it we apply Harrington’s notion of forcing @(b) as described in [3).
It is proved in [3] that Q(b) satisfies ccc and for any M[G]-generic filter F< Q(b)
the set b is 113 in M[G][F). Therefore b is definable in the model P(w) N M[G][F]F A,.

We leave it to the reader to verify that the notion of forcing Q(b) satisfies con-
ditions (a) and (b) as well. As a consequence of that we infer that there exists a model
M*2M of ZFC with a set of reals b such that b n s is uncountable in M* for any
open interval s and, such that M* satisfies Corollary 12.
. Now let us suppose that a formula ¢ (x, &) (possibly with parameters being reals)
defines in M* a relation in b x w,, such that the set {£e wl™: Axp(x, &)} is un-
countable in M*,

We claim that there exists an xeb such that the set {¢: ¢(x, &} is un-
countable in M*.

We take a set A=b countable in M* and such that for any x e b—4 there
exists an open interval S with the property

M*Eox, H)—Vyebns—4p(y, &).
There are two possible cases:
(1) ~ There are uncountably many ordinals ¢ such that {xeb: p(x, O}s4.

Since 4 is countable, there exists an x e 4 such that the set {&: o(x, &} is un-
countable.

(2)  There is an ordinal &, & w}" such that for ¢ &, we have {x & b: ¢(x, £)} &4,

We take {2, and zeb—4 such that ¢(z, &).
There exists an open interval sy such that

M*EVyebnse—Adp(y, ).

Since there are uncountably many ordinals ¢ such that ¢ = ¢y and only countably
many open intervals s, there exists an open interval s such that the set

{Eeol™ M*EVyeb ns—do(y, &)}
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is uncountable in M*. The set b ns is uncountabfe; therefore there exists an
xeb n s—A and thence there are uncountably many ordinals ¢ such that ¢(x, ¢&),
which proves the claim,

Now we are ready to prove

THEOREM 13. In the model P(w) n M* of A, the quantifiers Q. and Q, are not
equivalent. .

Proof. We show that the set b, which is definable in P(@w) n M*, is countable-
like for the quantifier Q,. Since b is uncountable, it cannot be countable-like for Q..

Let the formula b(y) define the set b and suppose that for some formula ¥ (x, y)
of the language Lpynu+ We have

P(w) n M*F Qx3y1b(y) & ¢ (x, ¥)].
Let us consider a formula ¢ (&, y) such that M* k (&, y) iff y € b and there exists
a well ordering x of type ¢ such that P(w) n M* Ey(x, y). Then the set
{¢eoi™: Ayebo(t, M)}
is un countable in M*. By the claim there exists a y € b such that the set {¢: ¢ (¢, )}
is uncountable in M¥*, i.e. P(w) n M*F Qxi(x,y). Therefore
P(w) n M*EF3yQOx(x,y). Q.E.D.
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