58

Z. Balogh

- [13] R. E. Hodel, Metrizability of topological spaces, Pacific J. Math. 55 (1974), pp. 441-459.
- [14] On a theorem of Arhangel'skii concerning Lindelöf p-spaces, Canad. J. Math. 27 (1975), pp. 459-468.
- [15] M. Ismail, On a theorem of Arhangel'skii, preprint.
- [16] I. Juhász, Cardinal functions in topology, Math. Centre Tract 34, Amsterdam 1971.
- [17] A generalization of nets and bases, Period. Math-Hungar. 7 (1976), pp. 183-192.
- [18] K. Kuratowski, Topology, Vol. 1, Moscow 1966.
- [19] E. Michael and M. E. Rudin, Another note on Eberlein compacts, Pacific J. Math. 72 (1977), pp. 497-499.
- [20] K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), pp. 365-382.
- [21] J. Nagata, A note on Filippov's theorem, Proc. Japan Acad. 45 (1969), pp. 30-33.
- [22] A note on M-space and topologically complete space, Proc. Japan Acad. 45 (1969), pp. 541-543.
- [23] M. E. Rudin, Lectures on set theoretic topology, Regional Conf. Series in Math. No 23, AMS (1975).
- [24] F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. 148 (1977).

Accepté par la Rédaction le 11. 6. 1979

The equivalence of definable quantifiers in second order arithmetic

by

Wojciech Guzicki (Warszawa)

Abstract. In this paper we generalize the notion of equivalent quantifiers considered by M. Dubiel in her paper [2] and show nonequivalent countably additive quantifiers in some model of second order arithmetic.

Let L be the language of second order arithmetic A_2 as described in [1]. If M is a model of A_2 , then by L_M we denote the language L with additional constants to denote elements of M.

We consider a mapping which assigns to a variable x and a formula $\varphi(x, x_1, ..., x_n)$ of L, with free variables $x, x_1, ..., x_n$, another formula $\psi(x_1, ..., x_n)$ of L, with free variables $x_1, ..., x_n$, which we shall denote by $Qx\varphi(x, x_1, ..., x_n)$.

If M is a model of A_2 , we shall say that the mapping Q is a definable quantifier in M iff the model M satisfies the following axioms:

$$(1) \qquad (\varphi \to \psi) \to (Qx\varphi \to Qx\psi) \,,$$

$$Qx(\varphi \vee \psi) \to Qx\varphi \vee Qx\psi,$$

$$(3) Qx(x=x),$$

$$\exists y \, Qx(x=y) \, .$$

We call two quantifiers Q_1 and Q_2 equal in M iff for any formula $\varphi(x_1, ..., x_n)$ of L the following equivalence is satisfied in M:

$$\forall x_1 ... \forall x_n [Q_1 x \varphi(x, x_1, ..., x_n) \equiv Q_2 x \varphi(x, x_1, ..., x_n)].$$

The above notion of equality of quantifiers is exactly the notion of equivalence of [2]. Our generalization closely corresponds to the following theorem, due to Krivine and Mc Aloon [4].

Definition 1. A formula $\vartheta(x)$ of the language L_M is countable-like in M (for the quantifier Q) iff for any formula $\varphi(x,y)$ of L_M

$$M \models Qy \exists x [\vartheta(x) \& \varphi(x, y)] \rightarrow \exists x Qy \varphi(x, y).$$

THEOREM 2. If M is a countable model of A_2 and Q a definable quantifier in M, then there exists a proper elementary extension N>M such that any formula $\vartheta(x)$ of L_M is countable-like in M iff

$$\{x \in M \colon M \models \vartheta[x]\} = \{x \in N \colon N \models \vartheta[x]\} .$$

Definition 3. Two quantifiers Q_1 and Q_2 are equivalent in the model M iff they produce elementary extensions via Theorem 2 with the same formulas preserved and the same formulas enlarged. In other words, Q_1 is equivalent to Q_2 iff they have in M the same countable-like formulas.

The proofs of the following facts can be found in [4].

LEMMA 4. If ϑ is countable-like, then $\neg Ox\vartheta(x)$.

LEMMA 5. If the model M satisfies the following axioms

$$Qy \exists x \varphi \to \exists x Qy \varphi \lor Qx \exists y \varphi$$

and $M \models \neg Qx\vartheta(x)$, then ϑ is countable-like in M.

Quantifiers satisfying axiom (5) are called Keisler quantifiers in [2]. Let us observe that equivalent Keisler quantifiers are equal. Obviously equal quantifiers are equivalent. Now we shall produce an example of two quantifiers which are equivalent but different.

Let $Q_c x \varphi(x, x_1, ..., x_n)$ denote the formula

$$\exists \exists y \, \forall x \left[\varphi(x, x_1, ..., x_n) \to \exists i \left[x = (y)_i \right] \right],$$

where $(y)_i = \{n: J(n, i) \in y\}, J$ being the pairing function $J(n, m) = 2^n(2m+1)-1$ for natural numbers. Then Q_c is a Keisler quantifier which formalizes the notion of uncountability.

Next, let $Q_b x \varphi(x, x_1, ..., x_n)$ be the formula

$$\forall y \left[\text{Bord}(y) \rightarrow \exists x \left[\text{Bord}(x) \& y \prec x \& \varphi(x, x_1, ..., x_n) \right] \right],$$

where Bord(x) denotes the fact that x is a well-ordering of a set of natural numbers and $x \prec y$ means that the well-ordering x is shorter than the well-ordering y. The quantifier Q_b formalizes the idea that arbitrarily large well-ordering satisfy the formula φ .

The quantifiers Q_c and Q_b are different in all models of A_2 . Namely, there are uncountably many well-orderings of a given infinite length, and so for y such that $M \models \operatorname{Bord}[y]$ and $M \models "\omega \leq y"$ we have $M \models Q_c x[x \leq y]$ and $M \models \neg Q_b x[x \leq y]$. In fact, one can easily show that the quantifier Q_b is never a Keisler quantifier.

The aim of the paper is to show that in some models of A_2 the quantifiers Q_2 and Q_h are equivalent and in some models of A_2 they are not equivalent.

Let us observe that the quantifiers Q_c and Q_b are countably additive, i.e. the formula N(x), which says that x is a natural number, is countable-like for each of them.

Now let M be a model of A_2 and let a formula $\beta(x, y)$ of L_M define in M a linear

ordering \leq of the universe with the property that proper initial segments of M are countable in M.

THEOREM 6. In the model M all countably additive quantifiers are equivalent.

In view of Theorem 2, in order to prove the above theorem it suffices to prove the following

LEMMA 7. If N is a proper elementary extension of the model M with the same natural numbers, then for any formula $\varphi(x)$ of L_M , $M \models \neg Q_c x \varphi(x)$ iff

$$\left\{x\in M\colon\, M\models\varphi[x]\right\}=\left\{x\in N\colon\, N\models\varphi[x]\right\}.$$

Proof. Let us denote by \leq the linear ordering of the model N defined in N by the formula β . Since M < N, it is an extension of the ordering \leq of M. We prove that N is then an end extension of M, i.e. for $x \in M$ and $y \in N-M$ we have x < y.

Suppose that $y \le x$. Since M < N, the proper initial segments of N are countable in N. Thus there exists an $a \in N$ such that

$$N \models \forall z [z \leqslant x \equiv \exists i [z = (a)_i]].$$

Since M < N, such an a exists in M. But then $y = (a)_i$ for some $a, i \in M$, and so $y \in M$, a contradiction.

Now observe that if φ defines a subset of M that is countable (in the sense of M). then it is bounded in M. Any upper bound of φ in M is an upper bound of φ in N and so φ is preserved. On the other hand, if φ is preserved in the extension, then it is bounded in N by any element $y \in N-M$.

Hence it is bounded in M, and so it is countable in M, Q.E.D.

COROLLARY 8. If $M \models A_2 + V = L$, then Q_c and Q_b are equivalent in M.

Now we shall construct a model of A_2 in which the quantifiers Q_n and Q_h are not equivalent. The required model will be the continuum of a transitive model of ZFC. A closer inspection of the proof shows that it is enough to assume the existence of a transitive model of $ZFC^- + V = HC$. In the proof we use the method of forcing in the boolean version.

Let M be a countable transitive model of ZFC+V=L. We consider the usual Cohen conditions, which add ω_1 generic reals: $p \in P$ iff $p: a \to 2$, $a \subseteq \omega_1 \times \omega$ finite, $p \leq q \text{ iff } p \supseteq q.$

Then P satisfies the countable chain condition. Let $G \subseteq P$ be an M-generic filter and let us consider the model M[G]. We define certain elements of M[G]together with their boolean names.

$$\begin{aligned} a_{\xi} &= \{n \in \omega : \bigcup G(\xi, n) = 0\}, \\ \operatorname{dom}(a_{\xi}) &= \{\hat{n} \colon n \in \omega\}, \\ a_{\xi}(\hat{n}) &= \sum \{p \in P \colon p(\xi, n) = 0\}, \\ b &= \{a_{\xi} \colon \xi < \omega_{1}^{M}\}, \\ \operatorname{dom}(b) &= \{a_{\xi} \colon \xi < \omega_{1}^{M}\}, \\ b(a_{\xi}) &= 1. \end{aligned}$$

Then b is an uncountable set of reals in M[G]. For any real $r \subseteq \omega$ of the model M[G] we take a boolean term r such that $\operatorname{val}_G(r) = r$ and $\operatorname{dom}(r) = \{\hat{n}: n \in \omega\}$. For each $n \in \omega$ we choose a countable subset $\{p_{n,m}^{(r)}: m \in \omega\}$ of P such that $r(\hat{n}) = \sum \{p_{n,m}^{(r)}: m \in \omega\}$.

We call boolean terms of form a_{ξ} , b, \hat{x} , for $x \in M$ and r as above, acceptable parameters.

An acceptable formula or sentence is a formula or sentence of the forcing language such that every term occurring in it is acceptable.

We define supports of acceptable parameters.

$$\begin{split} & \operatorname{supp}(r) = \left\{ \xi \in \omega_1^M \colon \exists n, m, k \left[\langle \xi, k \rangle \in \operatorname{dom}(p_{n,m}^{(r)}) \right] \right\}, \\ & \operatorname{supp}(a_{\xi}) = \left\{ \xi \right\}, \\ & \operatorname{supp}(b) = \operatorname{supp}(\hat{x}) = 0. \end{split}$$

Then for any acceptable parameter t we have

$$M \models |\operatorname{supp}(t)| \leq \omega$$
.

Next we consider permutations $\pi \colon \omega_1^M \to \omega_1^M$, which move only finitely many ordinals. They extend in a natural way to automorphisms of P

$$\pi p(\pi \xi, n) = p(\xi, n),$$

and thence to automorphisms of the boolean model $M^{(P)}$. We have

$$\pi(a_{\varepsilon}) = a_{\pi \varepsilon}, \quad \pi b = b \quad \text{and} \quad \pi \hat{x} = \hat{x}.$$

LEMMA 9 (Permutation Lemma). If $p \mid \vdash \varphi(x_1, ..., x_n)$ then $\pi p \mid \vdash \varphi(\pi x_1, ..., \pi x_n)$. For a proof see e.g. [5].

Now we define

$$fix(A) = \{\pi : \forall \xi \in A[\pi \xi = \xi]\} \text{ for } A \subseteq \omega_1^M$$

and observe that for any acceptable parameter t and $\pi \in fix(supp(t))$ we have $\pi t = t$.

LEMMA 10 (Restriction Lemma). If φ is an acceptable sentence and $A \subseteq \omega_1^M$, $A \in M$ such that $\operatorname{supp}(t) \subseteq A$ for any acceptable parameter t occurring in φ , then for any condition p

$$p \Vdash \varphi \rightarrow p \upharpoonright A \times \omega \Vdash \varphi$$
.

Proof. Suppose that $p \Vdash \varphi$ and $p \upharpoonright A \times \omega \nvDash \varphi$. We take a condition $q \leqslant p \upharpoonright A \times \omega$ such that $q \Vdash \neg \varphi$ and a permutation π which makes πq and p compatible. Then $\pi q \Vdash \neg \varphi$, contradicting $p \Vdash \varphi$, Q.E.D.

By an open interval in $P(\omega)$ we mean a finite sequence $s \in \bigcup_{n \in \omega} 2^n$ and write $r \in s$ for a real $r \subseteq \omega$ in the case where

$$\forall i \in \text{dom}(s) [i \in r \equiv s(i) = 0]$$
.

Proof. Let $B = A \cup \{\xi_1, ..., \xi_n\}$ and take $p \in G$ such that $p \Vdash \varphi(a_{\xi_1}, ..., a_{\xi_n})$. By the Restriction Lemma we may assume that $p = p \uparrow B \times \omega$. By extending p if necessary we may also assume that it has the following properties:

$$\langle \xi, m \rangle \in \text{dom}(p) \& m' < m \rightarrow \langle \xi, m' \rangle \in \text{dom}(p),$$

$$\xi_1 \neq \xi_2 \in B - A \rightarrow \exists m [p(\xi_1, m) \neq p(\xi_2, m)].$$

The above properties allow us to define pairwise disjoint open interwals $s_1, ..., s_n$ as follows:

$$s_1(m) = p(\xi_1, m), ..., s_n(m) = p(\xi_n, m)$$

Then of course $a_{\xi_1} \in s_1, ..., a_{\xi_n} \in s_n$. Let us take $\eta_1, ..., \eta_n \notin A$ such that $a_{\eta_1} \in s_1, ..., a_{\eta_n} \in s_n$. We define a condition q as follows:

$$q(\eta_1, m) = s_1(m), ..., q(\eta_n, m) = s_n(m).$$

Then $q \in G$. We take a permutation π such that $\pi \in \text{fix}(A)$ and $\pi \xi_1 = \eta_1, ..., \pi \xi_n = \eta_n$. Then $\pi p \Vdash \varphi(a_n, ..., a_n)$ and $\pi p \in G$ because $q \cup \pi p = q \cup p \upharpoonright A \times \omega \in G$, Q.E.D.

COROLLARY 12. Let $\varphi(x, x_1, ..., x_n)$ be a set-theoretical formula. If $x_1, ..., x_n \in M$ are either reals or ordinals or $x_i = b$, then there exists a countable subset $a_{x_1,...,x_n} \in b$, $a_{x_1,...,x_n} \in M[G]$ such that for any $x \in b - a_{x_1,...,x_n}$ there exists an open interval s with the property

$$M[G] \models \varphi(x, x_1, ..., x_n) \rightarrow \forall y \in b \cap s - a_{x_1, ..., x_n} \varphi(y, x_1, ..., x_n)$$

The proof follows immediately from the Continuity Lemma.

Now we shall observe that Corollary 12 remains valid for a large class of generic extensions of the model M[G]. Suppose that in M[G] we are given a notion of forcing Q with the following properties:

- (a) Both Q and \leq_Q are definable in M[G] by formulas with parameters which are reals, ordinals or the set b.
- (b) The elements of Q can be definably coded by reals (in the definition we again allow only parameters mentioned in (a).)
- c) Q satisfies ccc.

Then Corollary 12 is satisfied in every extension M[G][F] for an M[G]-generic filter $F \subseteq Q$. For a proof let us observe that under assumptions (a), (b), (c) on the notion of forcing Q there exists a coding of names of reals of the model M[G][F]

by reals of M[G]. Namely for a boolean term $t \in M[G]^{(Q)}$ such that $\operatorname{dom}(t) = \{\hat{n} \colon n \in \omega\}$ we put $t(\hat{n}) = \sum \{q_{n,m}^{(t)} \in Q \colon m \in \omega\}$ for some countable antichain $\{q_{n,m}^{(t)} \colon m \in \omega\} \subseteq Q$. Since each $q_{n,m}^{(t)} \colon m$ may be treated as a real, the double sequence $\langle q_{n,m}^{(t)} \colon n, m \in \omega \rangle$ can be coded by a single real. We also observe that the assignment $x \to \hat{x}$ is M[G]-definable. Now it is enough to observe that for any formula φ the relation $\{\langle q, x_1, \dots, x_n \rangle \colon q \Vdash \varphi(x_1, \dots, x_n)\}$ becomes an M[G]-definable relation between reals and standard elements \hat{x} . We apply Corollary 12 and for any formula $\varphi(x, x_1, \dots, x_n)$ there exists a countable subset $c_{q,x_1,\dots,x_n} \subseteq b$ in the model M[G][F] with the following property:

for each $x \in b - c_{q,x_1,...,x_n}$ there exists an open interval s such that if $q \Vdash \varphi(\hat{x}, x_1, ..., x_n)$ then $\forall y \in b \cap s - c_{q,x_1,...,x_n}[q \Vdash \varphi(\hat{y}, x_1, ..., x_n)]$.

This immediately implies that Corollary 12 holds in M[G][F].

We are particularly interested in the case where the set b is definable in M[G][F]. In order to do it we apply Harrington's notion of forcing Q(b) as described in [3]. It is proved in [3] that Q(b) satisfies ccc and for any M[G]-generic filter $F \subseteq Q(b)$ the set b is Π_2^1 in M[G][F]. Therefore b is definable in the model $P(\omega) \cap M[G][F] \models A_2$.

We leave it to the reader to verify that the notion of forcing Q(b) satisfies conditions (a) and (b) as well. As a consequence of that we infer that there exists a model $M^* \supseteq M$ of ZFC with a set of reals b such that $b \cap s$ is uncountable in M^* for any open interval s and, such that M^* satisfies Corollary 12.

Now let us suppose that a formula $\varphi(x, \xi)$ (possibly with parameters being reals) defines in M^* a relation in $b \times \omega_1$, such that the set $\{\xi \in \omega_1^{M^*}: \exists x \varphi(x, \xi)\}$ is uncountable in M^* .

We claim that there exists an $x \in b$ such that the set $\{\xi \colon \varphi(x, \xi)\}$ is uncountable in M^* .

We take a set $A \subseteq b$ countable in M^* and such that for any $x \in b - A$ there exists an open interval S with the property

$$M^* \models \varphi(x, \xi) \rightarrow \forall y \in b \cap s - A\varphi(y, \xi)$$
.

There are two possible cases:

- (1) There are uncountably many ordinals ξ such that $\{x \in b : \varphi(x, \xi)\} \subseteq A$. Since A is countable, there exists an $x \in A$ such that the set $\{\xi : \varphi(x, \xi)\}$ is uncountable.
- (2) There is an ordinal $\xi_0 \in \omega_1^{M^*}$ such that for $\xi \geqslant \xi_0$ we have $\{x \in b : \varphi(x, \xi)\} \not\subseteq A$. We take $\xi \geqslant \xi_0$ and $z \in b A$ such that $\varphi(z, \xi)$.

There exists an open interval se such that

$$M^* \models \forall y \in b \cap s_\xi - A\varphi(y, \xi)$$
.

Since there are uncountably many ordinals ξ such that $\xi \geqslant \xi_0$ and only countably many open intervals s, there exists an open interval s such that the set

$$\left\{\xi\in\omega_1^{M^*}\colon\, M^*\models\forall y\in b\,\cap s\!-\!A\varphi(y,\,\xi)\right\}$$

is uncountable in M^* . The set $b \cap s$ is uncountable; therefore there exists an $x \in b \cap s - A$ and thence there are uncountably many ordinals ξ such that $\varphi(x, \xi)$, which proves the claim.

Now we are ready to prove

THEOREM 13. In the model $P(\omega) \cap M^*$ of A_2 the quantifiers Q_c and Q_b are not equivalent.

Proof. We show that the set b, which is definable in $P(\omega) \cap M^*$, is countable-like for the quantifier Q_b . Since b is uncountable, it cannot be countable-like for Q_c .

Let the formula b(y) define the set b and suppose that for some formula $\psi(x, y)$ of the language $L_{P(w) \cap M^*}$ we have

$$P(\omega) \cap M^* \models Qx\exists y [b(y) \& \varphi(x, y)].$$

Let us consider a formula $\varphi(\xi, y)$ such that $M^* \models \varphi(\xi, y)$ iff $y \in b$ and there exists a well ordering x of type ξ such that $P(\omega) \cap M^* \models \psi(x, y)$. Then the set

$$\{\xi \in \omega_1^{M^*} \colon \exists y \in b \varphi(\xi, y)\}$$

is un countable in M^* . By the claim there exists a $y \in b$ such that the set $\{\xi \colon \varphi(\xi, y)\}$ is uncountable in M^* , i.e. $P(\omega) \cap M^* \models Qx\psi(x, y)$. Therefore

$$P(\omega) \cap M^* \models \exists y \, Qx\psi(x,y)$$
. Q.E.D.

References

- [1] K. Apt and W. Marek, Second order arithmetic and related topics, Ann. Math. Logic 6 (1974), pp. 177-229.
- [2] M. Dubiel, Generalized quantifiers in models of set theory, Fund, Math. 106 (1980), pp. 153-161.
- [3] L. Harrington, Long projective wellorderings, Ann. Math. Logic. 12 (1977), pp. 1-24.
- [4] J. L. Krivine and K. McAloon, Forcing and generalized quantifiers, Ann. Math. Logic 5 (1973), pp. 199-255.
- [5] T. Jech, Lectures in Set Theory, Lecture Notes in Math. vol. 217, Springer Verlag.

Accepté par la Rédaction le 11. 6. 1979