icm

Constructing exotic retracts, factors of manifolds,
and generalized manifolds via decompositions

by
S. Singh (Altoona, Penn.)

Abstract. By X satisfies a property (p) we mean that X contains no proper subset of di-
mension >2 which is an FAR or an ANR, and X contains no proper compact subset of di-
mension =2 with UV! in X. For each integer n>3, there exists a space X of dimension n such
that X satisfies (p), and in addition, any one of the following: (a) X'is an AR; (b) X'x S1~ 5" x A
or (¢) Xx E*~E"x EL For n = 3, there are uncountably many such spaces as above.

1. Introduction, notation and terminology

(1.1) Introduction. By an AR (ANR) X we mean that X is a compact metric
absolute (neighborhood) retract, see [8, 18] for more information concerning these
spaces. By an FARX we mean that X is a compact fundamental absolute retract
in the sense of Borsuk [9; Chapt. VIII]. It is well-known that there exist AR’s
(ANR’s) of arbitrary dimension », 2<n< 00, no one of which contains any proper
ANR of dimension 2, see [5, 7, 8, 10, 23, 24, 25, 26, 30]. The purpose of this
note is to extend the known results in this direction. As a sample we state the
following:

THEOREM. For each integer n>3, there exists an AR X of dimension n such that X
does not contain any proper subset which is an FAR or an ANR of dimension >=2.

The results of this note can be considered and interpreted in several contexts.
The following brief list, which is given withour relevant historical details, exemplifies
some of these contexts and propagandizes our results: (a) The theory of exotic
nonmanifold factors of manifolds which was pioneered by Bing [6]; (b) the theory
of AR’s, ANR’s, and the shape theory of Borsuk [8, 9]; (c) the theory of generalized
manifolds studied by Wilder and others (cf. [11, 28, 29]) and the topological pro-
perties of carriers of homology classes in generalized manifolds as contrasted with
some results of Thom [27]; (d) the classical theory of Peano continua concerning
the existence of arcs in these spaces; and (e) cell-like mappings, see Lacher [20]
for an excellent survey. Furthermore, our results may be contrasted with some far
reaching results of Cannon [12] and Edwards [15].

(1.2) Notation and terminology. Let E", B", and S"1, respectively, denote
the n-dimensional Buclidean space, the closed unit ball in E", and the unit sphere
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in E". All maps are continuous. Suppose A and B are two closed subsets of a metric
space (X, d). A surjective map f: 4 — B is called an e-displacement, see [1; p. 7],
if dfa, f(a)]<e for each a belonging to 4. An n-manifold M" (or a manifold M™
is a separable metric space such that each point of M" has a neighborhood whose
closure is an n-cell. Observe that an n-manifold M™" may have a nonempty boundary
and may not be connected. Suppose M* is a k-manifold in E" with k<n. M* is
said to be flat in E" if M* has a neighborhood U homeomorphic to M* x B"~*
under a homeomorphism /: U— M*x B"™* satisfying h(M*) = M*x{0}. An
n-manifold M" in E" is flat if the boundary dM™ is flat in E". All manifolds considered
in this note will be flat in a suitable E" (which will be clear from the context), piccewise
linear, and orientable unless to the contrary is stated. By IT "(4) we denote the nth
Cech cohomology group of the space 4 with coefficients in group of integers (cf. [16]).
By a closed manifold M" we mean that M" is a compact manifold without boundary.
We shall often denote by Int(M™) and 04", respectively, the interior and the bound-
ary-of a manifold M". We assume familiarity with cell-like decompositions. An
excellent survey concerning cell-like decompositions is given by Lacher [20] where
a definition of the property UV and other related discussions may also be found.
A collection C of closed subsets of a metric space X is called a mull collection if
for each >0, there are only a finite number of elements in C each of which has
diameter greater than & By X'~ Y we mean that X is homeomorphic to ¥,

2. Linking

Suppose f: ¥ — S* is an essential map where Y is a compactum. We say Y is
irreducible with respect to the map f: ¥ — S* if the restriction of f to any proper
closed subset of Y is inessential. The following lemma will be useful in the sequel.

. (21.0) LemMa. Suppose X is a compact subset of E" such that dim (X V=2 and
n22. Then, there exist a continuum A and an essential map f: A— St such that
AcX and dim(4)<2.

Proof. Choose a subset B of X with dim(B) = 2. By Theorem VIII 3 of
[}7 ; p. 151], there exists a compactum C contained in B such that the sequence
HY(B)— H HC)—0 fails to be exact, where the unlabelled homomorphism
HY(B)— HYC) is induced by the inclusion map i: C-~+ B. This implies that
H(C) is not the zero group. Choose a nonzero element y* belonging to H(C)
and represent ' by an essential map g: C— S where the homotopy class of g
corresponds to y! [19; p. 59]. Let S = {D: Disa closed subset of C with gl: D— 8*
essential}. Since the Cech cohomology is continuous, we may apply Brouwer’s
Reduction Theorem [17; p. 161] to find a closed subset 4 of C such that A is ir-
reducible with respect to the essential map f: 4 — S where f = g|. A simple argu-
‘ment proves that 4 is connected and our proof is finished.

(2.2.0) Remarks on Lemma 2.1.0. The conclusions of Lemma 2.1.0 can be
easily satisfied if X contains a continuum C having the shape of S*. In this case,
one may choose an essential map f: C— S* such that the homotopy class of f
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corresponds to a generator of H(C). It is not known to us whether every com-
pactum X" of dimension 2 contains a continuum having the shape of S'; we
believe that this is not true in general.

(2.3) Linking I-cocycles in E", n>5. We shall assume familiarity with the
classical theory of the intersection (or the linking) numbers for chains (cycles)
in E", This theory appears in [2, 3] and in the well-known books of Seifert-Threlfall,
and Lefschetz (see [29] for a bibliographic reference to these books). Throughout
this note we shall assume that the coefficients for the homology are taken to be in
the ring of integers for various calculations concerning the intersection (or the
linking) numbers. Suppose M? and M? are two closed and connected manifolds
in E" such that p+q = n—1. The linking number Lk (M?®, M 9) is defined to be the
absolute value of the linking number of arbitrary orientations of the manifold M?
and MY The manifolds M? and M? arc said to be linked if Lk(M?, MY 5 0.

(2.3.0) DeFivITION.  Suppose 4 is a compact subset of E¥, k>3, and M*~2
is a (connected) closed (k—2)-manifold in E*. We say 4 links M* 2 ina homological
sense (Abbreviate: A h-links M*™2) if each neighborhood of 4 in E" contains
a simple closed curve M*' such that M! and M* 2 are linked, i.e.,
Lk(M*, M*2) # 0.

Suppose X and Y are two disjoint subsets of E*. X links Y in the sense of
Wright [30] if each neighborhood of X contains a loop in (E*— Y) which is essential
in-(E*—Y). It is clear that 4 h-links M* 2, where 4 and M* 2 are as above in
Definition 2.3.0, implies 4 links M*~2 in the sense of [30]. We do not know how
this concept of “A-linking” behaves with respect to linking in the sense of Vietoris—
Cech homology theoty (cf. [2, 3]). The proof of the following technical lemma will
occupy the remainder of this sectiom. ‘

(2.3.1) LeMmA. Suppose f: 4 — S* is an essential map from a continuum A con-
tained in E" with dim(A)<2 and n=5. Then there exists a closed (n—2)-manifold
M™% contained in E™ such that A h-links M""2.

Proof. Since S* is an ANR-space, there exists an extension fi Ny— 8t of
the map f: 4 — S* where N, is a neighborhood of 4 in E™. We require that N,
is a compact, connected, and smooth n-manifold. Since f can be approximated by
a smooth map, we shall assume from now on, without loss of generality, that f is
smooth. Assume dim(A4) = 2. The case when dim(4) = 1 will trivially follow our
arguments. Let Nyo>N,>N;=.., be a nest of (compact) neighborhoods of 4 such
0
that Ny Ny and 4 = () N;. For each i, 0<i<oo, choose a positive number &
i=0
such that each linear segment in E” of length less than ¢; and with one endpoint in 4
is contained in N,. Note that &;— 0 as i —o0. For each i, 0<i< 0, there exists
an g;-displacement ¢;: 4 — P; of 4 onto a 2-dimensional polyhedron P,cN;,
see Aleksandrov [1] concerning e-displacements where other references may also
be found. For each i, 0<i< oo, let K, denote the complex corresponding to a tri-
1 '
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angulation of P;. For each 4, 0<i< oo, let ji: A~ N; and k;: P, — N, denote the
respective inclusion maps, and let f;: N, - S* denote the restriction of 7 Ny — S,
Since k;p;: 4— S, 0<i<oo, is homotopic to j;: A— N,, it follows that
SiJit Pi— S* is essential. For convenience of reference we shall summarize several
facts concerning this setting as follows.

©

(23.2) The set Py(4) = [4 U (U P)] is a compact subset of E" contained
I=0

in the neighborhood N, of 4 in E". Furthermore, we stipulate that PaPi=g@
whenever i # j, 0<ix oo, and 0<j<co; although, this will not be necessary we
prefer that the construction of Py(4) has this property. For each i, 0<i<co, put

2t =14 0( 0 )L

(2.3.3) Every neighborhood N of 4 contains a compact set P,(4), for some n
with 0<{n< co. This is clear since one may choose an » such that i>n implies that &,
is contained in A.

(2.3.4) Suppose N is a neighborhood of 4 in E". By (2.3.3), there exists an
integer n such that P,(4) is contained in N and we may assume, without loss of
generality, that n=0 and N = N, Now the restriction Ji Po(dy— St of
J+ Ny— S* has that property that for cach i, 0<i< o, the restriction f;: P, — S
of fi Po(4) — 8! is essential.

(2.3.5) Our notation and terminology is as above in (2.3.4). Recall that for
each i, 0<i<eo, K is a 2-complex corresponding to a triangulation of P,. We
let Q; denote the underlying polytope of the 1-skeleton of Kiand we letg;: Q,— §*
denote the restriction of the map f;: Py— S*, for 0<i< . For each i, 0<i< o0,
it follows that g,: Q; — S is essential. This is straightforward since fi: P;— S*
is essential. Furthermore, for each i, 0<i< 00, the polytope Q; contains a circle C;
such that the restriction k;: C,— S* of the map g;: Q;— S* is essential. This is
elementary and we omit details.

Choose two distinct points sand zin S* and keept them fixed for the remainder
of our discussions. Let S =7Ju J, where I and J are two arcs such that
InJ={s, t} Choose an n-manifold M™ in E" such that M” contains F7Ys) in
its interior and f~1(f) N M" = @, Let M™ ' denote the boundary of A" Now
A=f"UD M and B=7F"YJ)n M are two disjoint compact subsets
of M"%. Choose an (n—1)-manifold M%™* contained in M"~* with M"~? = oMyt
such that Mj™' contains 4 in its interior and B NAM{™' =@ Clearly,
A0 M = @ We shall prove in the next few paragraphs that 4 A-links M"~2%

Let N be a (compact) neighborhood of 4 such that N A M"~2 = @. Choose
an extension f: Py(4)— S* of f* 4— S* as defined in 2.3.4). Let f;: Py— 81,
90 @i~ S*, and h;: C,— S* be the suitable restrictions of fi Py(4)— S* as
defined in (2.3.4) and (2.3.5). In this setting and with notation and terminology of
(2.3.3)-(2.3.5) we have the following. )
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(2.3.6) There exists a positive integer n, such that i>n, implies that JA )
is contained in the interior of M™ and f; () n M* = ©.

(2.3.7) There exists an integer m, such that i=m, implies that £, 1(7) n M*~1
is contained in the interior or M} * and [ U(J) n M* ] misses M7 L.

(2.3.8) There exist a positive integer m such that i>m implies the following:
(2) g7 '(s) is contained in the interior of M"; (b) g7 () does mot meet M";
© [g7') " M"™*] is contained in the interior of M!1;  and
(d) ¢7'(J)nM{* =@ Moreover, for each izm the following is clear:
(a) k7 '(s) is contained in the interior of M"; (b) Ay '(¢) does not meet M™;
© [A7 () n M" '] is contained in the interior of MI™!; and (d) [17*(J)
AM =@.

These assertions can be proved by using point-set theoretic arguments. We
omit details. We observe that for each i, 0<i< oo, the sets 1 (s) and A 1(¢) are
nopempty since the map A;: C;— S* is essential. Let m be a positive integer such
that (2.3.8) holds. It follows from some basic considerations concerning intersection
numbers that for each i>m, the linking number Lk(C;, M""?) of C, with the
manifold M""% is equal to |deg(h,)|, where |deg(%,)] denctes the absolute value
of the degree of 4;; and hence, C;and M"~? are linked since the map 4; is essential,
We shall sketch a proof of this fact in the next paragraph.

Choose an index jzm. For simplicity of notation, put C = C; and denote
By: C;— S*by h: C— S*. Recall that f: N, — S* is smooth. Without loss of gener-
ality, we assume that s and 7 are regular values (cf. [22]) of the map h: C— S
Let us recall, for convenience, the following facts: (a) The set A~ *(s) is contained in
Int(M™ and A~'(t) n M"™ = &; (b) the compact set [2~'(I) n M"~1] is contained
in Int(M7™Y) and [A7*(J) n M™"*] misses M}™%; and () M""% = oM™ ! and
M™ ' = 0M". We want to show that Lk(C, M" ?) = |deg(Fi)]. Construct an
n-manifold M5 as a disjoint union of n-balls By, B,, ..., and B, such that for
each i, 1<i<k, (B; n C) is connected, £ restricted to (B; m C) has no critical points,
and each B; contains exactly one point of A~ *(s); and furthermore, we require that
h~Y(s) is contained in Int(M3). Assume that the sets £~ *(I) and 8M7 are in relative
general position. Choose an (n—1)-manifold N*~1 inside M} such that: (a) N*~2
is a disjoint union of (n—1)-balls where each ball contains exactly one point of
the set [A1(J) n dM3]; (b) the set [A~1(I) n 8M] is contained in the Int(N"~1);
and (c) N"~* misses the set A~ 1(J). In the following, we let 4.B denote the absolute
value of the intersection number between A4 and B. Notice that it follows from the
definition of the degree and the choice of 9M3 ! that |deg(h)] = C.N" ! By
definition, Lk(C, 8N""!) equals to C.N""1. The equality C.N"~* = p~Y(I).N""!
= h™Y(I).0M3 is clear. Since the boundary 4[A~1(I)] is disjoint from cl(M"—M3),
it follows that h™Y(I).8[cl(M™—M3)] = O where cl(M"—M?) denotes the closure
of (M"—Mj). Therefore, A Y(I).0M™ = h~Y(I).0M} = h~(I).N"* = |deg(h)|.
This finishes our proof.
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(2.4) Linking 1-cocycles in E”, n = 3 or 4. Suppose A4 is a continuum of di-
mension at most 2 in E”, where n =3 or 4, and f: 4 — S is an essential map.
Our proof of Lemma 2.3.1 can be adapted to handle this situation as follows,
Identify E¥ and E* with the subsets E° x {0} x {0} and E*x {0} of E?, respectively.
Clearly, the set Py(4), see (2.3.2), can be constructed in E° satisfying an additional
requirement that for each 7, 0<i< o0, the set Q, is contained in E” with n = 3 or 4.

Apply the arguments of Lemma 2.3.1 by suitably restricting to the set [4 U (U 2
i=0

and £° to find a manifold 2"~2 such that 4 links M"~2. Note that M"~? is a circle
when n = 3.

(2.5) Linking and some results of Thom. The results of Thom [27] and the
Alexander duality may be considered in relation to our present setting. We shall
discuss this as follows. Suppose 7! is a nonzero element of 1(4) where 4 is a con-
tinuum of dimension at most 2 and 4 is contained in E" with n>3. (We are not
interested in generality!) By the Alexander duality, there exists an element z of
H,_,(S"—4) which is dual to y*. Thom [27] has studied the problem of representing
a homology class by a manifold which may not be flat. It follows from Thom [27]
that there exists a nonzero integer k such that k.z is represented by an (n—2)-mani-
fold "2 in (E"— ) where M"~? may not be flat; however, for E* the 1-mani-
fold M* obtained in this manner is a smoothly embedded circle in E* which is
clearly flat. Hence for E3, this provides an alternative proof of our results concerning
linking given in (2.4). For n>4, the manifold M"~2 found above, does not suffice
for our purposes. This is primarily due to the fact that a “Cantor-set replacement
technique”, which is discussed by Daverman-Edwards [14] in the case when M"~2
is flat in E", remains unknown when M"~2 is not flat. Our linking techniques avoid
these difficulties.

3. Decompositions of B", S, or E"

(3.1.0) THEOREM. For each integer n>3, there exists an u.s.c. decomposition G
of B" such that: (a) G is a null collection of arcs and singletons sets; (b) the de-
composition space B"|G is an AR of dimension n; and ©) B"|G does not contain any
proper FAR or any proper ANR of dimension >2. Furthermore, B"/G does not
contain any proper closed subset of dimension =2 with the property UV,

Proof. We shall consider the case when 1 = 3 s parately. Suppose # is a fixed
integer with n3>4. Let G be the decomposition of B" defined by Wright [30] and
let p: B"— B"/G denote the projection .onto the decomposition space B"/G. We
shall prove B"/G satisfies our requirements. It suffices to show that B"/G does not
contain any proper closed subset of dimension >2 and satisfying UV,

Suppose B is a closed subset of B'/G of dimension >2 and satisfying UV™.
By Armentrout [4; Lemma 5.9), the set 4 = P~ (B) satisfies UV, It is easy to see
that dim(4)>2. By Lemma 2.1.0 and Lemma 2.3.1, there exists a continuum C
contained in A4 such that C A-links an (n—2)-manifold M"~2. Clearly, C h-links

Constructing exotic retracts, factors of manifolds 87

M"? implies that C links M”~2 in the sense of Wright [30]. The remainder of the
proof is the usual “backing-up argument” which is used in Singh [24] and
Wright [30]; we proceed as in Wright [30; p. 126] to find a pair of the form (M7, V)
which is described in [30; p. 125-126] such that C links M7 in the sense of [30]1
and 4 does not meet the closure of ¥7. The remainder of the proof is the same as
in [30; p. 126] and we omit details.

Suppose n = 3. Consider the u.s.c. decomposition of B® defined in [24]. The
arguments given in [24] also prove the desired result. This finishes our proof.

The following are some immediate corollaries of our methods. The proofs for
these corollaries are analogous to the proof of Theorem 3.1, and therefore, omitted.
Some results of Meyer [21] will also be needed.

(3.1.1) CoroOLLARY. For each integer n>3, there exists an u.s.c. decomposition G
of S* such that: (a) G is a null collection of ares and singletons sets; (b) the de-
composition space S"|G is an n-dimensional ANR satisfying S"/G x S*~S"x S*; and
(c) S"/G does not contain any proper ANR or any FAR of dimension >2. Furthermore,
S"/G does not contain any proper closed subset of dimension >2 with UV:,

(3.1.2) CoROLLARY. For each integer n>3, there exists an u.s.c. decomposition G
of E" such that: (a) G is a null collection of arcs and singleton sets; (b) the decomposi-
tion space E"[G is an absolute retract for metric spaces satisfying E"|Gx E*~E"*1;
and (c) E"/G does not contain any ANR or FAR of dimension >2. Furthermore,
E"|G does not contain any compact subset with UV™. :

These corollaries provides examples of rather exotic Cartesian factors of. the
manifolds S"xS* and E"*!, with n>3. A generalized n-manifold M is an ENR
(Euclidean neighborhood retract, see [20]) such that for each x € M, Hy (M, M—{x})
~H,(E", E"—{0}), where the homology is taken with integral coefficients. It is
well-known that a finite dimensional cell-like image of a generalized manifold is
a generalized manifold [28). It is interesting to note that the decomposition spaces
S?/G and E"|G satisfying the conclusions of Corollaries (3.1.1) and (3.1.2), respectively,
are generalized n-manifolds.

(3.2) A family of 3-dimensional ANR’s (AR’s). There is quite a bit more known
concerning decompositions of B3, §3, or E* [26]. We remark that all the results
given in [26] can be suitably restated to obtain stronger results. This is an immediate
consequence of our results on linking given in (2.4)~(2.5). As a sample we have
the following.

(3.2.1) THEOREM. There exists an uncountable family F of topologically distinct
3-dimension ANR’s such that each X belonging to F satisfies: (a) Xx S*~S3x S*;
and (b) X does not contain any proper ANR or FAR of dimension >2. Furthermore,
each X in F contains no proper closed subset of dimension >2 with UV, Fach X
in F is a generalized 3-manifold.

(3.2.2) THEOREM. There exists an uncoyntable family E of topologically distinct
3-dimensional AR’s such that: If X belongs to E, then X does not contain any. proper
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ANR or any proper FAR of dimension >2; and Surthermore, X does not contain any
proper closed subset of dimension 2 with UV,

(3.2.3) THEOREM. There exists an uncountable Jamily D of topologically distinet
3-dimensional absolute retracts for metric spaces (cf. [8]) such that each X belonging
to D satisfies: (a) Xx E*~E*x E'; and (b) X does not contain any ANR or FAR
of dimension >2. Furthermore, each X in D contains no compact subset of dimen-
sion 22 with UV*. Each X in D is a (noncompact) generalized 3-manifold.

(3.2.4) Remark. Suppose X is an AR (ANR) such that X does not contain any
proper closed subset of dimension >2 with UV?, Suppose G is a cell-like w.s.c.
decomposition of X. Then, it can be easily shown that the decomposition space X]G
does not contain any proper closed subset of dimension >2 with UVY, see
[4; Lemma 5.9]. This can be interpreted as the stability of this property under cell-
like images. Of course the decomposition spaces constructed in this note are stable
in this sense. A topological space X is strongly locally simply comnected if each point
of X has arbitrarily small simply connected open neighborhoods. This definition
appears in the work of Armentrout (cf. [26]). The decomposition spaces considered
in this note are not strongly locally simply connected at any point, however, they
are locally contractible [8]. The following problem of Armentrout (see [26] for
a reference 10 Armentrout’s paper on toroidal decompositions) remains open:
Does there exist a cell-like u.s. c. decomposition G of E", nz3, such that the decompo~

sition space E"|G is strongly locally simply connected and E"[G is not homeomorphic
to E*?

The author wishes to thank Professors S. Armentrout and R. Wells for many
valuable discussions concerning this note. We are also grateful to Professor R. J. Da-~
verman for generously discussing many related matters.
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