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Indicators, recursive saturation and expandability
by

L. Kirby (Paris, Princeton), K.‘McAloon (Paris)
and R. Murawski (Warszawa, Poznaf)

Abstract. We investigate the recursive saturation and the expandability of initial segments
of countable nonstandard models of Peano arithmetic. The main tools which are used are non-
standard satisfaction classes and indicators. -

§ 1. Introduction. In this paper we apply the techniques of indicator theory to
recursively saturated models of arithmetic. The connection between recursive satu-
ration and expandability is well-known; we go on to look at the “natural” expansion
of an initial segment I of a model of (first order) arithmetic to a structure I* for the
language of second order arithmetic by adding in the coded subsets of I, and prove
(something very slightly more general than) the:

TuroreM. Let T be a recursively axiomatizable theory in the language of second
order arithmetic extending arithmetic comprehension. The Sfollowing classes of initial
segments are symbiotic:

(o) I such that I* kT.

(B) I such that I is a model of the 113 consequences of T.

(The notion of symbiotic means roughly speaking that members of («) are about
equally as common as members of (B). See [K], [P,], and Definition 7 below.)

Thus in particular, any model of (part of) arithmetic abounds in initial seg-
ments  such that I* is a model of second order arithmetic or even of the second-
order-arithmetical consequences of any set theory you care to believe consistent.
(See the corollary at the end of the paper.)

The theorem is proved by the intermediary of another class:

(y) recursively saturated models of the first order consequences of T.

We lean heavily on results by Barwise, Schlipf and Wilmers on recursive satu-
ration; Robinson, Mostowski and Krajewski (see [Kx]) on satisfaction classes; and
Kirby and Paris on indicators.

In § 2 we look at recursive saturation and characterize it in terms of satisfaction
classes. In §3 we use this to. produce indicators for recursively saturated models,
showing that (B) and (y) are symbiotic. § 4 is another application: an indicator for
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recursively saturated elementary initial segments. § 5 (independent of §4) looks
at the expansions I* and shows that (o) and (y) are symbiotic.

HISTORICAL REMARK. This paper represents a union of results obtained in-
dependently and through somewhat different approaches by Murawski and by
Kirby-McAloon. Murawski introduced in his thesis (*) the notion of substitutable
satisfaction class with w-overspill (cf. Defs. 4 and 5) and obtained Theorems 3, 7,
Lemma 9, Corollaries 11 (i)-(iii) and (v)-(vii), Theorem. 12 and Cor. 13(i)(ii). Kirby-
McAloon developed indicators for 2nd order theories and obtained Thm. 7, 8,
Cor. 11(i)-(iv) and the results of Section 5.

NoTATiON. Let &' be the languagé of first order arithmetic and let P be Peano’s
Axioms in this language. We denote the standard model of P by 4. Any other
model A F P is said to be nonstandard and has a “standard part” « which is iso-
morphic to 4. Elements in M~ are called nonstandard. (We use M for the
universe of ..)

Let 4 E P An initial segment of . is a subset I of M such that Vxye M
(xeIAny<x — yel). I'is a proper initial segment of M (I< M) if further I is
closed under successor and @ # I # M.

If I< M is closed under multiplication then I becomes a structure for £ with
operations inherited from .#; we sometimes use the latter 7 ambiguously to mean
this structure on the initial segment.

Write > # iff, M'>M and M < ' Robinson’s overspill principle says

that if I« 4 and for unboundedly many iel,
M E(a,0)

where ¢ (%, ) is a formula of %! and e M, then for some beM~I,
ME(a,b).

If Tis a theory in some language extending %%, PT is the theory consisting of all
consequences in %' of T.

We denote by #" the language of second order arithmetic — the two-sorted
language comntaining set variables and the membership symbol &. The theory A4
in 2" consists of the axioms of P with induction replaced by a single axiom, exten-
sionality, and the comprehension schema. The theory arith-CA is the same with
comprehension restricted to arithmetic formulae (i.e. no set quantifiers). For details
see e.g. [AM].

§ 2. First we survey “classical” results about recursive saturation, due largely
to Burwise and Schlipf and (independently) to Wilmers. For a detailed exposition
see [M]. This will be followed by a characterization of recursive saturation in terms
of satisfaction classes.

() Written under the supervision of W. Marek and submitted to the University of Warsaw.
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DEFINITION 1. Let . be a structure for &%, T a theory in £™. M is expandable
to a model of T (T-expandable) iff there exists < #(M) such that (A4, F)ET.

DERNITION 2 [BS]. Let . be a structure for a first order language &. /# is
recursively saturated iff any recursive set of finitary formulae of & (with parameters
from M) finitely satisfiable in 4 ‘is realized in 4.

DEerFINITION 3 [BS]. A structure J is resplendent iff for any &>, and 3} for-
mula ¢ and any @€ || we have

(N PNk @la] = (M, P(M)) Fola].

ResvLt 1. (a) (Barwise). Every resplendent structure is recursively saturated.

(b) (Barwise, Ressayre). Every countable recursively saturated structure is re-
splendent.

REsuLT 2 (essentially due to Schlipf for #" and independently Wilmers for
a more general case). Let T be a recursively axiomatizable theory in SN such that
T+ P, and let A be a countable model of PT. Then M is T-expandable iff M is re-
cursively saturated. )

For a precise definition of satisfaction class cf. Krajewski’s paper [Kr]; roughly
speaking, the notion of a satisfaction class extends the Tarski’s definition of satis-
faction to the case of nonstandard formulas. So in particular if S is a satisfaction
class for 4 then for all standard formulas ¢ of %' we have

MEla] < (M, S)ES(@, a).

DEFINITION 4. A satisfaction class S over a model . F T, T being a theory in
a language & <%, has w-overspill iff for any formula ¢ of the language & U {S},
if {new: (A, SYF @(n)} is unbounded in @ then there is a nonstandard ae M -
such that {, S) F ¢[al. 4 ‘

Before introducing the next notion let us fix the following notation. If  is
a structure and X< M* then Def(#, X) is the family of all subsets of M definable
with parameters over (., X. T, denotes the predicative extension (in &M of
the theory T (cf. [Kx]).

DEFINITION 5. A satisfaction class .S over a model 4 k T (T being a theory in
P such that T+ P) is said to be substitutable iff (M, Def( M, S)) Ty -

Observe that if T is axiomatized by some sentences and some schemas then S'is
substitutable over . k T iff all substitutions of the schemas of T’ by formulas of the
language % U {S} are true in {4, SD.

TueoreM 3. Let T be a recursively axiomatizable theory in & such that T+ P,
and let M E T be nonstandard and countable. The following are equivalent:

(i) A is recursively saturated;
(i) A has a satisfaction class with w-overspill;

(iii) ¢ has a substitutable satisfaction class.

Proof. The implication (iii) - (ii) is not hard. For (ii) —» (@), let us take a satis-
faction class S over 4 with w-overspill. We show . is recursively saturated. Let
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& be a recursive type in the parameters 2 € M and let ¢ be a formula of P! strongly
representing in P the sequence of formulae ¥ (x, %) such that V(x,a) is in &. If
@ is finitely satisfiable in . then for every Ke w

K, Sy FAxYy[y<K A B () — S, <{x, @)
By w-overspill there is ¢>o such that
(it SY EAxVyly<e A ®(y) = S(y,<{x, )]

Hence @ is realized in .
To prove (i) — (iii) notice that for any ¢ in &' the theory

Th (A, a)aepr+schemas of T for S+“VE[p(%) « (o |, (EM]”

is finitely consistent. So there is a model of it, say (4", S). Of course 4 <.A". Since A4
is recursively saturated and countable, it is resplendent. Using this and the fact,
shown by Kleene in 1952, that every recursive conjunction of formulae can be
replaced by a 2‘ formula, we obtain that there is a substitutable satisfaction class
over .

Observe that the implication (ii) — (i) is true for nonstandard models of any
cardinality. In fact the countability of .# was used only in the proof of (i) — (iii).
Note also that this last implication does not hold for full (i.e. deciding all formulas
on all valuations) satisfaction classes. (This fact was communicated by H. Kotlarski.
It can be found also in [Kr].) For let «# be a recursively saturated model of
P+1ConP. We claim that . has no full substitutable satisfaction class. For let T'
be the theory: P+ 1ConP+“S is a full satisfaction class” -+ induction schema for
formulas of %" U {S}. It suffices to prove that T is inconsistent. One can easily show,
by induction in T, that ’

) TtYo[Fm(p) » S(e@)AVx(p(x) - o)) » Vxp®)].
(To be precise we ought to write Sub(e,x, 0 ) for ¢(0), etc. (cf. [F], [Sh]).)
Assume now that T’ has a model, say {4, $>. Using (*) we obtain that
<A, S B Vx(Fm(x) APrp(x) - S(x, D))

where Prp is a formula of &' strongly representing in P the set of Godel numbers
of theorems of P. But{A", SY F 71S("0 5 0, @). By the transposition law <47, §
E 1Prp("0 # 07). Consequently (4", S k ConP, contradicting the fact that
Tt ~iConP. So T is inconsistent.

§ 3. We review the theory of indicators, and study indicators for recursively
saturated models.

DEl:‘IlTII:IION 6 (Kirby, Paris [KP], [K], [P]). Let .# k P and let Q be a family of
proper initial segments of «#. The function ¥: M? - M definable (possibly with
parameters) in .# is an indicator for Q iff for any a, b e M with a<b:

there exists I'e @ such that a e I<b iff for some ¢>w in M, # F Y(a,b) = c.
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If Q is a property of initial segments of models of P and Y(x, y) a term of &',
Y is a well-behaved indicator for the property Q iff

) P+V¥xyAlzY(x,y) = z,

@ “Y(x,y) = 2" is Z}(P),

(3) for any countable non-standard model 4 F P,

Y = {(a,b,c)e M*: ME Y(a,b) = c}

is an indicator for the family of initial segments of . having property G,

(4 P+VxyY(x,»)<y,

(5) P+ Vayxyyy(x <x<y<y = Y%, DS Yxy, 3y)) -

Nearly all the indicators that we consider will be well-behaved. Hence, we shall
simply use the word “indicator” and assume good behavior unless otherwise stated.

In fact, we can develop the theory of indicators for initial segments of models
of IX3 (25-induction) and results such as the following work equally well:

ResuLT 4 (Kirby, Paris [KP, [K]). Let Q be a class of initial segments with
indicator Y.

(2) If ATe Q, ae I<b then we can find e with a<e<b such that I}, L€ Q,

aelj<e and ecl,<b.

(b) Hence if I € Q then I is either the union or intersection of other initial segments
in Q.

) IfIeQ and I E I then I is both the union and the intersection of other
initial segments in Q.

We sketch the proof (c): Suppose I were not the union of members of Q. Then
for some ael, Vbe IY(a, b) € o. Now IZ9 is cquivalent to the least number prin-
ciple for I sets: see [PK]. Let ¢ be the least element of the class
{x: Ik Yy ¥(a, y)<x}. ¢ must be in @; by overspill there must be d>1 such that
Y(a, d)<c; but the value of ¥(a,d) must be >o since ¢ el<d. Contradiction.

DeriNrTIoN 7 ([K]). Two classes @y, @, of initial segments are symbiotic iff
whenever a<b:

dre Qael<b iff dle Q,ael<b.

So any indicator for one is an indicator for the other.

Resvrt 5 ([K)). Let T be a recursively axiomatizable theory in . Then there is
an indicator for the class of models of T.

COROLLARY. Let T be a recursively axiomatizable theory in some language ex-
tending £". Then there is an indicator for the class of models of PT.

Proof. P is a recursively axiomatizable theory in £

The following result is due to Paris and (independently) Lessan.

LeEmMMA 6. Let T be a recursively axiomatizable theory in £ Then the class of
models of T and the class of models of 3(T), the 115 consequences of T, are symbiotic.
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Proof. Fix 4 F P. Forany ne w, T+ Yx3y Y (x, y)>n, where Y is an indicator
for the class of models of T. Since this is a II3 statement, if J< . and Ik nymn,
then T F Yxdy Y(x,y)>n Now if a € I<b it suffices to show that M F Y(a,b)>o.
But if not, then for some new, # F Y(a, b) = n.

Hence Ik Yy Y(a, y)<n (by the absoluteness of %9 formulae), a contradiction.

TueoreM 7. Let T be a recursively axiomatizable theory in ' such that T+ P,
There is an indicator for the family of initial segments which are recursively saturated

" models of T.

Proof. Fix a recursive axiomatization of 7. Let T” = T+“S is a satisfaction
class” + substitutions of all schemas of T' by formulae of the language £ = Z'o
U {8} U {K,new Where S is a new binary predicate and the K, are new constant
symbols. T’ is X% definable over A o; let 0 be a recursive function enumerating 1",
9 a formula of ' strongly representing 6 in P.

Let .# be any countable nonstandard model of P. As in [K] we define a game
GJa, b) for a, b, c € M, a<b. The game has two players, each with ¢ moves. The idea
of the game is that player IT claims that there is an initial segment N < M such
that a e N<b, & kT and 4 has a substitutable satisfaction class. Player I verifies
this claim by asking questions. Set @y = a. The nth step is as follows:

Assume we already have a,<b and numbers K, ..., K, <a, for some m<2n,
and a set T, of sentences of & involving only Ky, ..., K, among the new constant
symbols. Player 1 produces an element K, ,;<a, and asks:

Does N EIxe(x) (¢ formula of ¥ with Gédel number <n and involving
only Ky, ..,K,+; among the new constant symbols), where K, ...,K, are
interpreted by K, ..., K, +1?

If the answer is Yes then II chooses K, .,<b and they put

@yyq = [Max(a,, K1 )P and T,y = T, 0 {0(Kps2)} -

If No then they put @, = a2, Tpey = T, U {T3xp ()}

Let R,., be the set of atomic formulac and negations of atomic formulae
satisfied by K, ..., Kpsy GEuio)-

Player I wins G(a, b) iff there is a proof with Gédel number <c¢ of a con-
tradiction from T, u {6(i): i<c} U R,.

Player II wins otherwise. This game is definable in .4 and finite in .#, hence
it is determined. We claim that the function Y (a, b) = maxe: player Il has a winning
strategy in G, (a, b) is an indicator for '

Q={W#c.#: #ET and # has a substitutable satisfaction class},

which suffices by Theorem 3. (The definition can be made £? in P and the indicator
is well-behaved.)

Indeed, assume that there is A" < . such that @ e N<b and 4" & 0%, Suppose
ne o and I has a winning strategy for G,(a, b). Then II could play the strategy given
by answering the truth about 4", This strategy is definable in .# since II gives only
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a (truly) finite number of answers; hence II wins. Thus I could not have had a winning
strategy, so II has a winning strategy for G,(a,b) for any new and hence for
G,(a, b) for some ¢>o.

Converscly, suppose Y(a, b) = c¢>w. Take (outside .#) an enumeration of all
formulae of & of form Ax ¢ (x) with parameters from <b. At the nth stage let I play
the first suitable formula from this list not so far considered (i.e. the formula must
have Godel number < and involve only one new parameter <a,, to be christened
K,y and let XI play according to a winning strategy for Gya, b).

For any n € o, the game up to the nth move is (truly) finite and hence can be
played in ..

Put N = sup{a,: new}. N is closed under multiplication and is made into

* a structure for & in obvious way with § interpreted by

S={f) SN eUT}.

The construction ensures that |J T, F Th(4", S), and hence (4", S> k T” for other-

new

wise there would be a sentence 0 (i) (i € w) such that (A7, §> F T10(). So U T, + 10().

newo

By compactness for some new U Tk —10(i). Hence there is a (finitely derived)
j<n
contradiction from {J 7; and 8(¥) and player I would win at some finite stage, whereas
j<n

we know that II wins at any finite stage.
TuEOREM 8. Let T be a recursively axiomatizable theory in £ T+ P. The class
of models of T and the class of recursively saturated models of T are symbiotic.
Proof. This will follow immediately from:
Levma 9. Let T be as in Theorem 8, and M E T countable, nonstandard. Then M
has arbitrarily large initial segments which are recursively saturated models of T.
Proof. We can find # < 4"k T such that 4 >y, A and A’ is recursively
saturated (see e.g. [Sm], [L]). Also take .#"' 2.4 such that My M. Let Y be
an indicator for recursively saturated models of T. Takeanyee M. Forbe M"—~M',

M E Y(a, b)>¢
for some nonstandard ¢ which we may assume is small enough to be in M.
Hence 4" Fdy Y(a, p)>c.
Hence A FAy Y(a, »)>c.

By the definition of indicators, this means that there is an initial segment of 4 lying
above a which is a recursively saturated model of T.

Remarks. Lemma 9 was first proved by Lessan by other methods
[L, Chapter 5]. In fact Theorem 8 (and hence Lemma 9, which follows from it by
Result 4 (¢)) is also implicit in Chapter 9 of [K}.
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COROLLARY 10. Let T be a recursively axiomatizable theory in #", T P. The
Jollowing classes are symbiotic:

(i) Models of P”.

(i) Models of IIY(T).

(iii) Initial segments which are expandable to models of T.

Proof. The corollary follows from Result 2, Lemma 6 and Theorem 8.

We can apply indicator-theoretic arguments to get corollaries such as:

CoRrOLLARY 11. If T is as in Theorem 8, then (i) Any countable nonstandard
M kT has arbitrarily large initial segments which are recursively saturated models
of T. (i) A has 2%° such initial segments. (We sce it by repeating the “splitting” of
Result 4(a). For take ¢ as given in Result 4(a): then for some nonstandard c,, the
games G, (a,e), G, (e, b) both have winning strategies for II. We keep splitting to
obtain a binary tree the branches of which converge to distinct initial segments.).
(iii) If A"y E T then any countable nonstandard . & P has arbitrary small nonstandard
initial segments which are recursively saturated models of T. (iv) Assuming that ZF has
an w-model, any countable nonstandard model M4 ¥ P has arbitrarily small non-
standard initial segments which are expandable to models of ZF. (This follows from
a generalization due to G. Wilmers of Result 2.) (v) Every model of pACA (new)
has arbitrarily large Zi-CA-expandable initial segments. (vi) Every model J# k& P
has 2% initial segments that are Az -expandable. (vii) Every # & P has arbitrarily
small Aj -expandable initial segments.

Remarks. Corollaries 11(iii) and (iv) can be strengthened somewhat: the con-
dition 4o kT can be weakened to Ak Z3(T) and the condition 4 kP to
Mk IZ3 by results of McAloon, cf. [Mc2].

§ 4. We wish to spend a moment producing another indicator whose existence
follows nicely from the characterization of Theorem 3. This indicator is not well-
behaved as it reigns only inside the model in which it is defined: it has the properties
of Definition 6 if we replace provability from P by truth in .

THEOREM 12. Let M F P be countable and nonstandard. Then there is an indicator
(defined in M) for the class of recursively saturated elementary initial segments of M.

Proof. Let T"= P+“S is a satisfaction class” + substitutions of the induction
schema by formulae of the language & = £' U {S} U {K,}.e, Where S is a new
binary predicate and the K, are new constant symbols.

Let § be a recursive function enumerating T” and 0 a formula of Z' strongly
representating 0 in P. Let S be a substitutable satisfaction class over .#. We shall
define in {#, S) a game G,(a, b) for a<b. The definition of the indicator from the
game and the proof that it is an indicator will follow just as in Theorem 7.

The idea of the game is that player II claims that there is an A ~ e# such that

ae N<band 4 has a substitutable satisfaction class and player I verifies this claim
by asking questions.

icm

Indicators, recursive saturation and expandability 135
The nth step is as in Theorem 7. But player 1 wins this game iff there is a proof
with Godel number <c¢ of a contradiction from

T,u{0@): i<c} UR, U {p(a): d<a. S o ,<@))}.

We can now obtain corollaries of the same sort as before, such as:

COROLLARY 13. (i) Lvery countable recursively saturated M kP has 2%° and
arbitrarily large initial segments which are recursively saturated elementary submodels
of M. (This uses the Mac Dowell-Specker theorem and Theorem 10.) (ii) In fact if
M F PPN then all of these initial segments are isomorphic to M. (This follows from
the generalized theorem of Wilkie (cf. Theorem 18 in [M] part II, and [M,]). This
says that if M, and M, are E3-CA-expandable, My M, and M, = M, then
My M)

Similar results to (i) have been proved by other methods by Kotlarski [Ko]
and Schlipf [S].

§ 5. We now seek to go beyond Corollary 10 by looking at a specific way to
expand initial segments to the second order language.
" DemnNiTION 8. Let T M. Write 2 4(I) for the set of subsets of I coded in .4,
i.e. the intersections with I of sets definable with parameters in . We may assume
that any set in & ,(J) has the form

{xel: # kp,a}

[

for some a € M, where p, is the xth prime. If J is closed under multiplication it “is
a structure for %% Let I* be
1L R

which is a structure for ™

TuEoREM 14. Let T be a recursively axiomatizable theory in V. Then there is
a (well-behaved) indicator for the class of initial segments I such that I*F T.

Proof. Fix a recursive axiomatization of T. Let T' = T + substitutions of all
schemas of T by formulae of the language £ = LU {Khreo Y {Satnen wh(?re
K., S, are new constant symbols, the S, to be interpreted as sets. Let B. be a recursive
function enumerating 7, @ a formula of &' strongly representing 0 in P. We s.hall
define a game G (a, b); the rest of the proof will follow as usual. The nth step is as
follows: Player II is claiming the existence of 4 such that A F T and ae & <b.

Assume we already have a,<b and numbers Ky, ..., K, <ay foF some m<2n
and Sy, ..., S,y<b for some m'<2n and a set T, of sentence of & involving only
Ky oy By Sy, wes Sy among the new constant symbols. Player I produces K, +1 <4,
and 8.4 <b, and asks: . )

Does A k & (¢ formula of & with Godel number <n and involving only
K1y, Kurqs Sy oer sy among the new constant symbols), where Ky, ..., Ku+1,
Sy s Swaq are to be interpreted by Ky, ..o» Kns1s

{xeTI: plSi}, .., (xel: Dol Smre1}?
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If the answer is Yes and @ is Jxy(x) then II chooses K,,+,<b and they put
+1 = [max(a,, K,io)P and Ty =T, 0 {¥ (Kons2)}-
If the answer is Yes and @ is 3X (X) then II chooses S,.,.,<b and they put

Gy = a3, Tyy =T, 0 (U (S +2)}-

If the answer is No then they put a,pq = dy, Ty = T, U {710}

Let R, be the set of atomic formulae satisfied by K, ..., K,y (Koo n) together
with all formulae of the form

a,

n

K;eS;
TK;eS5;

when  pg,lS;,
pKi*Sj

Player I wins iff there is a proof with Godel number <¢ of 2 contradiction from

when @ism+2, j<n).

T,u{0@): i<c}UR,.

TureoREM 15. Let (M, & k arith-CA be countable. Then there exists M'> .M
such that

Bl l) = X .

Proof. We give sketches of two proofs. First note that this theorem is a gener-
alization of the generalization by Phillips [Ph] and Gaifman of the MacDowell-
Specker theorem [MS]. They proved it with & = Def (), but the proof can be
generalized. ‘

Secondly remark that in any model {#, %) of arith-CA the following two
statements are true: .

@) If F: M - {xeM: A Fx<a}is (coded) in & where a € M, then for some
i<a, in M, F~*{i} is unbounded in M.

(i) If G: [M]® - {0, 1} is in & then there is a homogeneous set for G, in & and
unbounded in M.

(Aside: indeed, these two, together with 43-CA. are equivalent to arith-CA.
This is intimately tied up with the fact that if < . then Iis a strong initial segment
iff I* = arith-CA. See [K], Theorem 7.5).

Now produce an ultrafilter % on & such that

(1) Xe% => X unbounded in M;

() if F: M - {x: x<a} is in & then for some i<a, F~'{i}e%;

(3) if G: [MP — {0,1} is in & then there is H e % such that |G"[HP| = 1.

This is done by listing in sequences of order type @ all F as in (2), G as in (3).
Form a decreasing sequence {X,},c, of unbounded sets in &:

Given X, let F, G be the nth functions on our lists. Choose X, <X, such that
X, e % and X, is unbounded and homogeneous for F (possible by (i)). Then choose

X,+1SX, such that X,,, €% and X,,, is unbounded and homogeneous for G.
Let % be the filter

{Xex: dnewX2X,}.
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 Then % is an ultrafilter and the ultrapower .#’ of # with respect to % is (up to iso-

morphism) an elementary end extension of ..
If Ae Z, to show 4 &R 4(M) let E: M — M be defined by E(x) = xth el-
ement of 4, in ascending order. (Put E(x) = 1 above 4 if 4 is bounded.) Then set

G) =1,
G(i+1) = GE)prg -
Then (.7@9&” and for ie M, )
ied <« M'Fp|G

where & is the equivalence class of G in the ultrapower. So 4 is coded in 4 2
Converscly if 4 €& 4(M), say G codes A. In # define

- _foif {x<a: plG®)} = {x<a: pIGE)},
F(a,b,c) = {1 otherwise .

Then Fe %' take the homogeneous set H guaranteed by (3).

If F"'[H]? = {1} then let hy be the least element of H; then each new element
of H introduces a new subset of {x: x</,}. But (in M) there are unboundedly many
elements of H and only 2" subsets of ,, a contradiction.

So F'[H]® = {0} and

icd < {xeM: (M, Z>Fp|GX)} e
<« Ay[ye HAVze H(z>i - 22))AVze H(z>y - p,|G@)] s

so 4 is in Z.

THEOREM 16. Let Thea recursively axiomatizable theory in FN, T+ arith-CA.
Then the class of initial segments which are T-expandable and the class of initial seg-
ments I such that I* £ T are symbiotic. v

Remarks. Since arith-CA F P, this together with Corollary 10 gives us the
theorem initially stated.

Proof. It is enough to show that any countable T-expandable ./ has arbitrarily
large. initial segments 7 such that I* k T. But let Z be an indicator for such initial
segments. Take Z <2 (M) such that .#, &) F T. By Theorem 15 take "> #
such that 9 () = &. Let ae M, new. In A, #*F T so for any beM' —M,
Z(a, b) takes nonstandard value so in particular M' = Z(a, b)>n. By underspill
there is some be M for which this is true. Hence :

M ETyZ(a, yy>n.

Now this is true for any ne o so by overspill for some ¢>w # F AyZ(a, y)>c.
Hence there is J<, M, such that ael and J*FT.
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The usual sorts of corollaries follow, such as:

COROLLARY 17. Let T be a recursively axiomatizable theory in &™ such that
Tt arith-CA.

(i) If A is a countable model of (T and A has an initial segment I such
that I* & T then M has 2%° such initial segments,

(i) If A is a countable model of IS(T)+I53 then M has arbitrarily large initial
segments I such that I*FT. .

(iii) If T has an w-model then any countable M & B has arbitrarily small non-
standard initial segments I such that I* & T.

This is true for example if ' = 45, or T = the second order consequences of ZF.
Here B is basic number theory, the V2 consequences of P, as introduced by Goldrei,
Macintyre and Simmons [GMS). Mc Allon [Mc] showed that B = ITS(P). A strength-
ening of the corollary can be obtained in the same way as in the remark after
Corollary 11.
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