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On the combinatorial principle P(c)
by

Murray G. Bell* (Toronto)

Abstract. We show that the combinatorial principle P(c) is equivalent to Martin’s Axiom
restricted to sigma-centered posets. This answers affirmatively a conjecture of F. D. Tall. We also
show that P(¢) implies the existence of a first countable Dowker space.

0. Introduction. This paper is organized as follows: In Section 1 we introduce
necessary definitions and prove that P(c) implies Martin’s Axiom for ¢-centered
posets, This establishes the equivalence of these two statements. In Section 2 we
exploit this result to show that P(c) implies there is a first countable Dowker space.

Our set-theoretic notation is standard. w is the first infinite ordinal and ¢ is
the least ordinal of the same cardinality as {x: xS} (we assume the axiom of
choice). If y is an ordinal, then cfy is the least ordinal « such that there exists f* o« — y
with y = | Range of f. A subset C of ¢ is closed and unbounded in ¢ if C is closed
and unbounded in the ordinal topology of ¢. A subset § of ¢ is stationary if S meets
cach closed and unbounded subset of c.

The author would like to thank F. D. Tall and W. Weiss for their encourage-
ment while he was at the University of Toronto.

1. Martin’s Axiom for ¢-centered posets is egivalent to P(c).

1:0. PRELIMINARIES. Let (P, <) be a partially ordered set, i.e., a poset. p,q€P
are compatible if there cxists an r e P such that r<p and r<g. A subset S of P is
open if p<gq and q& S implics that peS. A subset S of P is centered if for each
finite F' S, there is a p € P such that p<g for all g & F. A subset § of P is dense if
for each p & P there is an s & § with s<p. A c.c.c. poset is one in which every uncount-
able subsct contains two compatible elements. A o-centered poset is one that is the
union of countably many centered subsets. Lot 9 be a collection of dense subsets
of P. GeP is Y-generic if

(1) if p<q and peG, then ge G,

(2) for every {p, g}<G there is an re G with r<p and r<g,

(3) for each De @, G D # @.

* This research was supported by a National Research Council of Canada Postdoctoral
Fellowship.



GUEST


150 M. G. Bell

Martin’s Axiom (see Martin and Solovay [2]) states that for every c.c.c. poset P
and for every collection & of fewer than ¢ dense subsets of P, there is a 92 -generic
G<P. An equivalent topological statement is that no compact T, space of countable
cellularity is the union of fewer than ¢ nowhere dense sets. Martin’s Axiom for
¢-centered posets is Martin’s Axiom with c.c.c. replaced by o-centered. An equiv-
alent topological statement is that no compact 7T, separable space is the union of
fewer than ¢ nowhere dense sets (see Kunen and Tall [6].

A collection of sets S is called centered if (\ F is infinite for every finite F&S.
Consider the following three combinatorial . statements:

P(e): For each centered collection & of fewer than ¢ subsets of , there is an
infinite BSw such that B—A4 is finite for all A€ &/,

BF(c): For each collection 4 of fewer than ¢ mappings from @ to o, there is an
f: @ = o such that for each s & # there is an Ny < such that h(n) < f(n)
for each n=>N,.

BB(c): For each collection # of fewer than ¢ mappings from U "o to o, there

n<w
is an f: @ — @ such that for each s € # there is an N,<w such that
h(f} m)<f(n) for each n>=N,.

Martin’s Axiom implies Martin’s Axiom for o-centered posets implies P(c)

implies BE(c). For elaborations on these implications see Booth [2], Burke and

van Douwen [3], Kunen and Tall [6] and Rothberger [10]. It is also known that
BF(c) does not imply P(c) and that Martin’s Axiom for o-centered posets does
not imply Martin’s Axiom (cf. Kunen and Tall [6]). For more consequences of
P(c) see Rudin [14] and Tall [15]. We will show that P(c) implies Martin’s Axiom
for o-centered posets (thus answering affirmatively a conjecture of F.D. Tall).
In the process we show that P(c) implies BB(c).

For the rest of Section 1 we denote "w by &, and | "o by &. The following

n<ow
lemma is D. K. Burke and E. K. van Douwen’s proof that P(c) implies BF(c) with
minor modifications.

1.1. Lemma. P(c) implies BB(c).

Proof. Let { f,: a<} be %< c mappings from & to w. Let <* well order & in
order type w. Without loss of generality, we assume that for each a<x and for each
S, fL)SSD), 1e., f, is increasing with respect to <*.

Define & = {{(s, n): f(s)<n}: a<x} U {{t: s<*t} xw: s€ F}. By P(c), there
is an infinite BE# x o such that for each Ee &, B—E is finite. For each se &
define 4, = {s} xw. Define h: F -+ F by h(s) = the first ¢t (under <*) where
s<*tand B A 4, # @. Define f: @ — o by f(n) = min{k e o: (h(f} n), k) e B}.

This f does the job. Let a <. There exists s such that for each s<*1, if (¢, k) € B,
then f(t)<k. Choose N, such that for each n>N,, s<*f}n, and therefore
s<*h(f} n). Then for each n=N,, £(ft M<f(h(f} W)<f(n). B

Prior to our proof of the theorem, we make one observation. Martin’s Axiom
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for o-centered posets is equivalent to the statement that for each o-centered poset
(P, <) and for cach collection £ of fewer than ¢ dense subsets of P, there is a pairwise
compatible collection C of elements of P that contains an element from each D e 9.
To prove the non-trivial direction, let. P be a o-centered poset and let 9 be a col-
lection of fewer than ¢ dense subsets of P. By a Lowenheim-Skolem argument, we
may assume that |P|<c. For each pair ¢, b € P define D, = {geP: g is not compa-
tible with cither @ or b} U {g€P: g<a and q<b}. Then 9’ = @ U {D,: a,be P}
is a collection of fewer than ¢ dense subsets of P, Hence, there exists a pairwise com-
patible collection C of clements of P that contains an clement from each De 2".
Then, {p € P: there cxists a g C with ¢<p} is a P-generic subsct of P.
1.2. Touorem. P(c) implies Martin’s dxiom for o-centered posets.

Proof. Let P = QU P, where each P, is centered. We denote the partial order
18m<w

" on P by <. Let {D,: a<x} be %<c dense subsets of P. Without loss of generality

we may assume that cach D, is open. We must find a pairwise compatible collection C
of elements of P that contains an element from each D,.

For each a<ux define B, = {m: D, n P, s @}. For each ax<x and for each
pePdefine By(p) = {m: thereis a g€ D, n P, with g< p}. Without Joss of gener-
ality, for each m, {B,(p): a<x and p eP,} is centered. Otherwise, there exists
<ty o <0p,<% and peP such that 'Q D, n{gq: q<p}= U P; for some ny;

n is

<no

for each i1, we may assume that there exists f, such that Dy, N P; = @ (otherwise,

we could use this P, as our compatible collection). Thus, (} D, » {g: ¢<p} 0
isn

A ) Dy, = @. This contradicts open denseness of the D,’s. By P(c), for each m,

i<no
there is an infinite A,, such that for each p € P,,, 4,,—B,(p) is finite for all e <.

Note that for each m and for each a, 4,,— B, is finite. BF(c) implies that there is an
infinite A, such that for each m and for each o, A,,— A, is finite and Ao — B, is finite.

For each m320, enumerate A, as {a,(/): 0<j<w}. Define g: & - o by in-
duction as follows:

g(p) =0,

it n>0 and s &,, then g(s) = Gy pa-n(s(r—1).

Notation. If se &, and re o, then sr = s L {{doms, r)}. For each reo,
{ry denotes s & &, where s(0) = r,

Fix a<x. We now define f,: & — w. This we do by induction on n<o. We
simultancously define a set {dy(s,1): s€ &, and re w}sP.

Stage n = 0: Defihe f,(¢) so that for cach rzf(p) there isade DN Pyeryy:
This is possible because g({r) = ao(r) and dq—B, is finite. For each r € w choose
4, r) € Py s0 that for cach rfle), dde,r) e Dy

Assume that for ecach i<n and for each se#, we have defined f,(s) and
{ds, r): rew} such that 1° for cach re @, dy(s, r) € Py and 2° for each r2f,(s),
dfs,rye D, and ds, r)<d st i—1,sG-1).

Stage n>0: For each se &, define f(s) so that for each r -f.(s) there is
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a deD,n Py, such that d< dfst n—1, s(n—1)). This is possible since
dst n—1,s(n—1)) € Py, 9(7) = o) and Ag(s)”Ba(da(Sr n—1, s(r=1))} is
finite. For each r € o, choose d(s, 7) € Pysry SO that for each r=f(s), dfs,r)e D,
and d,(s, r)<d st n—1, s(n—1)). This completes the inductive step.

By BB(c), there is an f: o - @ such that for each a<x there is an N, such
that for each n=N,, f.(f} W<f (™).

© cram. {d(f} Noo S (VD) w<x} is the collection that we are striving for.

Proof. For each a, di(f} Ny, f(N.) € D,. This follows from 2% and the fact
that f,(f} Noy<S (Vo)

To show compatibility, we take o # f. Assume N,<Nj. Therefore,
LFt NYSS (W) and df} Ny f(Np) € Pyis g1y BY 1°. By repeated application
of 2° we get that d,(f} Ny, f(Np)Sd(f} Now f(N))- Since Pys pnya 1y i8 centered we
get a g such that g<d,(f Ny, f (Vp)) and g<dy(f} Ny, f(Np) and we are done. B

2. A fixst countable Dowker space from P(c).

2.0. PRELIMINARIES. A Dowker space is a normal T; space X such that X is not
countably metacompact. Countable metacompactness is equivalent to the statement
that for every decreasing sequence of closed sets {C,: n<w} with N C, = @, there

n<ao

is a decreasing sequence of open sets {O,: n<o} with C,s0, for each n<w and
such that ()0, = @. Normadlity is equivalent to the statement that for every finite
<

n<o .
sequence of closed sets {C;: i<n}, with () C; = @ there is a finite sequence of open
i<n

sets {O;: i<n} with C,=0, for each i<n and such that ) O; = a.

i<n

M. E. Rudin [13] has shown that there exists a Dowker space. In [13], she asks
if there exist Dowker spaces with small cardinal functions; in particular, is there
a first countable Dowker space? This question is still open. However, several in-
vestigators, P. de Caux [4], Jubdsz, Kunen and Rudin [7], Rudin [12] and Weiss [16]
have constructed first countable Dowker spaces using additional set-theoretic assump-
tions known to be consistent with the axioms of Zermelo and Fraenkel for set theory.
Moreover, these spaces are small in other respects as well, e.g., density character
and cardinality. Our space is of interest due to the relative weakness of the assump-
tion P(c) in this context. '

Several acknowledgments are in order; the idea of refining the cuclidean top-
ology on a Luzin set is drawn from Juhdsz, Kunen and Rudin [7], the idea of using
stationary and closed unbounded subsets is drawn from Weiss [16], the partial order
used in Fact 1 of our theorem is drawn from Kunen [5] and the partial order used
in Fact 2 is drawn from Juhdsz and Weiss [8].

Several definitions are in order; a generalized Luzin subset of the Cantor cube 2218
a subspace of 2° of size ¢ in which each nowhere dense subset has size <c and
a regular refinement of a topological space (X, ?,) is a topological space (X, 1)
where ¢, St, and for each xe X and O, et; with x € Oy, there is an 0, € ¢, such
that x € O, and Cl,, 0, 0,. P(c) implies that there is a generalized Luzin subset

icm

©

On the combinatorial principle P(c) 153
of 2 (a straightforward induction following from the fact that 2% is not the union
of <c¢ nowhere dense subsets; for a proof of this latter fact, see Rothberger [11])
that every regular refinement of a separable metric space of size <c¢ is normal (se;
Alster and Przymusinski [1]) and that ¢ is a regular cardinal (this follows from the
fact that 2% = 2% for w<x<c which is essentially proved in Rothberger [10]).

2.1. A DOWKER SPACE. Let (¥, ¢) denote the Cantor cube 2% with the euclidean
topology. S Y is e-nowhere dense if Int,(Cl,S) = @. Let # denote a countable
basis of clopen sets for ¥ which is closed under finite unions. Let L be a generalized
Luzin subset of ¥ such that for each non-empty e-open U, L n U is generalized
Luzin. Enumerate all countable subsets of L as {C,: y<c}. Define

T, = {y<c: cfy<w}.
Let {S(B,r): Be# and r<® be a disjoint partition of T, where each S(B, r) is
a stationary subset of c. For each r<w, define S, = ) {S(B,r): Be %}.
THEOREM. P (c) implics that there is a first countable Dowker space.

Proof. By induction on y e T, we define a subset X = {x,: ye T,} L, sets
{Uym): yeT, and 1<n<a} and topologies #, on X,; where X, = UX,(r) and

r<o
X(r) = {x,; «aeT,, a<y and ae () S;}: such that for every a<y in T,:
igr

1. t, = t,n {M: M<X,}, t,refines the e-topology on X, and X, is #,~clopen.

2,. {Uy(m): 1<n<w} is a t,-basic neighbourhood system at x, consisting of
t,-clopen and e-nowhere dense sets. Furthermore,

a) for each n, U,(n+1)sU,n),

b) for each n, Uyn) = X, n CL.U,(n),

o) x,¢ U {CLUD): a<y},

d) ye S(B,r) implies U, (1)SX,(r).

3,. Ifye S(B, r) and cfy = o, then there exists an increasing sequence of ordi-
na];; less than y, {y,: n<w} which converges to y, such that for every {«,: n<a}
with

(i) for each n<w, a,<y and B=Cl,C,, and

(i) for cach n<w, C, SB N [X,(r)-X, ()],
we have thatex, & Cl,( U {C,,: n<w}).

Assume for the moment, that we can complete the inductive step. Let ¢ be
generated by U {#,: v € T,}. (X, ©)Is a refinement of (X, ¢) such that each point has
a countable neighbourhood base consisting of (X, #) clopen, (X, e) closed and
e-nowhere dense sets.

A. (X, 1) Is not countably metacompact. Define D, = {x,: «elS;). For
r<i

each r<cw, D, is t-closed. |J D, = @. For each r<w, let D, U, where U, Is £-open.
r<o

We claim that for each r<w, |X'—U,|<c To see this, fix r<w. We show that
Cl(U{Be®: |B(X-U)<c} = Y. If not, there is a B e & such that for every
B'SB, Bed& we have |B' A (X—U)| = c. Define C = {y<ec: for each <y
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there is a<y with C,B n (X~U,) 0 {xz: 6<B<y} and BECLC,}. C s a closed
and unbounded subset of ¢. Since S(B, r+1) is stationary, choose y € C n S(B, r+1).
Note that ¢fy = . By inductive hypothesis 3, it follows that x, & Cl,y[(X—- U)n Xy]
= CLIX-U) n X,]=X~U,. This implies that 7 e‘Ls)rS, which contradicts

y & S(B, r+1). Thus, Cl(U {BeB: |Bn (X-Up) <c}) = Y. Since L is generalized
Luzin and X<L, we have that |X—U,| <c. End of proof of claim. Hence (} U, # &

r<o
because cfe>w.

B. (X, 1) is normal. We first show: If H and K are disjoint t-closed subsets
of X and |H|<c, then H and K can be separated. Since P(c) implies that ¢ is regular,
there is yeT, such that HX,. Note that X, is t-clopen. Inductive hypoth-
esis 2, 2), b) and c) implies that (X,,7,) is a regular refinement of (X, €) so P(c)
implies that (X,, ,) is normal. There exists ¢,-open U and ¥’ in X, therefore ?-open
inX,suchthat HeU, KN X,sVand Un ¥V = &. Then Hs UVand Ke(X-X)uV
and we are done. :

Now, let H and K be arbitrary disjoint ¢-closed subsets of X. For each r<o,
define H, = {x,e H: « 6.9 S;}. Define

sr

UWH,r) = Y—Cl(U {Be®: |Bn Hj<c)).

Then, for every non-empty e-open ¥V < U(H, r), |V A H,| = c. Since L in gcne.:ra.lized
Luzin, for each r<w, | H,— U(H, r)| <c and therefore |[H— ) U(H, r)| <c. Similazly

r<e
define X, and U(K, r) for K. U UH,r) n ) UK, r) = @. If not, there is Be &
r<w r<w

with BSU(H,r) n U(K,s) such that for every non-empty e-open VEB,
|H,A V| =|K,n V| =c Define Cy = {y<c: for each <y there is a<y with
C,SH,nBn{x;: 6<f<y} and B=CLC,} and Cg= {y<c: for each <y
there is a<y with C,=K, n B n {x;: §<f<y}and B<ClC,}. Both Cy and Cy
are closed and unbounded subsets of ¢. Since S(B, r+s+1) is stationary, choose
yeCgn Cxn S(B, r+s+1). Note that cfy =w. By 3, it follows that
%y € CL(H, n B {x,: B<y}) n CL (K, B {xy: f<y}). Therefore, x, e H N K.
Contradiction.

Now, by the first paragraph, there are t-open Vg and 'VK such that
H- JUH,r)sVysClVycX—K and K- UK, r)esVysClVysX—H.

r

r<o <o

Hence H and K are contained in the disjoint ¢-open sets (Vy u U U(H, r))—ClL ¥
a r<e
and (Px v U U(K, r))—~Cl,Vy respectively.
r<a

We returh now to complete our induction.

At ‘stage 0, choose x,eL and let 1, = {¢, {xo}}. For each nx1, define
Uy(m) = {xo}

At stage y where cfy <o we just add points. Choose x, € L—{J {CL, U, (1): x<y}
which is non-empty since L is generalized Luzin and c is regular and let ¢, be generated
by U {t;: <y} v {{x,}}. For each nx1, define U,(n) = {x,}.
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At stage y where ¢fy = o choose an increasing sequence {ys: n<w} of ordinals
from T, that converges to y from below. There exists unique Be & and r<w such *
that y & S(B, r). Choose x, e (B nL)— |J {Cl, U(1): a<y}. For each n<ow, define
&#n) = {C,t a<y, BeCl,C, and C,cBn [X,(r)—X,,.("]}

Casei: For some n<w, #,(n) = @. Let £, be generated by | {#,: a<y}u {{x}}
For each n>1, define Uyn) = {x,}.

Case ii: For every n<w, &,n) # &. Now we do work. Choose

{B,(n): 1<n<w}ck

such that:

a) n % m implics By(n) N B,(m) = &,

b) diameter,B,(n)<1/n and B(n)= B,

c) for every e-open N that contains x, there is an m such that for each nzm,
B(mEN.

Define K = {x,: a<y and o e L<)i Si}. Kis [U {t,: a<y}]-closed for the reasons

r

{2,d): a<y}. Note that for each n<w, Kn | Sy(n) = @. U(l) must avoid K.
¥acr 1. For cach nz1, there is an e-nowhere dense N,=B,(n) n X\(r) such
that for each C,e &(n), N, n C, # @. Furthermore, CI,N, n K = @&.

Proof. Fix nz1. Define P = {(F, G): Fis a finite subset of B,(n)—K, Ge &
and FEG}. Define < by (Fy, G)<(Fy, Gy) iff F,€F, and G,S6,. (P, <) is
a o-centered poset since @ is countable. For every o such that C,e &,(n) define
D,={(F,G): FnC,# @) For every HedB define Dy = {(F,G): HZG}.
For every ke K define D, = {(F, G): k¢ G}. {D,: C,e P,m)} v {Dy: HeB}u
U {Dy: k € K} are <c dense subsets of (P, <). Let ¥ be a generic subset of P such
that & intersects each of these dense sets. Define N, = B,(n) n X,(r) nN{GeB:
there is an F with (F, G)e %}. D,’s insure that N, meets each C,& &,n), Dy’s
insure N, is e-nowhere dense and D,’s insure that Cl,N, n K = @.

Facr 2. Let {N,: n=1} be as in Fact 1. For cach n>1 there is a [ {t,: a<7}]-
clopen e-nowhere dense 'V, such that N,&V,SBm)n X,r), Von K= and
Vo= Cl, V.0 X,.

Proof. Fix nzl. Define % = {all finite unions of U,(i)s: a<y, ozejL<_} S,
Isi<a and U i)s B, (n)}. Note that |%|<c. Define P = {(U,G): Ue%, Ge B
and UnGe= UnKs=GnClLN, =@} Define < by (U, G)<(U,,Gy) iff
U,V and G, G,. Note that (Uy, G} and (U, G,) are compatible iff (U, U U;) N
NG u Gy) =@, (P, ) is a o-centered poset. To see this, define

Po={(U,0): UeW and UnG=UnK=GnCl,N, =0},
Then, each Pg is centered and P = (J {Pg: G " Cl, N, = @ and G € #}. For each
x€X,, define D, = {(U, G): xe Uy G}. For each y € N,, define
D, = {(U,6): ye U}.
§ — Fundamenta Mathematicae CXIV/2
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For each H € 8, define Dy = {(U, G): Hn G # B} {D:xe X} u {D,:yeN,} v
U{Dy: He %} are < ¢ dense subsets of (P, <). Let ¢ be a generic subset of P
such that & intersects each of these dense sets. Define V, = U {U: there is a G with
U, G)e¥%}. : :

That ¥, is [U {t, a<y}-open, V,EB,m) n X,(r) and V,n K =G follows
from the definition of P and #. Dpg’s insure that ¥, is e-nowhere dense. D,’s insure
that N,cV,. D,’s insure that ¥, = CI, ¥, n X,. Since ?, refines the e-topology
on X,, we have that ¥, is [U {t.: @<y}]-closed as well.

Finally, define Uy(n) = {x,} v LiiVi. Let ¢, be generated by

n

U {t: <y} v {U,): 1<n<o}.

That 1, and 2, hold follows from our choice of wx,, our choice of the B,(n)’s,
Fact 1, Fact 2 and our definition of U,(n) and £,. Let us check 3, where y e S(B, r)
and cfy = w. We had an increasing sequence of ordinals less than y, {y,: n<w},
converging to y. Assume there is {«,: n<w} such that

(i) for each n<w, o,<y and B=Cl,C,, and

(i) for each n<w, C, <8 n [X,(r)—X,, ("]

Choose a t,-neighbourhood of x,, U(m)= {x,} v U V. C,, €%y (m). By
m<i

Fact 1, N,, n C,, # @. By Fact 2, N,,c¥,, and therefore V,,n C,, # @, i.e,
Um) n C,, # @. Hence x,eClL (U {C,,: n<w}). H
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