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Cardinal functions on compact F-spaces and on weakly
countably complete Boolean algebras *

by

Eric K. van Douwen (Athens, Ohio)

Abstract. We investigate limitations on the cardinals % which occur as the value of cardinal
functions on infinite compact F-spaces (or on weakly countably complete Boolean algebras).
We find limitations of the form x® = %, or else cf(x) = w, or at least “» is not a strong limit
with cf () = ", and show that all infinite cardinals » with #® = % do occur (for cardinality one
needs the additional restriction » > 2%, as is well known).
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1. Introduction. This is a paper on the behavior of cardinal functions on compact
F-spaces. The Boolean algebras which occur as the algebra of clopen (= closed
and open) scts of a zero-dimensional compact F-space are the weakly countably
complete Boolean algebras, or WCC algebras for short, see § 6 for the definition.
This class includes the class of countably complete Boolean algebras and has the
pleasant property of being closed under homomorphisms. (However, it is consistent

* Completed while supported by NSF-Grant MCS78-09484.
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that there be a WCC algebra that is not a quotient of any countably complete
Boolean algebra, (vDvM]1.) So via Stone duality this also is a paper on the behavior
of cardinal functions on a significant class of Boolean algebras.

Our main results, in their two forms, are the following.

1.1. TaeorReM. Let X be an infinite compact F-space.

M) X[ = 1X].

(2) If x is the character of X at some point, or is the character of X, or is the
hereditary Lindelsf degree of X, then cfx # «.

(3) The spread (= hereditary cellularity) of X is not a strong limit with countable
cofinality.

1.2. THEOREM. Let B be an infinite WCC algebra.

) If x is the number of ultrafilters on B, then x” = x.

2) If s is the least cardinal such that some ultrafilter has <x generators, or such
that every ultrafilter has <x generators, or such that every filter has < gencrators,
then cfx # .

(3) If % is the smallest cardinal such that |D|<x whenever D is a disjointed set
in some homomorphic image of B, then  is not a strong limit with countable cofinality,

An early version of these results was announced in [vD].

Theorem 1.1 is more general than Theorem 1.2 since a compact F-space need
not be zero-dimensional; see Example 14.9. However, we give several proofs in the
zero-dimensional case only since this reduces the technical complexity of proofs;
the proof of the general case does not require additional ideas.

Three other cardinal functions are considered in §§ 11, 12, and we also obtain
information about cardinal functions on compact extremally disconnected spaces
(complete Boolean algebras) in §§ 13, 15.

We have tried to write this paper so that it is intelligible for bolh topologists
and Boolean algebraists. Our language is mostly topological, but we do not need
much topology, and as a service to Boolean algebraists we have included dictionaries
in §§ 4, 6 and 17, and have included the proofs of some known topological facts.

2. Original motivation. A space X is said to omit the cardinal » if |X'|>» and
if no closed subspace of X has cardinality x (so |X|>x). We say that % can be omitted
if it is omitted by some compact Hausdorff space.

Juhész has shown in [Ju,, 2.3] that under GCH no compact Hausdorff space
omits both %* and x**, for every cardinal x, sec also [HJ,]. It is well known that flor
(w is the space of integers) omits every infinite cardinal <22%, [GJ, 9.12]. This shows
that GCH is essential, and also that a compact space can omit both % and x*
under GCH, at least for % = .

It is unknown if under GCH any cardinal of the form x%**, with x> w, can
- be omitted, even in the special case % = w. In fact, until now it was unknown if
under GCH any cardinal other than o or @, can be omitted. Since there are arbi-
trarily large compact F-spaces, and since a closed subspace of a compact F-space
again is a compact ‘F-space; by Proposition 6.2a, and since |X1? = |X| for each

icm
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infinite compact F-space, by Theorem 1.1(1), we see that every infinite cardinal -
with % s x, in particular with cf(x) = , can be omitted. (An early, weaker version.
of my result is included in [Ju,].) So w; and every cardinal » with cf(:) = @ can be:
omitted. It is unknown if under GCH any other cardinals can be omitted.

3. Conventions and definitions.

A. Set theory. Cardinals are initial (von Neumann) ordinals, % and A usually
represent infinite cardinals.  is w,. A sequence, i.e. a function 5 with domain w,.
is frequently denoted {s,>,. As usual,

) =

B. Topology. All our spaces are regular and in fact completely regular. “Clopen”
abbreviates “closed and open”, a space is zero-dimensional if its clopen sets are-
a base.

A sequence {4,y, of subsets of a space X will be called

disjoint if A,, n A, = @ for distinct m,new,

relatively discrete if it is disjoint and if each 4, is open in U 4,,.

m

{dswu: |4l =2}, [ = {d=x: |4l<x}.

A sequence {x,», of points is called relatively discrete if the sequence KEAH™
is relatively discrete; remember that if {x,>, is relatively discrete then (by regularity)-
there is a disjoint open sequence <U,>, with x,e U, (ne€ w).

% also denotes the discrete space with x points.

C. Boolean algebra. We say that a subset P of a Boolean algebra B is

disjointed if anb = @ for distinct a,beP,

wealdy disjointed if a% F for ae P and finite FSP with a¢ F.

We say that the subsets P and Q of B are

disjointed if paq = @& for peP and g€ Q,

can be separated if there is s € B with p<s for pe P and ¢<s if ge Q. (In this.
case we say that s separates P from Q.)

4. Cardinal functions. In this section we review the definition of some cardinal
functions on topological spaces, give the Boolean algebraic translation and mention
a useful well known fact.

A. Definitions.
cellularity
character of 4=X
character of ae X
character
density
Lindeléf degree

*

¢(X) = sup{|%|: % a disjoint family of nonempty open sets},.
2(4,X) = min{|Z|: £ is a local base at 4},

2(a, X) = x({a}, X),

1(X) = sup{y(a, X): ac X},

d(X) = min{|D|: D is a dense subset of X3,

L(X) = min{x: every open cover has a subcover of cardi~
nality <},

spread 5(X) = sup{|D|: D is a rclatively discrete subset of X}..
weight w(X) = min{|#|: & is a base for X}.

5 — Fundamenta Mathematicae CXIV/3


GUEST


238 E. K. van Douwen

Also, if ¢ is a cardinal function, then one defines
hereditary ¢ ho(X) = sup{p(¥): Y=X}.

Note that s = he.

We do not need the common convention that cardinal functions take on values

Zo only.

B. Boolean algebraic translation.

4.1. LemMA. Let B be a Boolean algebra, and let X be the Stone space of X,

(@) |X| = |{F<B: F is an ulirafilter}|.

) ¢(X) = sup{|S|: S is a disjointed subset of B}.

() if Fis a filter on B then y((\ F, X) = min{|G|: G generates F}.

(d) x(X) = min{x: every ultrafilter on B is gencrated by at most % clements
-of B}. ‘

(e) d(X) = min{x: B is the union of % ultrafilters}.

() hL(X) = min{x: every filter on B is generated by at most x elemenis of B}.

(8) s(X) = sup{IS|: S is a weakly disjointed subset of B}.

(b) w(X) = |B| if X is infinite.

@) he(X) = sup{c(4): A is a homomorphic image of B}.

With the exception of (c), (d), (f) the proofs are routine, hence we omit them;
‘see below for (c), (d), ().

If Band X are as in the lemma, we will define ¢ (B) = ¢ (X) for all ¢ considered,
with the exception of | |. [Note that what Boolean algebraists call the density of B
is not d(X), but n(X), the m-weight of X.] If F is a filter on B, we use x(F, B) for
2(N F, X) conform with 4.1c.

C. A useful fact.

4.2. LemMA. If X is compact and if A is a subset of X that is closed but not open,
-then '

14, X) = L(X—4)
= min{|%|: % is an open family in X with (% = A}
=min{|F|: & is a closed family in X with ) F = X—A}.
Proof. Call the common value of the two minima . Note that uzo.
14, X)< < Since & is normal, there is an open family % in X such that |%|< s
;and 4 = N{U: Ued}. Since | >0 (because 4 is not open) we may assume
that % is closed under finite intersection. Lel ¥ be any open sct with V2.4, then
{UT V: Ue@} is a family of closed sets in the compact space X with empty inter-
section. Hence there must be a Ue® with U V. So % is a local base at 4.
p<y(4, X): Trivial.
USL(X—A): Bvery point of X—4 has a compact neighborhood.
LX—4)<p: X—A is the union of compact sets, and yzw. H

This is known of course. The proofs of (c), (d) and (f) of Lemma 4.1 now are
-asy.

»
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5. Combinatorial tools. The next lemma can be proved by an obvious modi-
fication of the proof of the corollary, due to Tarski, [T, Thm. 7]; cf. [CH,, Thm. 4.1].

5.1. LemMa. Let {,>, be a sequence of cardinals which either is strictly increasing
or is nondecreasing with %,>w, and let » = supx,.

n
Let {K,», be a disjoint sequence of sets with |K,|>x, for ne w.
Then there is a family of <[\ K,]° with || = »® such that
n

(1) o is almost disjoint, i.e. |4 N Bl< o for distinct A,Be L,

@ AnK,]|=1for Ae o, neo.

5.2. COROLLARY. If % 3> then there is an almost disjoint o <[x]® with || = x*.

Our next lemma is Hajnal’s Free Set Lemma, [H] (or [CN, 10.14], [Ju,, A3.5]);
we emphasize that x need not be regular in the lemma. .

5.3. LemMaA. Let %>A>w. For every f: u — [«]=* there is an Fe [x]* which
is f-free, i.e. £ ¢ f(n) whenever &,meF are distinct.

We also observe that the fact that for all cardinals A>w one has

2° = A-sup{x°: x<A and cfx = o}

(proof by transfinite induction) implies
5.4, LEMMA. If A= then 2° = A if (and only if) x°<A for every k<A with
cfx = o.

6. Compact F-spaces and WCC algebras. Clearly a Boolean algebra is complete
iff every two disjointed subsets can be separated, and is countably complete iff
every two disjointed subsets, one of which is countable, can be separated. This
suggests the following i

DEFINITION, A Boolean algebra is called weakly countably complete, or a WCC
algebra for short, if every two disjointed countable subsets can be separated. -

The topological counter part is given by the next definition and lemma.

DerNiTION. The compact space X is called an F-space if the following holds:

if Fand G are F,-subsets of X with FnG=FnG =0, then FnG=0.

6.1. LEMMA. Let B be the clopen algebra of a zero-dimensional compact space X-
Then the following are equivalent:

(2) B is a WCC-algebra;

(b) every two disjoint open F,-subsets of X have disjoint closures; and

(¢) X is an F-space.

Proof. (a) — (b): Let U and ¥ be disjoint open F,’s in X Since X is zero=
dimensional, there are countable %, ¥" < B with U = J# and V' = U 7. Clearly %
and ¥ are disjointed. If S separates % from ¥/, then U<S and V=X-S.

(b) = (¢): Let F and G be F,-subsets of X with FAG=FnG=@. Let
(F>, and (G,, be sequences of closed sets with F = {J F, and G = | G,. With

n n

5
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recursion we can construct sequences {U,>, and {V,> of open sets such that
F,cU, and G,cV,;
U,nV,=U,nG=V,nF=0;
and
U,sUp; and WSV, foralreo.

Then U U, and U ¥, are disjoint open F,’s, hence F Fn GQ(U U) n (U V)~ = 0.

(c) (b): Tr1v1al
(b) ~ (a): Let %, ¥~ be disjointed countable subsets of B, Then % and ¥ are

disjoint open F.’s, hence (U %)~ n (U ¥)~ = @. Since X is zero-dimensional and
compact there is an Se B with J# S and U ¥ €X-S. Clearly S separates %

" from ¥. M :
~ 6.2. PROPOSITION. (a) 4 closed subspace of a compact F—space again s compact
F-space.

(b) 4 homomorphic image of @ WCC algebra again is a WCC algebra,

Proof. (a) is obvious, and (b) is the dual of (a) because of 6.1. M

6.3. Remarks. (a) WCC-algebras were called almost ¢-complete by Koppel-
berg, [K,], who also noted that 6.2b holds, and are called CSP (= Countable
Separation Property) Boolean algebra in [VDMR].

(b) Our definition of F-space is not the original definition, [GH], and ‘does not
tell when a noncompact space is an F-space, but it is the most convenient defi-
nition for our purposes.

(c) Our proof that (b) « (c) in 6.1 does not use the fact that X is zero-dimen-
sional.

(d) In contrast with 6.2 it is well known that fw is extremally disconnected, but
that its closed subspace Bw—w is not even basically disconnected, [GJ, 6W.3],
but of course it is an F-space. In this context we mention, as in the introduction,
that it is consistent that there be a compact zero-dimensional F-space which cannot
be embedded in a basically disconnected space, [vDVM].

-7, Cardinality.

7.1. TEEOREM. If X is an infinite compact F—space, then | X|° = |X|, and
1X|>2%.

The first part of the theorem is an easy corollary to the followmg lemma.

7.2, LemMa. Let X be a regular space. If x<|X| and ¢fx = w, then there is an
almost disjoint o <[X1° with |of| = x° such that A U B is relatively discrete for
all 4,Be .

Proof. For xeX define the-local cardinality 1k(x) of x in X by
Ik(x) = min{|U|: U is a neighborhood of x}.

Let (%,», be a (strictly) increasing sequence of cardinals with supsx, = .
n

icm°®

Cardinal functions on compact F-spaces 241

Case 1. There is a sequence {x,», of distinct points such that Ik(x,)>x, for
new.

Since the %,’s are increasing, and since every infinite subset of X has an infinite
relatively discrete subset, we may assume that {x,», is relatively discrete. Since X is
regular we can find a disjoint open sequence (X, in X with x, e X, for n e .

Then |K,|21k(x,) =%, for all new, hence there is o as in Lemma 5.1. If
A, Be s, then K, n (4 U B)|<2 for all ne w, hence 4 U B is relatively discrete
since the K,’s are disjoint and open and 4 w Bc|J K,,.

n

Case 2. Not Case 1.

Then an attempt to recursively pick x,’s must fail, so there is a finite (possibly
enipty) FSX and there is a A<x (namely some x,) such that lk(x)<2 for all
xeX~—F. For each xe X—F choose a neighborhood U, of x with |U,<l. By
Hajnal’s Free Set Lemma 5.3 there is a DX with |D| = % (even |D| = |X] is
possible) such that x ¢ U, for distinct x, y € D. Then obviously D is relatively discrete.
By Corollary 5.2 there is an almost disjoint &/ S[D]” with |&f| = %®. Clearly 4 U B
is relatively discrete for all 4, Be /. B

7.3. Proof of Theorem 7.1. Let % be any cardinal with cf% = o and x<|X].
Let o be as in Lemma 7.2. For A= X let A* = A7 — 4, the set of cluster points
outside 4. Note that 4* = (4—F)* if F is finite.

For any two distinct 4, Be & the set F = A n B is finite, hence

A* A B*C(Ad—F) n(B—F)y =0
since X is an F-space (for 4 U B is relatively discrete, hence (A—F)~ n (B—F)
=(A—F)n (B—F)" = @). Now A* # @ for A e/ since X is compact, hence
Xz = %

It follows from Lemma 5.4 that |X|° = |X].

To see that [X|>22" observe that if N is a countable relatively discrete subset
of X then N = BN, which is homeomorphic to fw, and recall that |faw| = 22°,
[C, 24], [CN, 74] or [G], 93] B

7.4. Remarks (a) The proof of 7.2 resembles’ the proof of the theorem of
Hajnal and Juhasz that if X is regular and cf[s(X)] = o, then X has a relatively
discrete subset of cardinality s(X) (i.e. sup = max), see [HJ,] or [Ju;, 3.3].

(b) We did not use the full force of X being an F-space, nor of X being compact
for the first part of the theorem. What we proved then is the following.

7.5. TarorEM. Let X be an infinite countably compact space with the property
that

(%)  for all countably relatively discrete DSX, and for all ASD it is true that
An(D-d) =
Then |X|® = |X|. B
It is known that every F-space satisfies (x), [GJ, 14N.5], but even for com-
pact X(*) does not imply that X is an F-space, [vD,].

B
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8. Character. The main result of this section is Theorem 8.3, We begin with an
easy observation which undoubtedly has been made before.

8.1. PROPOSITION. Let X be a compact space, and let x e X. If cf[x(x, X)] = «,
then there is a nontrivial sequence in X that converges fo Xx.

Proof. There is a sequence {%,), of open families in X with

) 1%, <x(x, X) for new,

(2) U,=%,4, for neow, and %, is a local base at x.

Lemma 4.2 tells that |} %, 2w for all n € w. Hence there is a sequence {s,>,
of distinct points with s, € (| %, for n € w. This sequence converges to x by (2).
8.2. COROLLARY. If X is a compact F-space, then cf[y(x, X)] # o for all xe X,
Proof. A compact F-space has no nontrivial convergent sequences, e. g. by 6.2a.
|
8.3. THEOREM. If X is a compact F-space, then cf[x(X)] # w.
Proof. Let x be any cardinal with cfx% = o and %<y (X). We will show that
2(X)>x by finding p € X with y(p, X)>x; because of 8.2 it suffices to find p with
x(p, X)zx.

Let (%), be a stnctly increasing sequence of cardinals with » = sup;»c,l For

new pick p, e X with x(p,, X)>#,.

If  (p,» X)Zx for some n we are done. If not, we may assume without loss of
generality that the p,’s are distinct. Hence we may even assume that {p,», is relatively
discrete (for every infinite subset of X has an infinite relatively discrete subset).
Since X is regular we can find a disjoint open sequence (P,>, in X with p,€P, for
ne .

Let p be any cluster point of <x,»,, and let % be an open neighborhood base
for p. We claim that |%|>%, for suppose not. Without loss of generality |%] <.
Because of Lemma 4.2 we can choose

Ge@nN{Ue%: p,e UD—{p}
for new. Since {(P,), is a disjoint open family; we have
{pnea} n{g:new)={p,:nea}nig: new}” =@.
Since p € {p,: new}”, and since X is an F-space, it follows that p ¢ {g,: n e w}.

Hence there is Ue % with U n {g,: Ae v} = @. But U must conl‘un SOME Py,
and hence some g, since p is a cluster point of {p,),. B

) More information about character follows from the following result of Pospisil,
[Po] (see e.g. [C, 2.7], [CN, 7.15] or [Ku,, 2.8] for a recent reference).
8.4. THEOREM. There is p € B such that y(p, fw) = 2°. B
8.5. COROLLARY. If X is an infinite compact F-space, then there is a peX such
that y(p, X)=2°. Hence x(X)=2°. B

8.6. Remark. In 8.2, 8.3 and 8.4 it suffices to assume that X is a compact
space satisfying (¥) of 7.5.
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9. Hereditary Lindelof degree.

9.1. Tusorem. If X is @ compact F-space, then cf[hL(X)] # o.

We need the following easy observation.

9.2. LeMMA. Let X be any space.

(a) hL(X) = sup{L(Y): Y is an open subspace of X}.

(b) If o is a cover of X (not necessarily conmsisting of open. sets), then

AL Y AL(4). B

s

The foHowing lemma gives half of the proof of Theorem 9.1.

9.3. LEMMA. Let {x,>, be a strictly increasing sequence of infinite cardinals,
and let » = supx,. Let X be a compact F-space.
n

If there is a disjoint clopen sequence (K., in X such that hL(X,)>x, for ne w,
then hL(X)>x.

Proof. Because of 9.2a and 4.2 we can choose a closed F,=K, with
1 (Fys X,) 2 x, for ne . (We have >, not > here because we do not want to get
involved in the sup = max problem; see [Ju,, Ch. 3] about this sort of problems.)
Define

F:(l;)Fn)‘.

We claim that x(F, X)>x; in view of 4.2 this will prove that hL(X)> x. We combine
the proofs of 8.1 and 8.3.
Suppose x(F, X)<x. Then there is a sequence {%,, of open families such that

O %, <x,, for ne w;
@) U,y for new, and %, is a local base at F.
n

Since |%, v {K,}|<x(F,, X) for new, we can pick
€ ((ﬂ %n) 8} K;x)'_Fn
for ne w, by 4.2. Since {K,», is a disjoint open sequence we have

Fnig:neo}=(UF)n{g: nen}” =

hence Fn {g,: ne w}™ = @. It follows from (2) that there are ke w and Ue%,
such that U r {g,: n € ®} = &.But then () %) N {¢,: n € 0} = &, which contra-
dicts the choice of our g,’s. B

9.4. Proof of Theorem 9.1. For convenience we assume that X'is zero-dimen-
sional. Evidently we may assume that |X|>w, then also y(X)>o.

Since ¥(X)<AL(X), by 42, and since we- know already from 8.3 that
cf[x(X)] # w, we may assume that x(X)<hL(X).

Let » be any cardinal with x(X)<»<hL(X) and cfx = o, and let {x,>, be
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a strictly increasing sequence of cardinals with supx, = % and %, >3 (X) (s0 %y = w).

n
We will construct a disjoint clopen sequence {X,», in X with AL(X,)> %, for ne o.
This will show that AL(X)>x because of 9.3.
Since X is compact, it follows from 9.2b that there is a p € X such that

(1) if U is any neighborhood of p, then AL(U) = hL(X).

Let n<m, and suppose we have constructed K, already for n<m, satisfying the
additional condition that p ¢ K, for n<m. Then U= X~ {J K, ds a clopen set

n<m

containing p. Since y(p, Uy = y(p, X)<x,<x,, and since X is zero-dimensional,
there is a clopen family o in X with ) & = U~{p} and |A'|<3,,.

‘Since AL({p}) = 1, it follows from (1) and 9.2b that there is a K, € #" with
hL(K,)> %,,.

This completes the construction of the K,’s, B

9.5. Remark. In a similar way one can prove that if X is an infinite compact
F-space, then

@) cf[w(X)] # w;

(b) if s(X)>yx(X), then s(X)* = 5(X);

© if hd(X)>y(X), then cf[hd(X)} # w.
. There is a better result than (a) available, see § 12, and I do not think (b) and (c)
are interesting enough to warrant inclusion of the proof.

9.6. Remark. If X is an infinite compact F-space then AL(X)>2°. This
follows from the facts thats X has a subspace homeomorphic to fw and that S has

a relatively discrete subset of cardinality 2°. Alternatively, use Corollary 8.5 and
the fact that AL(X)>y(X).

i

10. Spread.

10.1. THEOREM. If X is a compact F-space, then s(X) is not a strong limit with
countable cofinality. In fact, if A is any strong limit with cf4 = o and A<s(X), then X
has a relatively discrete subset of cardinality 1°.

Proof. X has a relatively discrete subset D with [D| = A:if s(X)>1 this is
clear, and if s(X) = A it follows from the theorem of Hajnal and Juhész quoted in
74. By 5.2 there is an almost disjoint &/ <[D]* with |} = A% For A=X put
A* = A—4. As in 7.2 each A* is no nempty. In 7.2 we also showed that

1) © A*nB*=@ for distinct 4, Bess .
We would like to show that each A* is open in {J B*, for then it would follow
Besot .

from' (I) that X has a discrete subset of cardinality || = 1. Unfortunately this
need not be true, see Example 13.10. We will use the fact that A is a strong limit
cardinal to overcome this annoying fact: we simply construct a B o with |B| = 1°
such that each 4* with 4 €% is open in {J B*.
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Since cfd = o, there is a sequence {D,), of subsets of D with UJD,= D,

n
such that | D,| <A for n e w. Since 1 is a strong limit, we also have |D,| <1 for n e w.
(Recall that | ¥|<exp2d(Y) for every Hausdorff space Y, see e.g. [Juy, 2.4] for the
easy proof.) Hence the set

E={Db, e
is an F, including D with |E| = . We now define Z=. by
B={ded: *nE=@a}.
Then |#—sf|<|E| = A by (1), hence |B| = A° since || = A®>A. (Recall that

cfd = w.)
Let 4 € % be arbitrary. We have to show that 4* is open in U #*, or, equiv-
Be®

alently, that
A*n(U{#B*: Beg—{4})) = 0.

If Be#—{A}, then B*<=(D—A)" since |4 n B|<w (and B< D). So it suffices
to show that ’

An(D-4)" =@.

Let F = En (D—A4)7, then F and A are two F,-subsets of the F-space X. Clearly
Fnd=(D~4)"nAd=@ since D is relatively discrete. But also FN 4 =@
since FEE and (A—A)N E =@ andsince Fnd = @. So An F = @, therefore
An(D—4)" =@ since F = (D—4)". B

11. Density and cellularity in special compact F-spaces. There are no restrictions
on the density and cellularity of a compact F-space in general, see Example 14.1.
We are interested in compact spaces in which nonempty G,-subsets have non-empty
interior (or in Boolean algebras B with the property that if (a,), is a sequence in B
with @,>a,,,>0 for necw, then there is a b ¢ B—{0} with 4,>b for ne w). We
have the following easy result.

11.1. TueoreM. If X is an infinite compact F-space in which every nonempty G
has nonempty interior, then d(X) is not a strong limit with countable cofinality.

Proof. Let A be a strong limit with countable cofinality, and assume A<d(X).
Let D be any subset of X with |D| = A. In the proof of 10.1 we showed that there
is an F -subset E in X with |E| = A and E2 D. Since |X] = A°> 1 by Theorem 7.1,
we see that X—F is a nonempty G;, so Int(X—E) # &. Hence D is not dense. B

11.2. CoroLLARY. If X is a (noncompact) o-compact locally compact space,
then d(BX—X) is not a strong limit with countable cofinality.

This corollary shows that 11.1 is not vacuous, Theorem 17.1 also shows that the
next result belongs to this section. ‘

11.3. THEOREM. If X is a (noncompact) o-compact locally compact space, then
c(fX—X) is not a strong limit with countable cofinality. In fact, for every strong
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limit ), with countable cofinality, if c(BX—X)=>2, then BX—X has a disjoint Ol’l’n
Sfamily with cardinality 1.

Proof. We give the proof for zero-dimensional X. Let B be the clopen algebra
of X, and let & be the ideal of compact members in B. Then ¢(fX— X) = c(BlS),
see Section 17. Hence

(#) for all %, there is a disjoint open family in pX—X of cardinality % iff there
isa® S B— with |%| = , such that U n V e £ for any two distinct U, V' e %.

Define :
y = min{c(X—4): AdeS}.

Since BX—X = B(X—A4)—(X—4) for all 4e#, we may assume without loss of
generality that y = ¢(X).

Cram. c(BX—X)<expe(X).

This is due to Ginsburg and Woods, and does not depend on X being zero-
dimensional, [GW]. For completeness sake we. give the argument. There is an
increasing sequence {I,», in & with {J I, = X. Suppose there is % as in (*) with

|%}>expe(X). For new define P, = {{U,V}e@P: UnVesl). Then
[#]* = | P,, hence from the partition relation 2** — (x*)f,, [E], or [CN, 8.10]

or [Ju,, Ad.4], we find ¥" <% with |¥"|>c(X) and ne o such that [¥1?<l,. But
then {V—1I,: -V e¥} is a disjoint open family in X of cardinality >e¢(X).

It follows that Ay since A is a strong limit. Let {4,», be a strictly increasing
sequence of cardinals with sup 4, = 1. Since X is o-compact and zero-dimensional,

n
we can find a countable disjoint Z<# —{@} with J @ = X such that for all n<w
there are only finitely many D € @ with |D|<n. Then for all finite <2 we have

(U @-#) =

Hence we can find a disjoint sequence {D,>, in @ with ¢(D,)>4, for ne w. For
each n € » we can choose a disjoint family K, = —{@} with |K,| = 4,and U K, s D,.
It should be clear now how to construct % as in (¥) with [%| = A” from the K,’s,
using Lemma 5.1. B

11.4. Remarks. (2) I do not know if ¢(X) cannot be & strong limit Wlth count-
able cofinality if X is a compact F-space in which monempty Gs-subsets have
nonempty interior.

sup{c(D): DeP—-F}.

(b) The equivalence in (%) is a weak version of a similar characterization of
Comfort and Gordon which holds for all X, [CG, 3.3]. The construction of % fe-
sembles the argument of [CG, 3.1].

(c) For the construction of % we only used the fact that cfy = w. So because
of 5.4-the following theorem is a corollary to the proof of 11.2, at least for zero-
dimensional X (but it holds as stated).
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1L.5. TueoreM. If X is a (noncompact) o-compact locally compact space, and
v = min{e(X—K): KSX compact}, then y°<c(BX—X)<2". B

11.6. CoroLLARY. If K is an infinite compact space, and X = wx K, then
c(K)'<e(BX—-X)<expc(K). H

11.7. Remark. In answer to my question Fleissner has shown that it is con-
sistent that there be a compact K with c(K) =2° but if X = ox K then
c(X—X) = 2%, [F1]. In Example 14.4 we will see that there also is a K with
¢(K) = 2° for which c(BX—X) = 2°. So 11.5 is in a certain sense best possible.

12. Weight.

12.1. TueoreM. If X is an infinite compact F-space then w(X)® = w(X).

This was proved for extremally disconnected X by Pierce, [P], and for basically
disconnected X by Comfort and Hager, [CH, 1. I proved Theorem 12.1 by modifying
their proof. After being informed of 12.1, Wis Comfort and Donald Monk have
pointed out that S. Koppelberg has proved 12.1 for zero-dimensional X (in the
Boolean algebraic translation), also by modifying the proof of Comfort and
Hager, [K,]. The assumption of zero-dimensional reduces the technical complexity
somewhat, but the complete proof of 12.1 does not require new ideas, hence it will
not be included; the major difficulty is the following theorem of Efimov, [E], see
also [CH,], which is almost trivial in case the X,’s are zero-dimensional.

12.2. TueorEM. If X denotes the topological sum of a sequence {X,, of infinite
compact spaces, then w(pZ) = HW(X,,) ]

12.3. Remark. Pierce, [P] and Efimov, [E], show that Theorem 12.1 is best
possible for extremally disconnected spaces in the sense that for every » with x® = %
there is a compact extremally disconnected space X with w(X) = ». (As pointed
out in [CH., p. 378], the argument Efimov offers in [E] as a proof of 12.1 for ex-
tremally disconnected spaces is wrong.)

13. Relations between cardinal functions on extremally disconnected compacta.
13.1. TueoreM. If X is an infinite compact extremally disconnected space, then

s(X) =hL(X) = x(X) =w(X) and |X|=expw(X).

Proof. Balcar and Franek have recently shown that every infinite complete
Boolean algebra B has an independent subset of cardinality |B|, [BF]. So if ¢ denotes
w(X), then X admits a continuous map onto °2, the product of ¢ copies of 2. The
rest is routine.

Since X can be mapped onto 2 we have |X|>°2, and since [Y|<expw(Y)
for every T,-space Y, [Ju,, 2.2], we have |X| = 27 ds noted in [BF]. .

Since X can be mapped onto °2 and s(°2) = o, we have s(X)>o. Hence
8(X) = AL(X) = w(X) since trivially s(¥)<hL(Y)<w(Y) for every Y.

Finally, since X can be mapped onto °2, there is a p e X with x(p, X) >0,
this is a result of Pospifil, [Po]; see [C, 2.6] or [CN, 7.13] for a recent reference. B
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n view of this proof we point out that Example 14.7 shows that there exists
a compact basically disconnected space X such that x(p, X)<y(X) for all pe X.

14, Examples.

A. Sharpness of results, Our results put restrictions on the values taken on by
certain cardinal functions within the class of compact F-spaces or within the
(narrower) class of spaces of the form X — X, with X ¢-compact and locally compact.
We show that our results are best possible, at least under GCH, in the sense that
there are no further restrictions; our results about cardinality are best possible even
without GCH. '

We will show that our results are best possible not only within the class of
compact F-spaces, but also within the narrower class of compact basically discon-
nected spaces and also within the narrower class of spaces of the form BX-X,
with X ¢-compact and locally compact. (These classes are disjoint.) For the second
class we also have to consider ¢ and d, because of 11.1 and 11.3. We first point out
that analogues of 11.1 and 11.3 do not hold for compact F-spaces in general.

14,1. ExaMpLE. For every u>w there is a compact extremally disconnected
space X with ¢(X) = d(X) = =.

Proof. X = fx will do. B _

We next consider compact basically disconnected spaces.

14.2. EXAMPLE. For every x> with x° = % there is a compact basically dis-
connected space X with .

(@) 1X| = 22",

(®) x(X) = hL(X) = s(X) = w(X) = %;

(c) there is a point pe X with y(p, X) = x.

Proof. We construct X as the Stone space of a suitable Boolean algebra B, so
we calculate cardinal functions of B, rather than X. We will use 4.1 without explicit
reference.

Let B be the Boolean algebra of countable and cocountable subscts of x.
Clearly B is countably complete and [B| = x“ = x.

Let & be the filter of cocountable subsets of ». Then & is an ultrafilter in B.
If 4<% has |%|<x, then |x—[) %|<|¥9|-© = %, hence ¥ does not generate F.
Since |%| = x, it follows that y(%#, B) = x. Therefore hL(B)zy(B)=#, hence,
using the fact that |B| = x% again, we see that hL(B) = y(B) = x.

From 5.2 we see that c(B/[x]*®)2x” = x, hence s(B) = he(B)=x. Since
$(B)<|B| = x, it follows that s(B) = ». H }

Before we proceed to our mext example we give a topological description of
Example 14.2; we do so because we will use the fact that Example 14.2 can be
embedded in our next example.

If % is any cardinal >, let &, be the filter of cocountable subsets of x, let Ax
be the space with underlying set % U {00} (where oo ¢ %), which has

{Usx U {o0}: if 0 ex then xn Ue &,}
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as a topology; Ax is the “one-point Lindeldfization™ of ». Note that Ax is a P-space
(= every Gj is open), hence Ax is basically disconnected, hence fix is basically discon-
nected, [GJ, 6M.1]. Tt is easy to see that if x = x® then BAx is Example 14.2, ¢f. §17.

“14.3. LeMMA. If bAx is any compactification of Ax, then the following are equi~
valent:

() bAx = Plx;

(b) bl is basically disconnected;

(c) bAx is an F-space;

(d) condition (%) of 1.5 holds for bix.

Proof. It suffices to prove that (d) implies (a). Since A« is strongly zero-dimen-
sional, it suffices to prove that each clopen subset of Ax has clopen closure in bz,

Let Uz x be clopen. It suffices to show that U and Ax— U have disjoint closures,
0 we may assume co ¢ U. Then oo ¢ U (closure in b2x), hence there is an open ¥
in blx with coe V and VN U =@. Now W = Ax—V is countable, and Ug w,
hence U n (W—U)™ = @ by (). Since

n=U)" = n V) u(x—(Vu ) )sV™ v (W=U)"

it follows that (Ax—U)™ n U = @, as required. B

14.4. EXAMPLE. For every w>w with x° = x there is a ¢-compact locally com-
pact space X such that

(a) IBX—X| = x-2%%;

() o(BX—X) =% for pe{c,x,d, hL, s, w};

(c) there is a pe BX~X with x(p, BX—X) = #. -

Proof. Let oo ¢, and let ax be the one-point compactification of ax. Then

our example is X = w xoz. Note that c(ux) = wlax) = x.

First we note that c(fX—X)2x” = » by 11.5, and w(BX—X)<x” = x by

12.2. Since for every space Y we have

e(Y)<he(Y) = s(N)<AL(N)<w(Y) e(N<A(Y)<w(Y)

we conclude that (X —X) = x for ¢ e {c,d,hL, s, w}.

Next we calculate |3X — X|. Since ¢(Y)<| Y] for every space ¥, we see from 7.1
that |[fX—X|= Kx 2%°. In érder to prove the reverse inequality we recall that
[ Y|<exp?d(Y) for every Hausdorff space ¥, {Ju,, 2.4], hence it suffices to prove
the following

CramM 1. For every x e fX—X there is a countable A<X with x € 4.

Indeed, if x € (w % {c0})~, there is nothing to prove. If not, then x has a closed
neighborhood U in X which misses wx {co}, and then 4 = U n X is as required.
For clearly x € 4, and since 4 is a ¢-compact subspace of X all points of which are
isolated, it must be countable.

Since we know that fAx is Example 14.2, and since we know that y (X —X) <
since w(fX —X) = %, we complete the proof of (b) and prove (c) by proving the
following

and
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* CLAIM 2. BAx can be embedded into BX —X.

Since fX— X is an F-space, by 17.1, it suffices to show that Ax can be embedded
into BX— X, because of 14.3. Since Ax and azx have the same underlying set, and Ax is
obtained from ax by letting the G,-subsets of ax be a base for A, this follows from
our next lemma.

14.5. LEMMA. Let K be any compact space. Let K, be K, retopologized by using
the Gy-sets as a base. Then K, can be embedded into B(w x K)—(wx K).

Proof. Denote @ x K by P. Let n: P — o be the projection, let fn: B — po
be its Stone extension. For each y & K let H, be the horizontal line @ x {y}.

For each yeK the restriction =} H, is a homeomorphism of H, onto w;
since Pw is the biggest compactification of w it follows that the restriction prl|H, is
a homeomorphism of H, onto fo.

So if we pick any p € fo—w, then we can deﬁne a function /3 K, — X —X by
assigning to each y € K, the unique point of H, n (fn)"{p}.

CrLawM 1. f is dn injection.

Indeed, if y and z are distinct points of K, then H, and H, are disjoint closed
subsets of P, hence H, n H, = @ since P is normal.

CoaM 2. f is open.

Let y € K, and let U be a neighborhood of y in K. There is a decreasing se-
quence {W,: n'e w) of open sets in K, with ye ﬂ W, U. Let W = U {n}x W,.

Then W* = (BP—P)—(P— W)™ is an open set in ﬁP ~P.¥zis any pomL of K,~U,
then H,— W is finite, hetice f(z) e (X—W)~, hence f(z) ¢ W°. It follows that
Wes f7U. Since H, and P— W are disjoint closed sets in P, their closures in P are
disjoint. Consequently f(y) e W*

CLAM 3. f is continuous.

Let ye K, and let W be a 'neighborhood of f(») in f~K,. Then
=f"K)~WI"

is a subset of (fr)"{p} (since f~K,=(Bm)"{p}) which is closed but does not
contain f (3). Since f () is the only point of H, n (fr)"{p}, it follows that F' and I,
are disjoint closed subsets of fP. Let U be an open neighborhood. of H,in pp whose
«closure misses F. For each ne w the set

U, =1{zeK: {n,zye U}
is open in K and contains y. Hence () U, is a neighborhood of y in X,. If z& () U,
n "

then H, € U hence H, n F<U n F = @. It follows that f~ ﬂ v,sWw. i

14.6. Remark. In 14.4 we found a copy C of (as), = A« in X~ X such that
€ = BC. This is a happy coincidence. If, for example, one lets K be the closed unit

interval in 14.5, then w(B(w x K)) = 2° by 12.2, but X, is discrete, so w(BK,) = 2*,
hence BK, cannot be embedded into f(w x K)— (o x K).
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Our next example gives information about character, not supplied by
Example 14.2.

14.7. EXAMPLE. For every cardinal x with cfx> o there is a basically disconnected
space X containing a point p with x(p, X) = cfx.

If % is a singular strong limit, then X can be choosen to satisfy

X =x(X) =% but x(x,X)<x foral xeX.
Proof. Let X be the Stone space of the subalgebra
{d=sx: Ju<n[d N (2, %) = G or (a, ®)< Al}

of Z(x). We omit the straightforward verification.

B. Additional examples. We first show that in our results the condition that X
be a compact F-space cannot be weakened to the condition that X be a compact space

without nontrivial convergent sequences, with exception of 8.2 of course. The
example is due to Hodel, [Ho, 4.4].

14.8. EXAMPLE. If x is any uncountable strong limit cardinal with countable
cofinality, then there is a compact space X such that

oX) =% for

yet X has no nontrivial convergent sequences, and y(x, X)<x for all xeX.

Proof. Let {(D,), be a decomposition of » with |D,|< % for ne w. Let [: ¥ -+ @
be the function

(/)EU l,e,x,d,hL, s, W}

F=U@,x{np

and let Bf: fx — PBo be its Stone extension. Let X be the quotient space obtained
from fx by collapsing every (8f)"{p}, with p e fw—w, to a point. A straightfor-
ward consideration of cases shows that X is Hausdorff. Let ¢: fx — X be the quo-
tient map, we may assume that ¢ } /'~ is the identity. (One can visualize X as | D,,

compactified by pasting on a copy of fuw—w.)
» is a dense set of isolated points of X, hence c(X) = .
D, = BD,, hence |D,| = exp®|D,| <A for all new. It follows that

XS0 n+|Bo—o] = x+2* = %

Since ¢(Y)<p(Y)<|Y] for all ¢ considered if Y is just any compact space, if follows
that ¢ (X) = % for -all ¢ considered.
We show that X has no nontrivial convergent sequences by showing that

{¥) every infinite closed subset of X has cardinality >2%°.

There obviously is a mapping g: ¢ — B such that f = g e g. Then g } g“(fo—w)
is injective, and so is g } f ", as noted above. Since every infinite closed subset
of Bx or of fw has cardinality 2%, by the second half of 7.1, it now is easy to
verify ().
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Since X has no nontrivial convergent sequences, and y(X) = %, it follows
from 8.1 that ¥ (x, X)<x for all x e X. (This also can be easily verified directly.) B
Our next example was promised in the introduction. It is due to Gillman and
Henriksen, [GH, 2.8].
14.9. EXAMPLE. There is an infinite connected compact F-space.
Proof. If H is the half-line [0, c0), then X = fH~—H is such an example. X is
clearly compact and infinite. It is connected since X=()[n, )" It is an F-space

n
because of 17.1. [One can make X arbitrarily large by multiplying H with a big con-
tinuum.) &

Our final example was promised in the proof of 10.1.

14.10. EXaMPLE. There is a compact F-space X with a discrete subset D and
an almost disjoint collection o of subsets of D such that N—N is not open in
U{Ad~4: de st} for some Ned.

Proof. As before, let Aw; = @, L {oo} be the one-point Lindelsfization of w,»
then Blw, is basically disconnected. Let N be a countable discrete space and
assume BN and flo, are disjoint. Pick any p € BN—N, and let X be the quotient
space obtained from topological sum BN + fAw, by identifying the points co and p.

One can easily verify that X is a compact F-space using the fact that oo is.
a P-point of fAw; (i.e. every Gy-subset of fiw, that contains co is a neighborhood
of oo in fAwy).

Let @ be a disjoint family of cardinality w; consisting of countable subsets.
of wy. We claim that D = N U @, and & = @ U {N} are as required. Clearly D is
discrete, and {p, co} e N—N. Also each neighborhood of oo in fAw must intexsect
a member of @ since |UD| = w;, hence {p, o}e(l) {d—4: Ades})”. As
(N=N)n (A—A4) = Bfor 4 € D (indeed, p ¢ Clyy, Afor 4 € D, it follows that N ~N
is not open in | {4—4: dex} H

15. Cardinality of closed subsets of extremally disconnected compacta. Since flo
has no closed subspaces of cardinality x if @<%<2” = @, one may wonder if fio
has no closed subspaces of cardinality x if e <x< ¢ if ¢ is an uncountable cardinal
with cfe = o (possibly a strong limit). This turns out not to be the case.

We will use results from § 14 in the proofs below.

15.1. TurEOREM. If % and ¢ are cardinalq with 2%° <u <2 and x° = u, then Po
has a closed subset of cardinality .

It is a result of Balcar and Simon, [BS], and of Kunen, [Ku,], and of Shelah, [S],
that if o,<p<2% then fo has a subspace homeomorphic to the ome-point-
Lindelofization Ag of p. Now [fAu] = 2*“p4® by 14.2 and Cly,4u = fAu by 14.3. M

15.2. CoroLLARY (GCH). If % and o are infinite cardinals then o has a closed
subset of cardinality % if and only if 22" <%<2*" and %° = %.

Proof. Recall that |fo| = 227, [C, 2.4], [CN, 7.4] or [GJ, 9.2], and note that
there are no cardinals between 2° and 22" because of GCH so that Theorem 5.1
applies. B
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In fact we can prove something better.

15.3. TueoreM (GCH). If X is a compact extremally disconnected space, then
the following are equivalent for an infinite cardinal s:

(a) 22°<x<|X| and »° = x.

(b) X has a closed subspace of cardinality .

Proof. (b) - (a): Theorem 7.1.

(8) — (b): As in the proof of Theorem 13.1, if ¢ denotes w(X ), then X admits
a continuous map onto 2. Hence some closed subspace X of X admits an irreducible
map f onto “2 (i.e. f7F # °2 for every proper closed subset F of K), hence
¢(K) = w. Since K is an F-space, it follows that X is extremally disconnected,
hence K'is the absolute of °2 (i.e. the clopen algebra of K is the completion of the free
algebra on ¢ generators). But K has a subspace homeomorphic to As, [BS],
[Ku,], [S], hence has a subspace homeomorphic to Ay for every u with o, <u<o.
Now Clgdu = BAp by 14.3, hence [Clydu| = 2*°-4® by 14.2.

Consequently X has a closed subspace of cardinality » for every x with
2% <x<o® (actually 6® = o but we do not need this), and also of cardinality |X|
of course. Since |X]| <cxp(w(X )), cf. [Ju,, 2.2], and we assume GCH, this
completes the proof. B

154, Remark. The reader can easily formulate analogous results for the other
cardinal functions considered.

16. Questions,

16.1. QuestioN. If X is an infinite compact F-space and ¢ € {y, hL}, then is
P(X)° = p(X)? . ’

. 16.2. QuesTioN. If X is an infinite compact F-space, is s(X)® = s(X)? Is
at least cf(s(X)) # 0? \

Since we know that the answer is in the affirmative under GCH, a negative
answer can be at most a consistency result. However, things are not this simple. Since
for every infinite cardinal A one has

A% = A-sup{x®: x<2 and ofx = w},

a negative answer to 16.1 would imply, because of 8.3, 8.5, and 9.6, that

(%)
Now Dodd and Jensen, quoted in [M], have shown that CON(ZFC+(*)) implies
CON(ZFC+dmeasurable), hence one cannot prove CON(ZFC—I—(*)) from
CON(ZFC) alone (but Magidor has proved it from CON(ZFC+3dsupercom-
pact), [M]). At any rate, the most elegant way to settle 16.1 and the first half of 16.2
negatively, modulo (%), is to answer the following affirmatively without using ad-
ditional axioms.

16.3. QuestioN. Does there exist for every »>2° with ofx % @ a compact
F-space with x(X) = %? with hL(X) = »? with s(X) = %? (It would be sufficient
to consider % of the form A* with ofd = ®.)

6 — Fundamenta Mathematicae CXIV/3

there is a %>2“ such that cfx = @ and »®>x".
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1;1 view of Theorem 13.1 we ask ‘ o

16.4 QuesTion. Is x(X) = RL(X) = 5(X) = w(X) if X isan infinite compact
F-space? (This really is 3 questions.) . . .

An affirmative answer would imply an affirmative question to 16.1 and 16.2,

f 12.1. . '
becagfe c(z)urse Example 14.7 and its construction lead to the following questions.
[ i rdinal % with cf%>w a compact

16.5. QuesTioN. Does there exist for every car . : . !
F-space X containing apoint p with x(p, X) =" (YES if YES to the nux"u question,)

16.6. QUESTION. Does there exist for every cardinal % with cfx>w a countably
comple.te' filter # on some set such that & has a set of x generators, but does not
have a set of fewer than x generators? o

' (A natural candidate would be the cocountable filter &, on %, which is not
. »
J-generated for A<x. But if »>2° then &, is »-generated iff 5 = %%, so‘ one would
have to assume (¥). It also is known that &, is x-generated for all % with cfx>o,
in particular for such » with #<2%, if 0% does not exist, [Pr, Prop. 4]) )

Finally, Theorems 11.2 and 11.3, and Theorem 15.3 suggest the following two
questions. A

16.7. QuestioN. If X is noncompact, o-compact and locally compact, and
pefe,d}, is p(BX—X)° = ¢(BX—X)7 Is at least of (p(BX—X))>w?

16.8. QUESTION. If o and % are cardinals with 2%°-2°<x<2®" and »® =
does o have a closed subspace of cardinality x?

17. Appendix: some special spaces and Boolean algebras. In this appendix we
collect some facts we needed in §§ 11, 14. . .

Let X be any zero-dimensional space, and let B be its clopen algebra. If X" is
not compact, then X is not the Stone space of B. However, it is easy to describe the
Stone space of B: Let {X be the largest zeto-dimensional compactification of X, [B].
X has the property that U is open in X for all Ue B, so the function U — U
is an isomorphism from B to the clopen algebra of {X. In other words, (X is
the Stone space of B. The Boolean algebraic reader can consider this to be the
definition of {X: note that then X is embedded in (X" in a natural way. (In §§ 11,
14 we used (X since we dealt with strongly zero-dimensional X, and pX = (X
for such X.) ' .

If X is zero-dimensional and locally compact, let # be the ideal of compact
open subsets of X. Then {J# = X, hence the Stone space of B/.# is {X~X. Hence the
following known result shows that Theorem 11.1 is not vacuous.

17.1. TuporeMm. Let X be a noncompact o~compact locally compact zero-dimen-
sional space. (Then (X = BX.)

(a) BX—X is an F-space.

(b) Every nonempty G5 in BX—X has nonempty interior.

Proof. We do not need the fact that (X" = SX. Let B and # be as above, note
that .# is countably generated. We prove (a), the proof of (b) is similaxr. We show

S
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that BL.# is a WCC algebra. We have to show that if {F,>, and {G,», are sequences

in B such that {F,/#>, and {F,/.#), are disjointed, then the latter sequences can be
separated in B/.S.

Since .# is countably generated, we can find a sequence <I,>, in £ such that.

{IDy geverates S, and F, A GeLcel,,, if i,j<n<o.
Put

S = U(Fn—]n)~

Then S is clopen in X (since {J J, = X and Lcl,,, for ne w), and F,—S e £ and

G,n Se for ne o, so that S/.F separates (F,/#Y, from {G,\/F>,, as required. B
. 17.2. Remark. Theorem 17.1(a), even without the condition that X be zero-
dimensional, is due to Gillman and Henriksen, [GH, 2.7]; our proof illustrates the
fact that the additional assumption of zero-dimensionality often reduces the technical
complexity of proofs without affecting the basic ideas. (A very elegant proof for the
general case of 17.1(a) can be found in [N, but that argument does not yield 17.1(b).)
Theorem 17.1(b), without the condition that X" be zero-dimensional, is due to
Fine and Gillman, [FG, 3.1].

17.3. Remark. Theorem 17.1 also holds if X is an (infinite) discrete space.
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