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Noether lattices: Some constructions and decompositions
by

D.D. Anderson, A. J. Boals, and E. W. Johnson (Towa City, Iowa)

Abstract. Tn this note we consider some constructions and decompositions for Noether
lattices. Conditions are given for certain sublattices of a Noether lattice to be a Noether lattice.
The decomposition of a Noether lattice into direct and local direct sums is also considered.

The summands associated with any decomposition theorem are normally sus-
ceptible to a variety of descriptions, as is the decomposition process itself.

In this paper we consider the construction processes associated with various
points of view of decompositions of Noether lattices [2]. Our purpose is to determine
when these alternative points of view lead to new, useful examples, and also to shed
additional light on the decompositions themselves.

, It is convenient to introduce the following notation: If 4, ..., 4,& &, then

"
K(dy, ..., 4 = \/ 4;A( \/ 4;). Using this notation, the decomposability of
i=1 J#i .
a Noether lattice % can be thought of as meaning, alternatively, that

(i) £ can be represented as the Cartesian product of Noether lattices %;;

(i) There exist elements A4;,..,4,€% such that 4,v..vd4, =TI and
K(4,,..,4,) =0;

(i)’ There exist elements 4, , ..., 4, € £ such that each of the intervals [4;, 0]
is a Noether lattice and % can be represented as the Cartesian product of the inter-
vals [4,,0];

(iii) There exist pairwise comaximal elements By,.., B,€.% such that
BiA..AB, =0; '

(ili)’ There exist elements By, ..., B, € & such that % is representable as the
Cartesian product of the Noether lattices .#/B;;

(iv) There exists a Noether lattice %* and elements 4, ..., 4, € %* such
N
that K(d;, .., 4,) =0 and & = {de Z*| 4 = \/ (Ar4)}.
i=1
It is the conditions under which the choice of arbitrary elements 4; of a Noether

lattice results in a Noether lattice by the processes described in (ii)’ and (iv) that
concern us.
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Tt is convenient to introduce the following notation: if Ay, ..., 4, are elements
of &, then

FUAy, oy d) ={Ae & K4y, .., 4)SAS\ (Ar4)}.
i=1

When n = 1, we use the usual conventions so that £%(4) = [4, 0].

Lemma 1. Let & be a Noether lattice and let A, ..., 4, be elements of &. Then
LAy, ., A) Is a submultiplicative lattice of L|K(A4, ..., 4,).

Proof Let Cy and C, be elements of .%"(A“ 2 (C‘ #1). Then

C,AC,<Cy A((A1 v (c1 /\A;,_)) {(Cy A Al) v (CZAAZ)))
SCA((Con AV (43 v (CyA 42)) A(C2 A 4Y))
<SCyA(CoAA)V(C A C,A4Y))
S(CLAC,AADVIC AC,AAY).

We note that if B; = 4;vK(4y, ..., 4,), then PUB;,...,B) = F(4,,.., 4
Hence, it may be assumed that {4, ..., 4,} is an independent set of elements of Z.
The induction is now straightforward, as is the verification of closure under multi-
plication and joins.

Obviously, a necessary condition that #%(4,, ..., 4,) be a Noether lattice is
that 4 = 4, v...v 4, be idempotent in L/K(4y, ..., 4,)-

THEOREM 2. Let & be a Noether lattice and let Ay, ..., A, be elements of & such
that A = A V..V A, is idempotent in L|K(Ay, .., A). Then FNA4,, ..., 4,) is
@ Noether lattice. Moreover, in this case, FNAy, ..., A,) = A/K(4y, ..., 4). In
particular, #*(A) = [4,0] is a Noether lattice if A is idempotent. :

Proof. Since #%A4y, ..., 4,) is clearly the direct sum of the quotients
(4iv K(Ay, ..., AN[K(Ay, ..., 4, it suffices to prove £%(4) is a Noether lattice
if 4 is idempotent. Hence, let O = O, A ... A Q, be a normal decomposition of O with
associated primes Py, ..., P,. Set

Ou=AN{QIPivA#1} and Of=N\{Q)IPvd=1}.

. o
Let E be any principal element of % such that E<A4. Then E< NA"= 0,4, s0

n=1

= (04AO):E = O E. It follows that Av (0:E)= Av (0 E)=Av Q) = I,
and hence that AE = E. Therefore A is principal in %, and 4% = 4 implies both
Av(0:4y =T and AA(0:4) = 0. It follows that [4,0]~.%/0:A4, and hence
that #%(4) is a Noether lattice. °

' We now change the focus of our investigation slightly and ask when a Noether
lattice is obtained by appending an identity to the top of cither [4,0] or
Z%Ay, ..., A). We adopt the notation ,& = [4,0]u {I}, and #(4,, ..., 4,)
= % (A,, s 4,) U {T}, s0 that & = £(4) is something of a very sxmple local-
ization of £.
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We note that if 4 = A;Vv..V4, = I, then ,% = £%4) and L(4,, .., 4,)
= £%4,, ..., 4,). Otherwise & and (4, ..., 4,) are both local in structure.
Since principal elements of a local Noether lattice are join-irreducible, it is con-
venient to introduce the following notation:

F(4) = {E<A| E+ 0 and E is join-irreducible};

%(4) = {E| E=0, E =1, or E is the finite join of elements of S#(4)};

m(E) = M if M is the unique maximal element containing O:E;

H(d) = {m(E) EcF(4)}; (&) = \{M| Mis a maximal element of £}.

THEOREM 3. Let & be a Noether lattice and let A be an element of £, A # 0, L

Then % is a Noether lattice if, and only if,
() A<F(2);

(i) L <=%(4);

(iii) m(E) = Av(0:E) for all Ee S (4).

Proof. Assume ,% is a Noether lattice. Since % is local, (ii) is immediate.
On the other hand, if Ee . (4), then I/(4 v (0:E))~E|AE, which establishes (iii).
(i) feliows from the observation that ESA<AV(0:E) = m(E), and E<M for
every maximal element MZO:E.

Now, assume % and A4 are as above. 1t is easily seen that if E< 4 is principal
in &, then E is weak join principal in ;. Hence it suffices to show that if E e.#(4),
then E is weak meet principal (see, for example [1], Proposition 1.1).

We denote the residual operation in % by 3. If Cis any element of ,&, CKE,
then C = DEforsome De . If DL AE: E, then Dv(0:E) = Iand DE = E = JE.
If DSAE:E, then C = DE<(AV(0:E)E = AE, 50 C = CAAE = ((C:E) A 4)E.
It follows that in either case, C = (C$ E)E, and hence that E is principal.

We further explore the relationship between & and Z(4y, ..., 4,).

THEOREM 4. Let & be a Noether lattice and let A # I be an element of £ such
that £ <%(d). Then M(A) = {m(E)| ESA} is a finite set. Moreover, if
m(Ey), ..., m(E) are the clistinct elements of M (A), and if

=V {Ecs () m(E)=m(E)},
then

Ag = —g(Al, srey An) .

Proof. Let Fy, ...,
s

of #(A), then 0:4< A (O:F)<0:F<m(F), so m(F) = m(F) for some i, 1 <i<s.
i=1

Now, let Ey, ..., Eyand 44, ..., 4, be as defined in the statement of the theorem.
We note that m(E;) is the only maximal element containing O:4;, so that anv
Fe #(A4) such that FA4; necessarily satisfies m(F) = m(£). Also, if

F, be elements of #(4) with join 4. If Fis any element

FSA V. VA V.V4,
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then A (0:4))<O:F<m(F), so m(F) = m(E;) for some j 5 i, and therefore F<4;
j#i

for some j s i. It follows that if B4, then O = K(4,, ...
and hence that ,% = $(4,, ..., 4,).

THEOREM 5. Let % be a Noether lattice and let 4, ..., A, be elements of .
Let 2 = Z|K(4y, ..., 4,) and A; = A;vE(dy, s 4,). Then L(4y,..,4,) is
the local direct sum [3] of the multiplicative lattices 7. Z. In particular, % (A, ..., 4,)
is a Noether lattice if, and only if, each of the lattices 22 is.

Proof. Since Z(4y,..,4,) = (L/K(4y, ..., 4))(Ay, ..., 4), and since
{4, ..., 4,} is an mdependent set of distributive elements of £/K(4,, ..., 4,),
it is 1mmed1ate that the map ¢ defined by ¢(B) = (BAAy,..., BAA,) is an iso-
morphism of the quotient (4;v...v4,)/0 in #(4,, .., 4,) onto the quotient
(Ah s n)/o Of A.,-g’@ ®An

We summarize the relatlonshlps of 4% and Z(4,, ...

k
» AY<B< \/ (BAA),
=1

, 4,) to local direct sums:

THEOREM 6. Let (£, M) be a local Noether lattice. Then the following are equiv-
alent:

() & is decomposable as a local direct sum of local Noether lattices;

(i) There exist elements Ay, ..., A, in & such that & = L(4y, ..., 4,);

(iii) There exists an element A€ such that the map ¢: & — & defined
by o() = Iand 9(X) = X A A for X # Iis a multiplicative lattice homomorphism;

(V) There exists a distributive element A€ & such that

a) % is a Noether lattice and '

b) If E and F are principal elements of & such that EF<A, then either E<A
or F<A4 or EF = 0.

Proof. We show (iii) implies (iv) implies (i). Hence, assume (iii) holds. If E
and- F are principal elements of % such that Eg 4, Fgd, and EF<A4, then
EF = ¢(EF) = ¢(E)p(F) = (EAA)(FAA) = (4:E)(4A:F)EF, so EF = 0.

Now, assume (iv) holds. Let E, ..., E; be a minimal collection of principal
elements such that AVE, v...vE = M. Then 4:E; = Av(0:E),50 ANE; = AE;.
Let F be any principal element of ,% (F # 0) and note that MF<F, so that
MF<AF<SMF, and therefore M = A v (O:F). Since A4 is distributive and the join
of principal elements of .2, it follows that M = A v (0:4) and that E;<0:4.
Hence AAE; = AE; = 0. It follows that Dy = D and D, = E,v...v E, are inde-
pendent distributive elements with join 34, and hence that % is the local direct sum
of 5, % and p, 2.

LemMa 7. Let & be a Noether lattice. Let M be a maximal element of & and
let D 5 I'be an element such that m(D) = M. If D<M, then pZ X (Za). If DLM,
then 5, (Ly)~F(D) = [D,0).

Proof. Define ¢: [D,0] - p,(Fx) by ¢(B) = By. Note that if M’ is any
other maximal element of 2, then 4y = Oy for all A< D. Since (A A D)y = Ay
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for all Ay Dy, it follows that ¢ is an isomorphism if Dy = L-If Dy 5 I, then
the obvious extension of ¢ to ,.% is an isomorphism.

COROLLARY 8. Let & be a Noether lattice and let A be an element of & such
that ;& =% (A). Then, in the notation of Theorem 4, ,% is a Noether lattice, if and
only if, uomwp(gmwﬂ) is a Noether lattice for all i.

Since Corollary 8 gives special importance to the local case, we rephrase The-
orem 3 in that special case.

THEOREM 9. Let (&, M) be a local Noether lattice and let A +# I be an element
of &. Then 4% is a Noether lattice if, and only if, M = A v (O:E) for every non-zero
principal element E<A. In particular, . is a Noether lattice if M = Av(0:4),
and if A is a distributive element of &, then this condition is necessary as well as
sufficient.

‘We now shift our attention to join-irreducible elements.

TraeoreM 10. Let & be a Noether lattice and E e £(I) such that E §(%).
Then E is idempotent and & = [E, 0]®[(0:E), D).

Proof. Let M be a maximal element such that E£M. Then MVE = I, so
MEv E? = E. Since E is join-irreducible, and since E< M, whereas ME<M, it
follows that E = E2.

CoROLLARY 11. Let & be a Noether lattice such that every element is the join
of join-irreducible elements. Then & is the direct sum of local Noether lattices.

THEOREM 12. Let (&, My, ..., M,) be a semi-local Noether lattice. Let (L) = J-
Then ;% is a Noether lattice, if and only if, & is the direct sum of the Noether
Iattices Ly,. .

Proof. Assume ;% is a Noether lattice. Note that if Q is any primary element
of & which is contained in more than one maximal element, say Q< M;AM,
(M, # M), then necessarily 0>/, since O:E%./Q for all join-irreducible elements
E<J. Since J is the finite meet of maximal elements, it follows that no primary is
contained in more than one maximal element. Since every maximal contains a prime
of 0, it follows that . is the direct sum of the Noether lattices %/ A;x %y, where 4,
is the meet of the primaries of O contained in M;.

TrEOREM 13. Let (&, My, ..., M,) be a semilocal Noether lattice such that

sy Z=%(J). Then ;% is a Noether lattice.

Proof. Let E be an element of #(J) and A<E. Since E is principal in &, ne-
cessarily A = BE, for some Be Z. If A = E, then 4 = IE. Hence, assume 4 <E.
Then A<ME, where M = m(E). Since M'E = E for every maximal element
M’ # m(E), it follows that A<JE, and hence that 4 = AAJE = ((4:E)AJ)E.
It is immediate that E is join principal in ;%, so ;& is principally generated and
a Noether lattice.

= COROLLARY 14. Let (£, M,, ..., M,) be a semilocal Noether lattice such that
s 2 <S%(J). Then & iy the direct sum of the localizations & y,.
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S

Quotients of reflexive modules
by

Manfred Dugas and Ridiger Gobel (Essen)

Abstraet. Ist M ein R-Rechtsmodul und § ein fester R-Bimodul, so heiit M in Verallgemeine~
rung einer wohlbekannten Begriffsbildung S-reflexiv, wenn die kanonische Abbildung o: M — M**
ein Isomorphismus ist, wobei M* = Homg(M, S) ist. Beispiele hierfir sind endlich erzeugte
K-Vektorriume mit R = § = K oder M = S (I eine nicht meBbare Indexmenge) mit S & Q
und R = Z. Es werden Moduln G der Form 0—+K—Y— X-»G—0 mit S-reflexiven X, ¥ unter-
sucht. Tst ferner jeder Teilmodul von X* projektiv, so gilt der allgemeine Satz: G=x D@ Extk(4, ),
wobei D ein direkter Summand von ¥ ist und K == Homg(4, §). Aus diesem Resultat lassen sich
viele interessante Spezialfille herleiten: Ist R ein schlanker Ring (z.B. ein abzdhlbarer Dedekindring,
der kein Korper ist), so erfiillen die cartesischen Potenzen von R die Voraussetzungen des Satzes.
Sind X, Y, S abelsche Gruppen, so heifie (X, ¥) BEELZ-Paar beziiglich S, falls X und Y S-reflexiv
sind, Ext(X*, §) = 0 ist und ferner fiir jeden FHomomorphismus f: X - Y der Annihilator f0t+
yon f(X) in Y* ein direkter Summand von T* ist. Obiges Resultat 1Bt sich nun sofort auf BELZ-~
Paare anwenden. Ist G schlank und End(G) = Z, so ist (G, G%) ein BELZ-Paar beziglich G.
Ebenso ist (Z7, R) ein BELZ-Paar beziiglich Z, falls R aus der Reid-Klasse (Kleinste Klasse, die Z
enthdlt und unter @ und H abgeschlossen ist) ist.

Ferner wird gezeigt: Ist R ein schlanker Dedekindring und Ac R, sosind im Universum
V=L dquivalent: (1) 4 == R oder 4 projektiv und endlich erzeugt. (2) 4 ist direkter Summand
von R (3) RY/A = RY oder R7/A ist projektiv und endlich erzeugt.

§ 1. Yntroduction. Let M be the cartesian power (over I) of some right R-module
M = My, i.e. the set of all functions on the set T with values in M and the scalar
multiplication and addition defined by components. The aim of this paper is, to
obtain informations about the structure of quotient R-modules G of the form

(%) 0K-+X—>Y—->G—-0

with certain conditions posed on X and Y as explained in the following. In M. Dugas
and R. GSbel [6; Satz p. 15] the structure of G was determined explicitly in a model
of ZFC+V =L where K=0, R=Z and X, Y are isomorphic to cartesian powers
of Z over any non measurable sets; cf. Remark after (3.5). In particular we get

(#¥) *G = D@Exty(d4, S) where D is a direct summand of Yand K = Homg(4, S)
for a R-bimodule S and some left R-module 4.

* This work was supported as a research project on abelian groups of large cardinality by
the Ministerium fitr Wissenschaft und Forschung des Bundeslandes Nordrhein-Westfalen.
5 — Fundamenta Mathematicae CXIV/L 3
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