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S

Quotients of reflexive modules
by

Manfred Dugas and Ridiger Gobel (Essen)

Abstraet. Ist M ein R-Rechtsmodul und § ein fester R-Bimodul, so heiit M in Verallgemeine~
rung einer wohlbekannten Begriffsbildung S-reflexiv, wenn die kanonische Abbildung o: M — M**
ein Isomorphismus ist, wobei M* = Homg(M, S) ist. Beispiele hierfir sind endlich erzeugte
K-Vektorriume mit R = § = K oder M = S (I eine nicht meBbare Indexmenge) mit S & Q
und R = Z. Es werden Moduln G der Form 0—+K—Y— X-»G—0 mit S-reflexiven X, ¥ unter-
sucht. Tst ferner jeder Teilmodul von X* projektiv, so gilt der allgemeine Satz: G=x D@ Extk(4, ),
wobei D ein direkter Summand von ¥ ist und K == Homg(4, §). Aus diesem Resultat lassen sich
viele interessante Spezialfille herleiten: Ist R ein schlanker Ring (z.B. ein abzdhlbarer Dedekindring,
der kein Korper ist), so erfiillen die cartesischen Potenzen von R die Voraussetzungen des Satzes.
Sind X, Y, S abelsche Gruppen, so heifie (X, ¥) BEELZ-Paar beziiglich S, falls X und Y S-reflexiv
sind, Ext(X*, §) = 0 ist und ferner fiir jeden FHomomorphismus f: X - Y der Annihilator f0t+
yon f(X) in Y* ein direkter Summand von T* ist. Obiges Resultat 1Bt sich nun sofort auf BELZ-~
Paare anwenden. Ist G schlank und End(G) = Z, so ist (G, G%) ein BELZ-Paar beziglich G.
Ebenso ist (Z7, R) ein BELZ-Paar beziiglich Z, falls R aus der Reid-Klasse (Kleinste Klasse, die Z
enthdlt und unter @ und H abgeschlossen ist) ist.

Ferner wird gezeigt: Ist R ein schlanker Dedekindring und Ac R, sosind im Universum
V=L dquivalent: (1) 4 == R oder 4 projektiv und endlich erzeugt. (2) 4 ist direkter Summand
von R (3) RY/A = RY oder R7/A ist projektiv und endlich erzeugt.

§ 1. Yntroduction. Let M be the cartesian power (over I) of some right R-module
M = My, i.e. the set of all functions on the set T with values in M and the scalar
multiplication and addition defined by components. The aim of this paper is, to
obtain informations about the structure of quotient R-modules G of the form

(%) 0K-+X—>Y—->G—-0

with certain conditions posed on X and Y as explained in the following. In M. Dugas
and R. GSbel [6; Satz p. 15] the structure of G was determined explicitly in a model
of ZFC+V =L where K=0, R=Z and X, Y are isomorphic to cartesian powers
of Z over any non measurable sets; cf. Remark after (3.5). In particular we get

(#¥) *G = D@Exty(d4, S) where D is a direct summand of Yand K = Homg(4, S)
for a R-bimodule S and some left R-module 4.

* This work was supported as a research project on abelian groups of large cardinality by
the Ministerium fitr Wissenschaft und Forschung des Bundeslandes Nordrhein-Westfalen.
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18 M. Dugas and R. Gdbel

In this case we have S = Z, and D is a cartesian power of Z as follows from
R. J. Nunke [25; p. 69, Theorem 5]. Using the methodsin [6] and a result of B. Charles
[3; p. 35, Theorem 7], which actually goes back to S. Balcerzyk, A. Biatynicki-Birula
and J. Lo§ [2; p. 453, Theorem 1], M. Huber [17; Theorem 2.3] extended [6]: In
the abelian case R = Z condition () implies (x+) if X, ¥ are isomorphic to cartesian
- powers over non measurable sets of a subgroup SE Q. During an Oberwolfach-
conference R. Baer asked in which other cases (x) implies the splitting theorem (#x).
Hence we will consider the appropriate objects X and Y, which are S-reflexive
modules with respect to some R-bimodule S; cf. J. Dieudonné [4] and in particular
F. Kasch [21; § 12] if § = R. Recall that X is S-reflexive, if the canonical homo-
morphism oy from X into the double-dual X" is an isomorphism, where
X = Homg(X, S); f. § 2. Notice that X" is a right R-module if X = X.
Then (%) implies (x+) if X and Y are S-reflexive such that each submodule of XS is
projective; Theorem 3.3. Using results of O. Gerstner, L. Kaup, H. G. Weidner [11],
G. Heinlein [13], H. L. Hiller, M. Huber and S. Shelah [15], I. Kaplansky [20]
and E. L. Lady [23], the structure of G in (++) can be determined for Dedekind
domains in many cases; cf. (3.5) and remark after (3.5). It seems to be interesting
to remark, that the quotient field Q(R) of any countable Dedekind domain R
# Q(R) can never be obtained as quotient “R*|R™ for any non measurable cardinals |}
and |J| and arbitrarily (wild) embeddings 0 — R’ — R!. This holds in particular for
R = Z, without using V = L or any other peculiar set theory. The countability of R
is necessary, as follows from an example due to C. U. Jensen [19; p. 217]. Along
this line, following some ideas and problems of R. J. Nunke [25], we will give a new
characterization of direct summands of R’ for slender Dedekind domains R in the
model of ZFC+V = L, which extends and sharpens R. J. Nunke [25; p. 69, The-
orem 5): A is a direct summand of R’ if and only if R A =R* for some I or R4 is
finitely generated and projective; cf. (3.9). The set theoretic assumption cannot be

abolished as shown already in R. Gtbel and M. Dugas [6] in the case R = Z.’

Next we will apply our Theorem 3.3 in the case R = Z of abelian groups and
will show that (3.3) includes the results mentioned above and has further interesting
“abelian consequences”. Hence we will introduce the useful notion of a BEEZ-
pair (X, Y) with respect to some abelian group S, characterized by the conditions

(1) X and Y are S-reflexive,

(2) Extz(X*5,8) =0,

() iff: X — Y is a homomorphism, then the annihilator f(XY* of f(X) in Y™
is a direct summand of Y'S,

The letters “BELZ” stand for the initials of the authors Balcerzyk, Biatynicki-
Birula, Ehrenfeucht, ¥.0§ and Zeeman of [2], [7] and [33] who showed first that
(2", Z°) and more generally (G*, G*) with GE Q are BEEZ-pairs with respect to G
for non measurable cardinals [I|, |J|. Then (%) implies (%) for BEEZ-pairs X, Y)
with respect to some group S; cf. (4.2).

Hence we are left to determine BEE Z-pairs with respect to some groups S:

icm
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Since (87, %) for S Q and non measurable |I|, |J| are BEEZ-pairs, we get the
known splitting theorems of [6] and [17]. If R is the Reid-class, i.e. the smallest class
of abelian groups, contéining Z and being closed under taking direct sums and
cartesian products, then (Z', R) for Re®R and non measurable cardinals |I| are
BEEZ-pairs, with respect to Z. There are many further examples G of any rank, in
particular of rank 2: (G*, G”) for non measurable cardinals with Endz(G) = Z and
slender G are BEEZ-pdirs, cf. (4.5). In (4.2) epimorphic images of Z7 modulo sub-
groups which are epimorphic images of cartesian products of Z are determined.
Hence it is natural to ask for the structure of arbitrary epimorphic images of car-
tesian powers of Z. We will give an example, which shows that such groups in general
do not split into a direct sum U@V with U* = 0 and V torsion-less. Therefore any
obvious generalization of the famous theorem of R. J. Nunke [26; p. 70 Theorem 5]
that epimorphic images of Z"N are of this form unfortunately never holds.

§ 2. Reflexive and slender modules. In this section we will give our basic defi-
nitions and state some of the known results which will be applied in § 3 and § 4. We
will use the convention xgM, My, g My for left, right or bi-R-modules M and put M
in one of these cases if there is no ambiguity. In general we will start with My and
obtain a left R-module M* = M5 = Homg(M, S) if S = Sy is a fixed R-bimo-
dule. If M = M is a left R-module, put M* = M* = Homg(M, S) for the right
R-module and X™* = X5 = X** for X = Xz. If o: Xz = Yz is an R-homo-
morphism, the canonical homomorphisms ¢*: ¥* - X* and oy: ¥ — Y** are
defined by components:

(@) =¢@ and oy(¥)(¢) =0(y) forall yeY and pe¥*.

Then the exact sequence 0 — 4 — B — C — 0 implies the contravariant Cartan-
Eilenberg-sequence

0 — C* - B* — A* — Exty(C, §) — Extg(B, §) — Extz(4, §)

and the corresponding covariant sequence, where Extg = Ext}; of. P. Hilton and
U. Stambach [16; p. 100, 102]. If XS ¥, we define XS = X' = {pe Y5 o (X) =0} .
which is the anmihilator of X in ¥ and X' = X** = ﬂlsker((p). The module ¥
peX

will be called S-reflexive if oy is an isomorphism. The investigation of rings R where
all finitely generated modules are R-reflexive goes back to J. Dieudonné [4] and they
are characterized by F. Kasch; cf. F. Kasch [21; § 12]. Reflexivity for modules
which are not finitely generated comes in effectively first with investigations of
E. Specker [30], E. C. Zeeman [33] and A. Ehrenfeucht and J. £0§ [7]; cf. L. Fuchs
[10; § 94]. Hence we call M = My an R-slender module if for any homomorphism
0: RY — M there is a cofinite subset C of N such that (R%?® = 0 (where R°<RY
in the canonical way). In particular, R is slender if Ry is slender. In the following all
index sets I and J will be of cardinality less than the first measurable cardinality sg.
A cardinal |W| is mieasurable if there is a countably additive measure on W with the
'values 0 and 1 which is 0 on the elements of W and 1 on W. Measurable cardinals

28
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are very large cardinals; cf. F. R. Drake [5; pp. 173-199]. They do not even exist

in a constructible universe (with V = L), as shown by D. S. Scott [31]. Following

1. Eo§, S is R-slender if the canonical monomorphism @ M,° — (T M) is bijective
iex iel

Sfor any set I (of non measurable cardinality) and any modules M, (i € I); cf. O. Ger-
stner, L. Kaup and H. G. Weidner [11; p. 506, Satz 3] (= GKW in the following)
or D. Allouch [1; p. 13, Theorem 2.2]. For slender modules § we will use without
any further reference the properties

@ (ITMy" =TI M7,
iel iel
(i) (@I MY ,G? M,

cf. D. Allouch [1; p. 13, Proposition 2.5}, G. Heinlein {13, p. 5, Satz], E. L. Lady
[23; p. 403, Theorem 4] or GKW [11; p. 508, Korollar 5]. Hence S-reflexivity for
slender S is hereditary with respect to taking direct sums, cartesian products and
(obviously) direct summands.

‘In the case of Dedekind domain R, slender rings are characterized by G. Heinlein
[13; p. 79, Satz 7.34]: For a Dedekind domain R are equivalent:

(1) R is not slender,

(2) R is a local ring and complete with respect to the Jac(R)-adic topology,

(3) Bxtg(Q(R), R) = 0 for the quotient field Q(R) of R.

Furthermore there is a result which generalizes E. Sgsiada [28]:

THEOREM. A countable R-module S is slender if there is a set T of ideals af‘R
such that

(@) XN = X-RY for all finite intersection X of ideals in T,

(b) S is a Hausdorff space with respect to the T-adic topology.

Remark. Condition (a) is equivalent with

(©) If Ue T and V is an ideal of R generated by at most countably many elements
from U, there is a finitely generated ideal F of R with Ve F<U.

A-countable Dedekind domain R is slender if there are n, ideals of R with
XV = X-R" for all finite intersections X and O for infinite intersections. The proofs
of this theorem and the remark may be found in G. Wittkamp [32]. They are modi-
fications of E. L. Lady [23; p. 399, Theorem 1, p. 400, Theorem 2], where the proofs
rest on the wrong statement [23; p. 398] that the “M-strong topology™ is complete.
There is a counterexample K[X] of all polynomials over a field X with infinitely
many variables X. Take 9t = {¥,} where V,, is the ideal of all polynomials f with
f(0) = 0. Furthermore, there are very nice and unusual slender rings constructed
in G. Heinlein [13], which are all real-valued C™-Tunctions on certain manifolds.

In the following we will use the notations X< Y and X[ Y for submodules and
direct summands respectively. .

§ 3. Splitting for reflexive modules. Using the notations of § 1 and § 2 we will
‘show the following ‘

icm

Quotients. of reflexive modiles 21

Lemma 3.1, Let R be eny ring and S an R-bimodule. For o submodule A of an
S-reflexive module X are equivalent:

(1) 47X,

() A4Cx

Furthermore, the quotient X*S|A™ is always a submodule of A™S.

Preof. (1) = (2): There is a submodule B of X such that X5 = 45@5.
Hence X5 splits into U@V with

U={peX " :0B)=0 and V=I{peX™; ¢4 =0}.

Since ox(AN (A = A4 =0, we get ox(d)Sox(AMF)SV. Conversely,
if ay(x)(4*%) = 0 for some xeX, then A*S(x) = 0. Therefore V = ay(d**5)
and we obtain the following commutative diagram
004~ X X450
Joxia yox |

0= V>X"5 U -0

where oy, 18 the restriction of oy to 4. The module X is reflexive, hence oy is bijective
and 45 = oy (V)X

(2) - (1): There is a submodule C of X such that X = 4***@®C. Hence XS
splits into U@V with U= {pe X™5; (4™} =0and V = {pe X; ¢(C)} = 0.
Therefore A™5(4**%) = 0 by definition. Conversely, if ¢ € U then ¢{4) = 0 from
Ac A5, Therefore 4*5 = U. The module X™5/4*% is a submodule of A4, as
follows from our construction.

LEMMA 3.2. Let S be an R-bimodule. If YS X are S-reflexive such that Y5 = X,
there is an exact sequence

0 — X]Y — Extp(B, §) — Extg(Y"5, 8§) — Exte(X", S)
where B = Y*™[X" is an S*-module and B*' = 0.

Proof. There is an exact sequence 0 — X*S — ¥'S — B0 because of
Y*¥ = X. Now we obtain the following commutative diagram

0~-Y —» X - X[Y->0
\Lm’ Jox ‘Ln

0 B = Y5 o X" 1 Extg(B, S) — Exta(¥", §) - Extp(X™S, S)

where 7 is induced from oy and oy. Since X and Y are S-reflexive, ox and oy are
isomorphisms, B¥ = 0 and 7 is a monomorphism.

THEOREM 3.3. Let X and Y be S-reflexive right R-modules such that each sub-
module of X is projective. If 0 > K> X —» ¥ — G — 0 is an exact sequence,
there is a left R-module A which is an epimorphic image of X' and a direct summand D
of Y, such that G = D®Extp(4, S) and K = Homg(4, Sy = 4%

Remark. The assumption “each submodule of X™ is projective” can be
replaced by f(X)*T Y™ and Extg(X™, S) = 0, if fis the given homomorphism
from X into Y.
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‘Proof. Let f*: Y* —» X* be the homomorphism induced from f: X - ¥
of the given exact sequence. Furthermore put U = im(f)< Y and B = im(f*)s X*.
Hence B is projective by our assumption on X*. If i: U — Y is the identity of ¥
restricted to U, we get

im@i*) = {oe U*; re ¥* with 1|y = o}.

Next we define a map g: im(@@*) - B by ¢(¢) = f-7 if and only if Ty = 0. One
easily shows that ¢ is a well defined isomorphism and im (i*) is projective, since B is

i
projective. If j: B — X* is the inclusion, we get a short exact sequence 0 — B — X*
— A — 0 with 4 = X*/B. Dualizing this sequence we obtain the diagram

0 — B* — X** — B* — Extg(d4, S) - Extz(X* §) =0
te 'thxf 4
0-K—-X S5 U=0

where « is the restriction of the homomorphism oy and p is the homomorphism
induced by o and oy. First we show that o: K — B' is an isomorphism:

If ke K we get k*(B) = ox(k)(B) = B(k) = K’ = 0 since ke K = ker(f).
Hence we get K*<B', Conversely, let xeX such that ox(x)e B Then we get
0 = oy(x)(B) = B(x) = (x')" and x” = 0 since oy is injective, i.e. x e ker(f) =

Therefore oy and « in our diagram are isomorphism and we get Extg(4, S)
2 B*U" from the diagram.

Next we consider the exact sequence 0 - UsYoG — 0 which induces
0= U* - Y* - im(i*) — 0. Since im(i*) is projective as shown above, the last
sequence splits and Y* = U@V and there is a natwal isomorphism & from ¥
onto im(i*). Now let be V* = {p e Y**; ¢(U") = 0} (which is canonically iso-
morphic with Homg(V, S) because of the splitting) and identify (U*)*< ¥* in
the same way. Then Y** = (U )*®V* and we have oy(y)(U"Y) = U4y =0
if and only if y € U**. Therefore (U*)° = V¥, and we get the following diagram

0— U —> B* »BHU=0
(O] ) S R tu
0 UL UM 5 UYU S0
where f = gy-&*0*™" and &: V* - (im(¥)* and o* i (im(*))* — B* are
the isomorphisms induced from £ and g.
Next we show that (+) commutes and hence induces the isomorphism # coming
from the isomorphism 7:
Ifue U, thenu": B — §isthe map (fu — u”)forallve V, since B = f¥* = fV.
Now let be x € X such that x = u. Then we get

ox()(fo) = x = 0’ = (f0)" and " = ox(¥)]s .

Conseéue ntly we have 4" = «" for all ue U and (¥) commutes.

@
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Since Extg(4, S) = B*/U from investigating the first injection j and the first
diagram and U™/U = B*/U from the second injection 7 and the second diagram (s),
we derive with Lemma 3.1 that G = Y/ U = UY/U®D and D is a direct summand
of ¥. Q.E.D.

LemMa 3.4. If D is a direct summand of R’ for some slender Dedekind domain R,
then D is finitely generated or D = R' for some subset I of J.

Proof. Projective modules over Dedekind domains which are not finitely gener-
ated are free, as follows from a well-known result of I. Xaplansky [20; p. 331,
Theorem 2(b)]. Therefore a result of E.L. Lady [23, p. 403, Corollary] proves
the lemma.

COROLLARY 3.5. Let 0 K- R = Rl 5> M0 be an exact sequence.

(a) If Ris a slender and hereditary ring, M decomposes into M = D@®Extz(4, R),

. where DCRY and K=AR*(== Homg(A4, R)) for some left R-module A with

|4I<|R] - 1.

(b) If R is a Dedekind domain with Extx(Q(R), R) O for the quotient field
Q(R) of R, then (2) holds and D = R for some set T with [T|<|I| or D is finitely
generated and projective.

Proof. The theorem of G. Heinlein [12; p. 79, (7.34) Satz] mentioned in § 2
shows that R is slender in cases (a) and (b). From Theorem 3.3 follows
M = D®Extg(4, R) with 4* = K and DI_R'. Lemma 3.4 now determines the
structure of D in case (b).

Remark. The structure theorem that Extgz(4, R) is compact for 4* = 0 and
R = Zin the model ZFC+V = L of H. L. Hiller, M. Huber and S. Shelah [15; p. 47,
Theorem B] carries over to countable Dedekind domains. Hence the structure of
RYR’ = D@Ext(B, R) is determined explicitly in this case; compare M. Dugas
and R. Gobel [6; Korollar p. 16].

If R is a slender Dedekind domain, there is a well known result describing the
arguments of Ext from outside: :

LeMMA 3.6. Let R be a slender Dedekind domain and A be an R-module with
A* = Homp(4, R) = 0. If Exty(A4, R) is divisible and torsion free, then A4 is divisible
and torsion free. )

For a proof which follows immediately by application of the Cartan—FEilenberg—
sequence we refer to O. Gerstner [12; Hilfssatz 9]. Therefore we get for any model
of ZFC the following

CorOLLARY 3.7. If R is a countable Dedekind domain s Q(R), the quotient
field Q(R) cannot be represented as RYR’.

Proof. We assume R'/R' = Q(R). From Corollary 3.5(a) follows RY/R’
= Extp(B, R) = Q(R) and B* =0. Hence B is divisible and torsion free,
i.e. Bis a Q(R)-vector space. Therefore Q(R) = Exty(B, R) = Extn(@ O(R), R)

= ] Extz(Q(R), R) for some set 7. Since R is slender, we get that Extz(Q (R) R)#0,
T
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and hence uncountable by C. U. Jensen [19; p. 217, Proposition 1]. Therefore OR)
is uncountable, which is a contradiction.

The countability of R in Corollary 3.7 is necessary as shown by C. U. Jensen
[19; p. 222], who gives an example of an uncountable discrete valuation ring R with
Ext(Q(R), R) = Q(R). Corollary 3.7 is an analogue of H. L. Hiller and S. Shelah
[14; p. 316, Corollary]. Next we will give a characterization of direct summands
of R’, hence the following lemma will be needed several times:

Lemma 3.8. Let A be a finitely generated and projective R-mociule and R be
a Dedekind domain. Then A is reflexive and A* is finitely generated and projective.

Proof, The module 4 is a direct summand of a free R-module, hence reflexive.

n
There are R-submodules Jy, ..., J, of the quotient field of R such that 4 = @ J,.
i=1

n n
Hence 4*= @ Hom(J;, R) = @ J; ' is projective, since R is a Dedekind domain.
i=1 i=1

An R-module W is called R-Whitehead-module, if Extg(W, R) = 0. Following
an idea of S. Shelah [29], P. C. Eklof [8; p. 42, Theorem 10.8] showed that any
R-Whitehead ~module over a countable Dedekind domain R is projective in a model
for ZFC+V = L. Furthermore there are no measurable cardinals in ZFC+V = L
by D. S. Scott [31]. Hence our next theorem may be interpreted in ZFC+V = L
although it is formulated more general:

THEOREM 3.9. Let R be a slender Dedekind domain such that all R-Whitehead-
modules of nen measurable cardinality are projective. For a submiodule A of P = R’
are equivalent: .

(1) 4* is free or finitely generated and projective and A** = A..

(2) 4* is fiee or finitely generated and projective and () ker{(¢p) = 0.

@ e(PlA)*

(3) A= R or A is finitely generated and Dprojective and A = A.

4 A is a direct summand of P.

(5) PlA = R or P|A is Sfinitely generated and projective.

Proof. (1) — (2): follows from the definition of A**.

(2) > (3): If 4* is free, we get 4 = A™[CP from Lemma 3.1 and (3) follows
from Corollary 3.7. If 4* is finitely generated and projective, P*/4*< 4* follows
from Lemma 3.1. Hence P*/4 is projective, since R is a Dedekind domain. There-
fore AP and A = AP follows from Lemma 3.1. Application of Lemma 3.4
shows (3) in this case.

(3) = @: If A = R', it follows from the slenderness of R that 4* is free. From
Lerama 3.1 we get A = A**["P. If 4 is finitely generated and projective, then A4*
is finitely generated and projective by Lemma 3.8. Hence 4 = AP by Lemma 3.1.

4) = (5): follows from Lemma 3.4, .

‘ :(5) —(1): Let be U= P¥/4*, then the diagram with the following canonical
maps commutes: '
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0—- A4 - P - P[4 -0
yorra for Joria
0 -5 U* — P** o (AY)* — Extg(U, R) = 0

Since (A¥)* = (P[4)** and P, P[4 are reflexive by (5), the maps op and opy, are
isomorphisms. Hence Bxtg(U, R) = 0, i.e. Uis an R-Whitehead -module and there~
fore projective by assumption. Therefore AP follows from Le@a 3.1. I.n
particular we get P/4 = A™/A@®D for some submodule D of P. Since ﬂA is
reflexive, A**[A is reflexive. However, (A A)* =0 and therefore 4 = A [CP.
Finally we apply Lemma 3.4 to obtain (1). Q.E.D.

§ 4. The special case R = Z of abelian groups. In order to apply our Tlxeore@ 3.3
in the case of abelian groups, we introduce the following useful notion for a given
abelian group S:

DerinriioN 4.1. A pair (4, B) of abelian groups will be called a BELZ-pair
(with respect to S) if

(1) 4 and B are S-reflexive,

@ Extz(4", 5) = 0, , C y

(3) if f: 4 — B is a homomorphism, then FA)*S is a direct summand of B™,

The pair (Z’, Z°) for non mesurable |7], 7] is a BELZ~pair with respect to Z as
shown independently by A. E. Ehrenfeucht and J. to$ [7] and E. C Ze;mgn F33],
c.f. Fuchs {10; § 94]. This was generalized by S. Balcerzyk, A. Biatynicki-Birula
and J. Lo§ [2] who showed that Z may be replaced by any proper subgroup of Q.
Some yeats later, B. Charles [3] obtained the same result.

Application of (3.3) shows

CoROLLARY 4.2 Let (A, B) be a BEEZ-pair for some S and 0 > K - 4 ~ B
—+ G —0 an exact sequence. Then we get G = D@Ext,(C, ) with DIB and
C* = K for some group C. ! .

Examples for BEEZ-pairs:

(4.3) (G, G*) with respect to G for GEQ; c.f. above. .

“4.4) (Z*, G) with respect to Z and GeR = Reid-class, which is defined as
fono;"zsi‘s an open question of G.R. Reid [27, p. 153] whether.thc? Reid-class R,
which is the smallest class R of abelian groups containing Z and is closed under

@ , I, is the class of all kernel groups. :

B Sti;;oups are Z-reflexive as follows by transfinite induction using the slender-

ness of Z if we introduce the following hierarchy in R:
0) Z is of type 0. . ’
(@+1) TI4; @ 4, are of type a+1 if all 4; are of type <u,
<Rg <Rg )
» [14: @ 4;are of type A for limit ordinals 2, if all A; are of type <4.

<%g <Rpg
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(4.5) (G", G”) with respect to G, where G satisfies the conditions
(2) Endz(6) = Z,
(b) G is slender,
Besides the case (4.3) there are many groups G satisfying (4.5) even if the rank
of Gis 2:
In particular:
G ={u,v, 5‘"°°(v+i/—§-u)> or )
G =u,0,27°u,3" v, 5" °(u+v)) or
G =u,v,27%u, 7" (v+./2u)) satisfy (4.5)
since Bnd(G) = Z. Further examples can be obtained from Kr6] [22]. We would like

to thank Otto Mutzbauer (Universitit Wiirzburg) for telling us these examples of
rank 2, which follow easily from O. Mutzbauer [24].

Further examples of arbitrary rank are to be found in the area of “rigid systems”; .

c.f. L. Fuchs [10, p. 124ff].

Hence for our examples (4.3), (4.4) and (4.5) there is the splitting Theorem 4.2,
In the case (4.3), D is again a product R™; c.f. S. Balcerzyk, A. Bialynicki-Birula
and'J. £o§ [2]. Since (GV)" is free in case (4.5), again D is of the form G™. If X = 0
in (42), then the structure of Ext(C, S) in (42) is known in V= L;
c.f. M. Huber [18], who shows that Ext(C, S is compact in the universe V = I..

After determining the epimorphic images of Z” with kernel isomorphic to an epi-
morphic image of Z” (Corollary 4.2), we will consider arbitrary epimorphic images
of Z”;

If|7] = 8, epimorphic images of Z” are isomorphic to a direct sum of some ZM
with [M|<&, and a cotorsion group. This is a well-known theorem of R. J. Nunke
[26, p. 70, Theorem 5]. This does not hold, if |J|> 8o : There are epimorphic images E
of Z’ such that E is 8;-free and E* = 0, as shown in G. A. Reid [27, p. 37]. On
the other hand there are epimorphic images of Z” which are torsionless (i.e. sub-
groups of some product Z*) but not a product Z¥, as constructed in R.J. Nunke
[25; p. 70/71]. Hence one might think that epimorphic images of products Z7 will
always split in the sense of Stein into a direct sum of a summand 4 with dual A* = 0
and a torsionless complement; c.f. Fuchs [9; p. 94; Corollary 19.3 (K. Stein)].
Unfortunately there is the following

ProrosiTioN 4.6. Let |I] = 2% be a non mesurable cardinal and H an abelian
group with H* = 0 and 1<|H|<N. There is an epimorphic image G of Z"¥ such that
Ker(og) = H. If H is slender, Ker(og) is not a direct summand of G.

Proof. Following an idea of R. J. Nunke [25; pp. 70-71] one easily shows, that
there is a free subgroup F=Z” of rank , such that F** = F. Take any subgroup
A<F such that F/4 = H. Then A*' S F* in general and F< 4** since (Fld)* = 0.
Hence 4*'/4 = H, which shows H = ker(cg) with G = ZY4.

If His slender and H[TG, then H is a slender epimorphic image of Z'. Therefore
0 # H is finitely generated and free, which contradicts H* = 0.

.
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COROLLARY 4.7. Let I be a set of cardinality »2*°. There are epimorphic image.f' G
of Z' such that there is no decomposition G = H®F with H* = 0 and oy injective.

Remark. “op injective” is equivalent to F torsionless in the sense of H. Bass
or to F is e.h. group in the sense of R.J. Nunke [25] or F is subgroup of some
Product Z%. -

Proof of 4.7. Choose H slender with H* =0, e.g. H = @ @, and apply
Proposition 4.6.
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On pointed I-movability and related notions
by

J. Krasinkiewicz (Warszawa)

Abstract. In this paper we discuss several problems which arose in a study of pointed 1-mov-
ability. We also prove some new theorems. ®

1. Introduction, The main aim of this paper is to summarize several problems

“in continua theory which arose in a study of pointed 1-movability and related notions.

Some new results are also obtained. All spaces under discussion are at least metriz-
able. Terminology used is standard. The definitions of undefined terms from shape
theory may be found in the book [3]. By a continuum is meant a nonvoid, compact,
connected space. A one-dimensional continuum is called a curve. If N is a manifold,

‘then N denotes its boundary and N its interior.

Let X be a continuum lying in an ANR(9)-space M and let x, be a point
of X. We shall be dealing with the following properties of X:

(MOV*) (pointed. movability). For each neighborhood U of X in M there is
‘a neighborhood VU of X which can be deformed rel. x, within U into any
neighborhood of X [3].

(MOV) (movability). The same definition as above with no restriction on x [3].

(1 MOV®) (pointed 1-movability). For each neighborhood U of X in M there
is a neighborhood V< U of X such that each loop in (¥, x,) can be deformed within
(U, x,) into any neighborhood of X [comp. 3, 18 and 26]. ,

(1 MOV) (1-movabilify). For each neighborhood U of X in M there is a neigh-
borhood ¥« U of X such that for each neighborhood W of X and for each mapping
f: ¥ — V,where Yis a curve, there is a mapping g: ¥ — W homotopic to fin U [3].

(n1 MOV) (nearly 1-movability). For each neighborhood U of X in M there is
a neighborhood V< U of X such that for each mapping f: D - V, where D is
a 2-disk, and for each neighborhood W of X there exist a sequence Dy, ..., Dy

k

of disjoint disks in D and an extension f: D\ U D, > U of f such that
i=1

N .
fy Di)c W [26].
i=1
To define the next property recall that an inverse sequence X of ANR-sets
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