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Remark 10. There are several known methods of assigning to a space £

a polyhedral (ANR) associated system, e.g. assigning to E its Cech system 191
(also see [13]). Theorem 15 shows that the proofs of Theorems 11 and 13 offer
alternative methods, which generalize the original Marde§i¢-Segal ANR -system
approach to shape [18].
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On the k—pseudo-symmetril:al approximate differentiability *
by

Giuseppina Russo and Santi Valenti (Palermo)

Abstract. The purpose of this paper is to establish a connection between two ways of
generalizing the notion of derivative.

1. It is well-known that a number of significant properties of differentiable
functions can be expressed in terms of some symmetrical or, generally, bilateral
differential quotients (see, for instance, [4] and [3]). On the other hand, a powerful
way of generalizing the notion of derivative is that of picking up only these values
of the differential quotient that correspond to a suitable set having positive density
at a given point: so one obtains, e.g., the approximate (or asymptotical) derivative
(see, for instance, [1] and [3]).

Within the present paper, our purpose is to establish a transparent connection
between the first and the second way to get a notion of derivative; more precisely, we
shall give a theorem who clarifies the relation between the usual approximate deriva-
tive and a new one, here called k-pseudo-symmetrical approximate (or asymptotical)
derivative.

Such a theorem shows that this new definition, based on a method introduced
elsewhere [4] by one of us (S. V.), gives place to an approximate derivative that
exists, at least almost everywhere, in any measurable set where the usual one does.

As for a complete understanding of the demonstration it will be useful the
knowledge of a deep and elegant theorem by A. Kintchine [2], we report here its
statement: let f(x) be a measurable function, assigned on a measurable set E. Then
almost all points of E do belong to one of the following sets

E, = {xeE: the approximate derivative of F(x) exists (M}

E, = {x e E: its upper (lower) approximate derivates are both + oo (— o0)}.

2. Let f(x) be 4 real function of a real variable, i.e. let AcRand f(x): 4 = R.
It is well-known that one can give the notion of approximate (or asymptotical)
derivative of f(x) at the point x€ R in the following way [1]:

* The second of the authors is partially supported by G.N. A. F.A. (Group of Mathematical
Analysis of the Italian Research Council).
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DernrrioN 1. If the limit
. SO)—f®)
6)] lim ————
yrx Y X
does exist when one subtracts to 4 a set of density 0 at x, then this limit is called the
approximate (or asymptotical) derivative of f (x) at x (on A4). (We shall denote it by
D,f ). ‘ . , ,

Furthermore, one introduces also the notion of wpper right approximate (or
asymplotical) derivate of f(x), namely D} f(x), at the point xe R, as follows:

DermvrtioN 2. The upper right approximate (or asymptotical) derivate D £ (x)
of f(x) at x (on 4) is the least upper bound of the set of the real numbers a such that

—f(x
O,

y—x
where y belongs to a set of density >0 at x. (One defines quite analogously the other
three derivates, namely D, ,f(x), Dif(x) and D_,f(x)).

Now, following an idea contained within a previous paper [4], we introduce
a new definition, which constitutes the kernel of the present paper, i.e.:

Dermvrion 3. If £>0 is a given number, we shall call the k- -pseudo-symmetrical
approximate (or asympiotical) derivative of f(x) at x (on A) the Limit (if it exists)

x+kh)—f (x~h
@ Jim L6 V=f (x—5)
B0+ (k+1h
where x+kh e 4, x—he A and we are allowed to subtract to the set of ail possible &
a set H(x) of density 0 at 0. (We shall denote such a limit by Dy, f(x)).

It is our purpose to sketch the connections between this notion of approximate
derivative and the ordinary one. In effect, we are going to prove that the existence
of Dy, f(x) implies the existence of the usual approximate derivative; all that, of
course, being valid almost everywhere in 4. (Actually, in what follows we prefer to
assign f(x) on an interval 4 of the real line, but the reader will easily see that our
assumption introduces no restriction within the final result).

2 y>x}

@

3. Now, we pass straightforward to prove the following

"THEOREM. Let A be an interval of the real line R, f (%) a function from 4 to R and E
the subset of 4 where the k-pseudo-symmetrical approximate derivative of f (x) does
exist. Then, if f(x) is measurable, it has the approximate derivative a.c. in E.

Proof. Suppose that our theorem does not hold. Then, there exists a subset X'
of E whete f(x) is not approximately differentiable, and such that

@ meas,(X)>0 ;

(meas, means the Lebesgue’s exlerior measure).

(1) Whenever we say that a derivative exists, we mean that it is finite.

icm
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After, consider a mapping I', from the set N* of the positive integers onto
a subset {X,} of the power set Z(X) of X, so defined:

() VreN*, I =X,={xeX: 0<h<ln, h¢ H(x)
= f (et kR —f (o= Ry < (k+1)hm} .
The following equivalence is obvious:
) flx+kiy—fx~<E+Dhn < J kR —n(x+khy—f (x—h)+n(x~H<0,
so that, by meé‘ns of the measurable functions
M Ey() = f(x)~nx,
one obtaing the other equivalence
8) xeX, < {0<h<lin, h¢ H(x) = Fy(x+kh)—F(x—m<0}.

Besides, by virtue of (4) and since
(9) X = gl Xn B

we can find an index, say re N*, such that
(10) meas (X;)>0;

on‘th_e other hand, there is a perfect set of continuity for F,(x), say Pc4, such that

' (1 meas (P)>meas(4) —meas,(X,)

so that, for its density set, say .D, one draws from (11)
(12) meas,(D n X,)>0.

Consider, then, a density point of D n X and call it z: at present, we shall
prove that the measurable set
(13) . A = {x: x>z, Fx)>F(2)}
is of density 0 at z. N

In effect, if the density of 4 at z was >0, we could find a positive numl.)eI T,
with t<1/r, such that, for all y & ]z, z+1[, the following inequality can be written:

dens(A4, z)
k-2

3

(14) measy(X, N} z,yD>(y—2) [l -
(dens means the density of a given set at a given point). Further, it would be

meas(D N ]z, yD) >3 (y—2z)dens(4, 2),

5.
49 meas(4 N Jz, ) >3 (y—2)dens(4, 2) ;

6 — Fundamenta Mathematicae CXIV/1
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which implies

(16) meas(d n D n Jz, y)>3(y—z)dens(4, z) .

On the k~psendo-symmetrical approximate differentiability
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But such a circumstance contradicts (12), because the fundamental theorem

P quoted at the beginning [2] ensures us that if the approximate derivative of any
measurable function does not exist a.e. in a measurable set, then every subset

where (24) holds must be negligeable.

Consider, now, a mapping 7, from the set B = A n D n ]z, [ into R, defined
as follows:
_ kzdx

VxeB, x—T(x) =2 = P

an

formula (16) ensures us that the set T(B) has measure greater than the quantity

[(y~2z)dens(4, 2)]/(2k+2), so that, according to (14), we would have 11
(18) meas,[T(B) n X,]1>0. 21
Then, set %, € [T(B) n X,]; by virtue of this choice one has: © 3]

41

X =T7Y2) = k+DS—kze A n DTz, Fx)>F);

19

but the restriction of Fr(x) to P is continuous, so that we can find a neighborhood
of z, say p(z) = Jz—p, z-+p[, contained in Jy—1/r, y[, and a neighborhood of x,,
say o(x,), contained in Jx,.—kB, x,+kB[ N ]%., [, such that:

(20) Xy € O((X,) n Ps o€ B(z) NP = Fr(xo:)>Fr(Zﬂ) .

Then, consider another mapping T, from the set P n a(x,) into R, defined as
follows:

(e+D%—x,

ey T ;

Vx,ePnalx), x—T(x)=32% =
as the measurable set P a(x,) has density 1 at x,, also its image TP r a(x,)]
will have the same density at z, whence the set X" = P n T"[P A «(x,)] has den-
sity >0 at z. On the other hand, from (20) and (21) we draw

@) 2eX" = Fx) = R4+k@E-8)]>F#) = Bt~ 3—2)]

=> B[ —k(&~2)]-F[%—(%—-8)]>0;
but this is in contradiction with (8), because
23)

dens(X, 2)>0, 0<%, —2"<1/r.

< So, in effect, the density of 4 at z is 0.
All that means, obviously:
@9 [D} F(t)]=.<0

and this holds for all density points of D n X,.
g

Concluding, F(x) [and consequently f(x)] has the approximate derivative

D, F)[Dyf (%)) ae. in 4 and our theorem is proved.
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