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On some Banach ideals of operators

by
0. I REYNOV (Leningrad)

Abstract. Tor cach lattice 7 of measurable functions we define an operator
ideal BNyw. It is shown that for every ideal space T of measurable functions with
a non-diserete dual Ji* the class RNy coincides with the class of Radon-Nikodym
operators introduced by W. Tinde and by the author. Other related characterizations
of tho Radon-Nikodym operators are also proved.

In [4] we found a number of equivalent characteristic properties of
Radon-Nikodym operators in the language of certain mappings acting
between Banach spaces and Banach lattices of measurable functions of
minimal type. In the present paper we obtain further characterizations
of RN operators in those terms with no redundant assumptions on the
lattices of measurable functions except for the natural agsumption that
the lattices in question are ideal spaces. ’

When discussing lattices of measurable functions we will follow the
terminology of [1].

1. Preliminaries. Throughout the paper (£, %, u) 18 & finite non-ne-
gative measure space. L’(u) = IR, 2, pn) denotes the lattice of all
(equivalence classes of) sealar-valued p-measurable functions on Q. For
feI’(y) we put suppf = {weQ| flw) #0}; if Fc I°(u), then sappF
stands for the smallest set which belongs to * and contains suppf for each
fel.

! Tet B be a veetor sublattice of I (). We shall say that B is discrete
if tho restriction of u to the o-field

3, = Z|suppB = {dnsupp B| 4 e z}

is & purely atomic measure. )

T s said to be an ideal space it f € L' (u), g € H and If1 < lg) implies f € B3
it, in addition, 7 is @ Banach sublattice, then # is called the Banach ideal
space (we shall write briefly IS and BIS, respectively).

Tor a vector sublattice H < I° (u) we define the dual IS E' as the
space :
B = {geL'(p)| suppg <= supp B, gf € L' (u) for each fek.
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If X is & Banach space, then 17 (X) denotes the vector space of all (Bochner)
p-measurable funetions f: Q—-X such that the functions ||f( )] belong to H.
If B is a Banach sublattice of L°(u), B(X) is a Banach space when equipped
with the norm [|flx) == “H] M H;

Let E and F be 1;110 vector sublattices of L (u). We shall write B 3 7
if suppE < supp I and if there iy a sequence {2}, of sets 2, € X such
that U 2, = supp B and fyo ek for cach fe I and every n =1, 2, ...

n=
(19 L]W,, = IR,

The simple proof of the following proposition consists of standard
measure-theovetic arguments, and so we omit it.

I’ROPOSL'L'I()N 1.1. Let B < I (u) be an IS, Then

) if supp B = 2, then L®(u ) 3 1

(2) the set X = {feB|f= 23 a,lx,k,A,nA =@ if b 4} 18 dense
Ir

in T for the topology of “umfmm convergence w.c.”, i.e. for each ge B
and each e > 0 there 48 a function fe X such that |f(w)—g(w)] <& a.e.
on Q.

Let X be a Banach space and let B be a veetor sublattice of I'(u).
We shall denote by I (H, X) the set of all X-valued measures #: Z—+X
of bounded variation possessing the following property: there exists
a function g e &' such that [|f|dV(m) < [|f|lgdu for each fe B where
V() is the variation of m. My(F, X) denotes the subset of the set M(H, X)
which consist of those meagures 7 for which there exist functions iz € &' (XX)
with [fdi = [ffmdu for each fe B. X B = L*(u), then we geb exactly
the set of all p-comtinuous X-valued measures of bounded variation,
(or the set of all such measures having derivatives with respect to u).

It B is a vector lattice, then P (X, ) denotes the veetor space of linear
mappings from X to # which map the unit ball of X into an order bounded
subset of B. It F'is a sublattice of L(x), then we define the vector space
8(B,X) as follows: the linear transformation T: H—X is in Sz, X)
if there is a function ¢’ € B’ such that ||Te| < flele'du for cach ¢ e X
8,(#, X) denotes the vector subspace of S(H, X) which congists of the

mappings T' such that there exist functions j, e B'(X) with T - = [ efpdu
for cach e e 1. If. Wiy a Banach sublattice in L0 (), then the spaces (X, 1)
and S(Z, X) are Banach spaces when equipped with the norms

p(T) =ini{lylz] y € B, |Tw| < |lzly for cach o e X}

and, respectively,

§(T) = int{le'lze| ¢’ €T, |Te|l < [le|e'du, for cach ee M),
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Note that S(L'(x), X) = L(I*(u), X) is the space of all bounded linear
operators from I'(u) to X.

The following statement is very simple and we omit the proof.
PROPOSITION 1.2. If B = L(u) is an IS whose dual space B’ is discrete,

- then for every Banach space X we have

M(HE, X) = My (B, X)

‘We conclude this section with the following proposition, which will
be useful in the next section.

ProrosrrioN 1.3. Suppose B < I°(u) 45 an IS such that L= (u) = B
< LM u). Then there emists a bijection = fmm S(E, X) onto M(E, X) such
that if UeS(H#,X), then Uf = [fdn(U) for each fe B and n( (B, X))
= My (-E ’ X).

Proof. Let U eS(E, X) be given. Then there is a function g € B
such that [|Uf]} < f |flgdu for each f e H. The set function 7: Z—+X defined

and S(E,X) = 8,(%, X).

by m(A) = U(y,) for A e X is countably additive: if {4}, = %, 4,0
N4, =0,n #kthenm({Jd,) =Tz )= 2 Ulyy) (the Ilast
n=1 Ay =1

=1

equality follows from the fact that

HU("‘@ )= S'U (%)

< f gdp—0

n=1 N=1 U 4
n=m+1
if m—>+ co and
DT (ga < f gidp < +oo
n=1 U .A
fn=1

since ¢ € B' = I*(u)). It is clear that 7 has a bounded variation and

[1f1aV(m) < [|f1gdu for each feB. Hence m € M(F, X). To show thab

Uf = [fd7 for each f e B it is suiflemnt (by Proposition 1.1.2) to verify

this equality on the functions of type 2 @y, Where {4,372, 18 & sequence
E=1

of pairwise disjoint members of Z. Let f be such a function and let & > 0

be given. Then we have

Jor-0(3; avza] = [0S wrall < T 11000,
- o kﬁmAk

and if m is large enough, then it follows from the absolute continuity
of the integral that the number on the right is less than & Consequently
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uf :gm,_j}Z(A.,r) (the series is convergent in X since Ue S(H, X)). Of
== ]
coursci flfdm = Y w(d,). To complete the proof we only need to notice
i=1
that U e S, (8, X) ift m e M, (B, X).

2. The spaces RNy (X, ¥). Let X and ¥ be Banach spaces and let
L(X, Y) be the space of all bounded linear operators from X to Y. An
operator I'e L(X, X) is said to be a Radon-Nikodym operator (seo [2],
[3]) it it fakes each X-valued measure 7 of bounded variation V(i) o

» o Yvalued measure having the derivative with respeet to V(7). We
denote by BN(X, ¥) the set of all Radon-Nikodym operators from X
to . It is well known and casily seen that the class RN - {RN(X, ¥)| X
and Y are Danach spaces} equipped with the usual operator nomm is an
injective Banach ideal of operators in the sence of A. Pictseh.

Let (2, X, p) be a finite non-negative measure space, lob 8 < I°(u)
be an'IS and let T' e L(X, ¥) be given. The operator T is called an oper-
ator of type RNy, if for cach measure @ e M(H, X) the measure T belongs
to the set MMy (H, ). Thus the operators of type RN, from X to Y are
exactly those linear hounded mappings for which the associated mappings
M(E, X)—M(B, ¥) take their values in the set M, (F, ¥). The collection
of all operators of type RNy, from X to ¥ will be denoted by RN, (X, ¥).

Our first statement about the properties of such operators is el-
ementary and follows immediately from Propositions 1.2 and 1.3 and
from Proposition 1 of [3].

ProvosirroN 2.1 (1) If B < L' (u) is an IS with the discrete dual X',
then RN (X, ¥) = L(X, Y);

(2) If the measure p is not purely alomie, then RN (o0 () (X, X)
= RN (X, ¥).

The main result of this section is the following theorem, which agserts
(in view of part (1) of the previous proposition) that, given any ideal
space B < L(u), the operator class RN, is cither the ideal of all bounded
linear operators or the ideal of all operators of type RN.

TrnmoreMm 2.1. Suppose B < L(u) 48 an IS whose dual space ' is
nov diserete. Then for every pair of Bamach spaces X and Y the equality
RN(X, ¥) = RN, (X, ¥) holds. Thus the class RN w equipped with the
usial operator norm is an injective Banach ideal of operators.

As a special case of the above theorem we get

CoroLLARY 2.1. Let BB < I°(u) be an IS with a non-discrete dual B,
and let X be o Banach space. The space X possesses the Radon—Nikodym
property iff X possesses the RNy property (i.e. the identity map XX
18 of type RNy). Thus if X Las the BN property, then X' has the RNy prop-
erty for every IS E.
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TumorEM 2.1 is an easy consequence of part (2) of Proposition 2.1
and the following three statements, which also give other characterizations
of RN operators. )

LovmA 2.1, Let B and F be two ideal spaces on « finite non-negative
measure space (2,2, u). Suppose B -3 F and supp B’ = supp '’ (see See-
tion 1 for the notation). Then RNy (X, ¥) « RN (X, ¥).

Proof. Suppose T e RN, (X,Y) and e M(F,X). Let geF
be a function such that f IfldV(m) < f Iflgdu for each f e I \\.’u must show
that 19 € M (L7, Y). Since B 3 F, by Proposition 1.1 there is & sequence
of pairwise disjoint sets 2, e X such that U1 Q, = supp ¥ and L2(p)]Q,

o
= B8, = F|, for each n. Since geF’ and F|Q, = F|2,, we ’hn;Ye
grq €8’ Hence if M,(4) = m(ANnQ,) for 4 e X, then m,”—e S)JE(L,;X).
By ”hypothe.sis there is a function 7, € B'(Y) such that f f dTL"% = f fgn{l,u
for each feX. Now, the inclusion L®(u)| 2, = E| &, mlpllef that |](/,5,||
< |T)lg ae. on 2,. Leb us put j(o) = g,(o) if we 8, and F(w) =0 it
w e .Q\O Q,,. Since |7l < IT)g a.e. on 2 and g e I, we have je F'(Y).
It folloqwzvzsl from the equality suppB’ = suppF’ and from the ineclusion
[ .
supp B’ < suppE = | Q, that m(4) = 0 for every set 4 eX with A <
k]

oo =1 i
o\ 9, Therefore, for each f € I we have

w=1

[garm = Y [farm, = 3 [f3,40 = [fqdu.
Q n=12, Con=19y, 2
Thus we have shown that T% e My(F, T).

TEMMA 2.2 Let B < L°(u) be an IS and let T be an operator from X to
Y. The following assertions are equivalent: :

(1) T e RNy (X, ¥); ~ . . -

(2) for every mapping U e S(E, X) there s & fzmctwn ge BE(Y)
such that TUf = [fidu for each f € B; moreover, if g € B' is a function such
that | Uel| < [ lelgdp for each ¢ € B, then |7l < 1Tlg a.e. on Q.

Proof. That (2) implies (1) is evident. To prove the converse suppose
that U e§(F,X) and ge B’ is 2 funetion for which ||Ue| < f \cj\qd,u
it ¢ € B. To show that there is a function § € B'(Y) such that T U, f = [f§ d/.t
tor each feF we may assume that supp B = supp B’ and L=(p) ;3 B
(by Proposition 1.1). Now (again by Proposition 1.1) it follows that L D(O )
-3 B', hence B -3 I*(u). Thus we have L%(u) -3 B 3 LMp). Let {230,
be a sequence of pairwise disjoint members of X for which ,ng" =

and I°(u)|8, = B2, = THp)Q, (n =1,2,...). Fix » = 1,2, ... Since
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1Tl < [lelgdu for each ¢e B with ¢|(2\Q,) = 0, by Proposition 1.3
2,

there is & measure i, € (B, X) such that Ue = [edm, for every function
¢ € B whose support is in £,. Thercfore for every n =1,2,... there
exists a funetion 7, € B'(Y) such. that Ue = [ef, du for cach ¢ e J with
suppe = 2,,. Since L®(u)| 2, = B| L, we have [[7,] < |7]g a.c. on 2,.
To complete the proof it is now enough to put j(w) = §,(w) if 0 e Q,.

Now we are ready to prove

TaROREM 2.2. For a linear bownded opevator 1T from X to Y, the following
Sfour assertions ave equivalent:

(1) T e RN (X, X);

(2) for each finite non-negative measure space (£,5,u), each IS
B <= L"_(,u) and every mapping Ue S(H, X) the map T'U belongs 1o the
space So(H, Y);

(3) for each finite mon-negative measure space (2,3, ), each BIS
B < I'(u) and every mapping Ue 8(H, X) there ewists a Sfunction §e I'(Y)
such that TUe = [egdu, e ¢ B, and 171y < NTNS(UY;

(4) there ewist a findte positive non-purely atomic measure space (L2,
Z, u) and an ISE < L (p) with a non-discrete dual B’ such that Sor cach
mapping U e §(B, X) the map TU is in the space S,(H, ¥). .

Proof. If T'eRN(X,Y), then Te¢ BN(eo) (X, ¥) for every
space L™(u). Now it is easily scen that T'e RN, (X, ¥) for any IS %
mentioned in assertions (2) and (3) (Proposition 1.1 and Lemma 2.1).
To prove that (1) implies (2) it is. now enovgh to utilize Lemma 2.2. That
(2) implies (3) and (3) implies (4) is trivial. Thus it is only necessary to
show that (4) implies (1).

Let T satisty (4). Of course, without loss of gencrality we may assume
that supp B = supp . In this case L®(u)|supp B’ =3 B’ (Proposition 1.1)
and therefore I 3 L'(u) |supp E. By Lemma 2.2 we get T'e RN, (X, Y),
and so Lemma 2.1 now implies that Te RN (X, ¥) where I
= I!p)|supp E. Tt follows from Theorem 1 of [3] and Lemma 2.2 that 7'
is of type RN. ‘

Let us conclude the present section with an application of the above
theorem. The following result is slightly stronger than the one obtained
in Theorem 4 of [3], implication (3) =(1), since every L®(u)-space con-
structed on the non-purely atomic measure space is isomorphic t0 o space
O(E) for some non-dispersed compact set K. Note that the converse of
the following theorem is also valid.

THEOREM 2.3. Let T e L(X, ¥) be given. If there is a non-dispersed
compact. set K such that for each integral operator U C(K)—X the operator
T'U is nuclear, then T is of type RN. ‘

Proof. Let 4 be a non-purely atomic Radon measure on K. We shall

©
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show that T' satisfies (4) of Theorem 2.2 for the IS E = L%(u). Suppose
U e S(I°(u), X) and let g be a function such that ¢ > 1 a.e. and || US|
< [If1gdu for cach f € I™(u). Then there is a map U, € L(T}(u), X) such
that U = U, U, where U,f =fg for each feL®(u). Since |U.f| < |Ifllg
a.e., U is an integral operator from L®(u) into L'(g), and so U is also
an integral operator. By hypothesis TUj is a nuclear map where j: C(K)
—I*(u) is the natural injection. Let TUj = >, p,>¥, be a represen-
tation of this nuelear map (u, € C*(K),y,€ ¥, Syl < + oo). Let
P De a canonical projection from C*(K) onto L'(u) and let 4: L'(u)->
C*(K) be the injection i(p) = pu for geL'(n). Tt &, =f.p = Pu, (fu
e IM(w), then (TUH*(Y*) < i{LMw)) and for fe O(K) we have TUj(f)
= S, Byl Since g =1 a.e., the set U,j(C(X)) is dense in I (u) and
therefore TUf = SKF, fudtyn for each feL™(n) where NIfyllly,l < oo.
Thus TUf = [fjdu wheve § = >, ®y, € L'(u; T), and the operator
T satisfies condition (4) of Theorem 2.2. Hence it is a Radon-Nikodym
operator. .

3. Some other characterizations of RN operators. Using the above
results, we shall obtain in this section some other necessary and sufficient
conditions for a linear bounded operator to be of type RN. As we have
seen, RN operators, when composed with some linear mappings, impro*vte
that mappings in a certain sense. The following theorems show that this
is always the case when we consider the compositions of RN operators
both with the scalarly measurable vector-valued functions and with the
“order bounded® mappings. Throughout the section X and ¥ are Banach
spaces.

THEOREM 3.1. For an operaior T € L(X, Y) the following three state-
ments ave equivalent: :

(1) T is of type BN : )

(2) if (2,Z,p) is o finite non-negative measure space, Bc L°(,u2
isan I8, f: Q—X**is a X*-scalarly measurable function such that [ffdneX
for each f € B and KF, &> < ¢ € B for each ' € X* a.e; on &, th(izk?. there 18
o funciion § e B'(Y) such that the functions § and T [ are Y '-scalarly
equivalent;

(8) there ewist a finite mon-negative measure space (2, _'Z', ®) mul. an
IS B < L' () with a non-discrete dual B’ such that for any Junetion f me.ntwn-
ed in (2) one con find a function § e B'(Y) which is Y -scalarly equivalent
to T™F.

Proof. (1)=(2). Suppose that T e RN (X, ) and let an IS B < I (p)
be given. Without loss of generality we may assume that suppl = of?
Let fand @ be as in (2). By Proposition 1.1 there exists a sequence {2,152,

of pairwise disjoint members of X such that U @, =2, L2, = B2,
n=1
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and ¢ is bounded on every set £,. Lgt us pub f“ == fx”n and define an
operator U e L(L*(p), X) by Uf = [ff,du. It follows from Theorem 2.2
that TUf = [fg,du where g, eL®(u; ¥). If ' e X*, then <I™F,, 4>
= (f,, ¥"> a.e. on £,. Further, |7,/ < [|T¢ a.e. on &,. Now, it iy suffi-
o0
cient to put § = 3 g, Ao,
n=1

(8) =-(1). Let (£, X, p) be a finite positive non-purely atomic moeasure
space and let B < L°(u) be an IS with a non-discrete dual 1. By Prop-
osition 1.1 we can find a set 2, € ' such that the restriction of w on Q,
is a purely non-atomic measure uy, L®(u,) == L®(u) |2, « B'| £, and
B|Qy = L'(uy). Assume that (3) holds for H. If U e L{L'(u,), X), then
there is a X'-sealarly measurable function fy: Qy—>X** such that Uf
= [ffodu, tor each f e L' (u,). Let us put f = fyyq,. Sinee L () < 1|2,
and B |2, « L'(u,), it is easily seen that the function f possesses the prop-
erties mentioned in (2). Hence there is a function §e Z'(Y) such that
LI, 4> = <g,y') a.e. on @ for each y' € ¥* It now follows that TUf
= [fjdu for every function feZ'(u) with suppfe £,. By Theorem 1
of [3] the operator 7' is of type RN.

THEOREM 3.2. For an operator T e L(X, Y), the following three state-
ments are equivalent:

(@) T" is of type RN;

(2) for every finite non-negative measure space (2, X, u) and for each
IS B = L°(u), for every map U € P (Y, H) there exists o funciion § e B(X")
such that UTlw = (&, §) for cach 2 eX; if B is o BIS, then 1711 2520y
<|Tlp(T);

(3) there exist a finite positive measure space (2,1, u) ond o non-
diserete IS I = L'(u) such that for every map UeP(Y , D) there is a
Sunction g e B(X*) which satisfies UTw = (%, §> for each v e X.

Prootf. (1)=(2). It is easily seen (by the lifting theorem) that if
UeP (Y, D), then there exists a ¥-scalarly meagurable function f: £-»1*
such that Uy = <y, f> for each y € ¥. Hence UTw = {w, T*F> for cach
zeX. It T% is of type RN, then using Theorem 8.1 we can find a moasur-
able function §: Q—+X* for which UTg = Ly gy Ib ds cleay that §
€ B(X") and if B is a BIS, then 17 zxq < I TNp(T). That (2) implies (8)
ig trivial. Clearly, to prove that (3) implies (1) it is enough. to prove that
(3) implies that

(3a) for some finite mom-purely atomic measure space (L5 Xy, o)
and for each operator UeL(Y,L""(HO)) there is a function 7 e L™ (uy;
X*) such that UTz = <, §> for each x e X.

Suppose T' satisfies (3). Since H is not discrete, the restriction of u
on supp & is not a purely atomic meagure. It follows from Proposition 1.1
that there is a set 2, < supp B, 2, € X for which Mo = u| £y is not a purely
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ptomic measwre and L®(ug) « B|Q,. Now if UeL(¥, L®(uy)) and j:
L™ (ug) B is a natural injection, then we'have jU eP(Y,_ E) and conse-
quently jUTw = <=, §>, s € X, where jeB(X"). Since jUT maps the
anit ball of X into a bounded subset of L (u,), the function 7}, belongs
to L™ {u,). This completes the proof.
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