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Now we come to the proof of Theorem B. Suppose that f ¢ L(log™ Ly !
so that the set where I, ... M,f > 1 has finite measure in virtue of The-
orem A. If we assume that M, ... M, f is integrable over ¢very set of finite
measure, then

00 > f M, ... Myf(@)do > f m{M, ... Myf > 1)t
{Mger I 51} i

_ 2 g-n g Ifl 1fl “—1',
= T lfdt f—r(log--»r) dw

5=n Il I (Zﬁ 9-n
=Gy [ 4o [ frog | =S f 11008 e

3. An open problem. Suppose that feL(og" Ly * go that f* is
finite almost everywhere. We conjecture that f* is integrable over cvery
set of finite measure if and only if f e L(log* L)".

By virtue of Theorems A and B this conjecture is reduced to proving
(or dlsprovmg) that if f* is integrable over every set of finite measure,
then so is M, ... M, f; but this remaing, as far a8 we know, an open question.
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Zexo-one laws for Gaussian measures
on metric abelian groups

by
T. BYOZKOWSKI (Wroctaw)

Abstract. ' We prove zero-one laws for Gaussian meagures on metric abelian
groups. As a comsequonce, we derive the zero-one law for Gaussian processes with
values in an LCA. group &. The latter result comtains, in particular, all the zero-one
laws of Kallianpur and Jain as well as the zero-ome law for the G-valued Wiener
ProCess.

In 1951 Cameron and Graves proved that every measurable rational
sabspace of CT0, 1] has Wiener measure zero or one [7]. This result has
been generalized by Kallianpur [16] to a large class of Gaussian processes
and by Baker [1], Rajput [18] and others to Gaussian measures on Banach.
gpaces or on Fréchet spaces.

The proofs presented by these authors depend heavily on methods
of linear spaces as well ag on the stability of Gaussian measures.

A completely different approach has been proposed. in the proof
of Theorem 2.2 in [4]. This proof, suggested Ly an algebraic definition of
Gaussian meagure, seems to be more natural and relatively simple. The
arguments, being of group-theoretic nature, enable us to extend this result
to Gaussian measures on measurable groups, as pointed out in [6].

The aim of this paper is to generalize the result of Theorém 2.2 in
[4] in two directions. First, we consider Gaussian measures on arbitrary
Hausdorft abelian groups; secondly, we prove the zero-one law for measur-
able subgroaps (instead of rational subspaces, as in [4]).

Section L i preliminary. In Section 2 we prove that every symmetric
Gaussian measure without idempotent factors on o ITausdorff abelian
group G can be embedded in o unigque continuous semigroup of symmetric
Gauggian meagures under the agsumption that z—2w is & Borel auto-
morphism. of ¢. From this result it follows, in particular, that every sym-
metric Gaussian meagure on & ig infinitely divisible.

In Section 3 we prove that every Gaussian measure on a metric
abelian group @ is a translation of a symmetric Gaussian measure (under
the agsumption that @ has no non-zero elements of order 2). This prop-
erty of Gaussian meagures is well known if G is a Banach gpace (or, more
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generally, a complete separable locally convex space) or if @ is an LOA
group [13]. The proof of the general case (Theorem 3.1) is more difficult;
it is based on a characterization of positive isometries between L, spaces,
given in [14], Theorem 3.1 is in an essential way used in the next section.

In Section 4 we prove the zero-one law for Gaussian measures on .

metrizable abelian groups (Theorem 4.2). The proof is divided into two
parts: the first part is stated as Theorem 4.1 and iy idependent of the
preceding seetions. Theorem 4.1 containsg, in particular, the zero-one law
for Gaussian measures on complete separable locally comvex spaces (a
result proved earlier by Rajput [187]) or on separable Orlicz spaces.

In Section 5 wo derive the zero-one law for Gaussian processes with
values in a second countable LCA group G (Theorem 5.2 and Corollary
B.1). This result containg Kallianpur's zero-one laws [16] as well as the
zero-one law for the G-valued Wiener process.

1. Preliminaries. Let (G, #) be a measurable space. By a probability
measure on (G, #) we mean a non-negative s-additive measure u such
that 4(G) = 1. Whenever a topological structure on G appears, we assume
that & is the Borel o-field of G and that u is tight, i.e.

u(A) = sup{u(K), Kcompact = A} for evary 4 4.

The measure concentrated at @ € @ will be denoted by the same symbol .

Now, let @ be a Hausdorff abelian group. The space of all probability
measures on G will always be considered as a topological space with the
weak topology: a net u, of probability measures converges to a prob-
ability measure p iff :

tim | £ (@) pa(d) = [ (@) p(dm),

for every f € C(@) (the space of all real-valued continuous bounded functions
defined on @). Since we consider only tight measures, this topology is
Hausdorff (see [22]).

A family IT of probability measures is said to be wuniformly tight
if for every positive ¢ > 0 there exists a compaet subset K < & such. that
H(E)>1—¢ for every uelIl. Prohorov's theorem asserts that overy
uniformly tight family iy conditionally compact.

By # x# we shall denote the product of the Borel o-algebras on @
and by (& xZ)*** the completion of # x# with respect to uxv. Tt i8
known that if u, » are two probability measures on @, then the mapping

(@, y)—>w+y

from G x@ into & is measurable with respect to # and (# x £)**" (sce [21],
p. 281). Thus the convolution of two probabiliby measures u,» can be
defined by the following formula:

pwv(B) = uxo({(@,9); o4y e BY) = [ u(B—y)»(dy).

icm

Zevo-one laws for Gaussian measures 161

Tt is well known that wwer is a (tight) probability measure and that the
convolution is associative and jointly continuous.

The following lemmas are modifications of Theorems 2.1 and 2.2,
1IT, in [17].

TimmmA 1.1, Let {y}uens (Mataea Do two families of probabilily measures
on G. Assume that {4 }eeq ts uniformly tight. Then there exists a family
{Botuen s Ta €G such that {pib,}eeq 0@ {(— @)y} ey are uniformly tight.

LisvA 1.2, L6t {thotaens (Pataca D6 two families of probability measures.
Assume that {uteeq and (v yeeq ore umiformly tight. Then {(v}eea 8
undformly Vight.

TE 4 is o probability meagure, then by the support of u we will mean
the sot O(u) of all @ € @ having the following property: for every open
neighbourhood U of @, u(U) is strictly positive. It is well known that O(u)
iy equal to the smallest closed subset D of G such that u(D) = 1. Also,
the following holds:

11 O(pnvy = Op)+C ().

We say that a probability measuwre w has no idempotent factors if
the equality w = ui, where 1 is an idempotent (that is A+1 = 1), implies
A = 0. The following lernma can be found in [21]:

LmvA 1.3, Let u be a probability measure. Assume that

Moo= kY

for a probability measure v. Then the closed subgroup generated by C(v)
i compact, and if A is the normed Haar measiure concentrated on this sub-
group, then

o= pxl.
In particular, u has no idempotent factors iff the equality
uo= [u*’l’

implies » = 0.
From this lemma it follows that a probubility measure 2 is an idempo-
tont iff A i the normed Ilaar measure coneentrated on a compact subgroup.
Tt g i o probubility measure on G and {4;; ¢ e I} is the family of‘ all
idempotont factors of g, then this family is directed by o partial ordering:
It is cagy to verify that there exists a unique maximal element 1 in this
family, 2 will be called the mamimal idempotent factor of w and can be

characterized by the following property: .
(1.2)  if g = usv for a probability measure », then Ow) € O(4).

Now, o family (1), is ealled a semigroup of probability measures
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i prps = gy, for every t, s> 0; it is called a continuous semigroup if

the mapping ¢—>y, is continnous. (u)., is called 0-continuons if lim g, =
Lot

It is known [20] that a semigroup (m)., I8 continuous if and only if

lim g, exists. If this limit exists, it is the 1(10111,11;3[ of this semigroup (hence
=0+
idempotent).

A probability measure x will be called embeddable if there exists a con-
tinuous semigroup (u);s, of probability measures such. that u, = u.

2. Embedding of Gaussian measures.
will denote a Fausdorff abelian group.

DErINITION 2.1. A probability measure x on G is called G(mmww
if there are probability measures v, v, such that

Throughout this section ¢

Plu Xu) = vy Xy,
that is,

(2.1) X ply™ (B) = v, xv,(H)
for every E e # X%, where y: G xG—G x @ is defined by

(2.2) p(#;9y) = (@+y,2—y).

As has been mentioned in the Preliminaries, the mappings
(@, y) >0ty

are measurable with respect to & and the completion of # x # with respect
to the product of arbitrary probability measures. Hence ™' (%) € (& x B)**
for every F e # x4, and so (2.1) makes gense.

The measures %, v, are uniquely determined by gu:

7i(d) = v xXu(4 X6) = uxp({@,y); 2+y e 4)) = prp(d),

for every 4 € %, 50 »; = uxu. Analogously, », = uxf, where i (B) =
for Be 4.

Observe also that

w(—B),

P(vy Xg) = (4 Xp),
that is,
(2.3) n X 93(vH(B)) = pxul{(e,y); (20, 2) e B})
for B € # x . This follows from the fact that
VB & (@ x By
hence there are 0, D € # x % such that
Gy (B)eD
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and
w1 Xy (DNC) = 0.
Then
P X ) (DNO) = pxp(p™ (DNO)) = v, X9y(D\O) =0
and,
yHO) € y™ ™ (B)) = (v2)"H(B) € (D).
Hence

poX p(() 7 D) = X ply ™ (D)) = vy X (D) = vy Xo(p7H(B)),

which egtablishes (2.3).

Since every probability measure on G is, by definition, tight, hence
r-rogular (see e.g. [227]), and & is completely regular, Definition 2.1 can
be stated equivalently :

» is Gaussian iff there are probability measures »;, v, such that

@4 [ [f@tyge—ypdnudy) = [ [f@)

for every f, ¢ € 0(@).

Remark 2.1. Definition 2.1, suggested by Bernstein’s character-
ization of Guussian distributions on the real line, has Deen used by Fré-
chet in the case of Banach. spaces [117] and by Gorvin in the cage of LCA
groups [9]. If G is a real vector space such that the continuous linear
functionals generate 4, then this definition is equivalent to the wusual
one.

LisMMA 2.1. Let py, py, be Gausstan measures on @G. Then uxu, and b,
jia are Gaussian. Morcover, the set of all Gaussian measures is closed in the
weak topology.

Tho proof of this lemma easily follows from the above equivalent
form Definition 2.1 and from the standard properties of convolution.

A #-meagurable mapping ¢: GG will be called bi-measurable if
o(4) € 4 whenever A € 4.

LuMMA 2.2. Let u be @ Gaussian measure on G. Asswme that 0(x) = 20
@8 one-to-one (md bi-measurable. Then u is concendrated on @ coset of the

9(9) v (o) v (dy)

subgroup @y = (’) 920G, If pds additionally symmetric, then it is concenira-

Nel)

ted on Gy and there ewists o unigque symmelric Gaussian Measure wy, such that

Bjapeyn = M
Proof. Let 0(x) = 22 for @ € ¢ Putting in (2.3) B = A x@, where
A e, we have .
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0(p)(4) = u({w; 22 e A}) = p*(uxp)(AXEF)
= p(r X ) (AXEF) = vy (4).

Since 0(G) = 2G € 4, 0(u) is concentrated on 2G. Thus »,%y, is concen-
trated on 2@, and hence

[ (26~ 2) v (dar) = 1,
which implies that

1, (2G —2) == 1 py—a.c.
Hence we infer that there exists an @, e @ such that », (2G' —w,) ==
By repeating this argument woe obtain g(2¢ —a;) = 1 for an @, €. Henco
vy = wxfi is concentrated on (26 —y) -+ (2G-}a,) = 26.
Now, let 1 be symmetrie. Let us denote y == v, == v,. Let us define

mp(d) = »(24), Adeg.

Since » is concentrated on 26, uy, is a symmetric probability measure.

From (2.5) and from the standard formula for a change of variables we
obtain

(2.5)

P(fie X ) (A X B) == p(»X») (24 x2B).
By (2.3) we have
P(v x») (24 X2B) = pu xpu({(@, y); (20, 2y) € 24 X2B}) = pxu(d xB)
for 4, B € 4. Hence we have
(2.6) P (s X age) = p Xty
which means that u,, is Gaussian. Moreover, (2.6) implies that

Hyp¥ gy = .
If y is another symmetric Gaussian measurc satisfying y#y = u, then also

YlyXy) = pXp.
By this formula along with (2.3) and (2.6) we obtain

p({o; 20 e AY) = p({o; 22 € A))

for all A € 4. ]?utting A = 2B, we obtain p,,(B) == y(B) for all Be 4.
Next, since pypy 1 symmetric and Gaussian, we have uy,xu, = ik, ==
hence p is concentrated on 26. By repeating this reagoning we

. . g
infer that u is concentrated on @, = (M2"G.
=0
In the general case, », is Gaussian and symmetric, and go it is concentra-
ted on G,. Bs‘f the previous arguments u is concentrated on a coset of G.
From this lemma we infer that every symmetric Gaussian measure
has the symmetric Gaussian “roots” of order 2", n =1 12y .

icm

Zero-ome laws for Gaussian measures 165

Observe also that if ¢ is a metrizable abelian group and if u is a Gaus-
gian measure on ¢, then u is concentrated on a c-compact metrizable
subgroup &, of G. By Urysohn’s theorem, G4 can be regarded as a Borel
gubset of the Hilbert cube. If ¢ has no non-zero elements of order two,
then, by Kuratowski’s theorem, the mapping z—22 is bi-measurable on
&, . Usging Lemma 2.2, we find that u is concentrated on a coset of a Borel
subgroup G, of @y. G, is a Borel gpace, ie. it is homeomorphic to a Borel
subget of the Hilbert cube. Moreover, #—2% is & Borel isomorphism of
@y. 80, wo hava the following

PRrRoOPOSIION 2.1. Let u be o Gaussian, measure on a melrizable abelian
group G. Asswme that G has no non-gero elements of order two. Then there
ewists an clement @, & G such that wa, is concentrated on a Borel subgroup
Gy of G whioch is & Borel space and has the property that x—2x is o Borel
automorphism of Gq.

LomMA 2.8. Let ()0, be a sequence of symmetric probability measures
on G. Assume that

Bo = fy gy = fgegy o= 1525
Let 3 be the mamimal idempotent factor of p. Assume that
Adey, == fy, %= 0,1, ...

Then there ewists @ umique continuous semigroup (v)q of symmetric prob-

ability measures such that vy = p, vy == py,. Moreover, lim v = A.
b0+

Prootf. Lot D be the set of all £ e (0, o) of the form
(2.7) t = [£]-F1/2m 41 /2% 4 ... -1/2",
where 0 < ny <y < ... < m, and n; are some positive integers, é=1, ..., I
k =0,1,... For ¢ of the form (2.7) define
Wy == g i W e K

Then wpw, = v, aDd Ay, = for all ¢, ¢ € D.
Now we show that the family {n;%e Dn (0,1} is uniformly tight.
Lot {by; m == 1,2, ...} bo an enumeration of D (0, 1] Obsgerve that

Pl fa¥V (1) 57
In vietuoe of Lemma 1.1 Ghere oxists o sequence (), &, € G such thatb
{”t,,,lz*mn}
is uniformly tight. Heneo {v, o ( ~@,)} is also uniformly tight and so is
{vtn} = {"’ln/ﬂ*mn*(—' mﬂ.)*'ptn/'.’.}'

By Lemma 1.2 we infer that {v(lutn)} i8 also uniformly tight.
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Next, let (t,; acd), t,e DN (0,1]he a net convergent to 0. Since
{n,; aed}, Pa-ty; @€ A} are uniformly fight, they are conditionally
compact. Let ¢ be an accumulation point of (")~ Liet (t;) be a subnet
of (t,) such that », 5 converges to & and Y-y, CONVErges to a probability
measure p. By the continuity of convoelution we have p o= exy. Now, let
(8) be a subnet of (4;) such that 2s; < 1. Then

Wﬁﬂ*vrﬂ == vtﬂ?
where 7, == t;—s, > 8. Observe that », , converges to A: for, it e, ig an
accumulation point of (, /,), then exsy == ¢, and heneo
By = 5:0*(3*7/) = (60*3)*'}’ == kg e,
which, in virtue of Lemma 1.3, the maximality of 2 and (1.2), gives
Cley) = O(A).
Hence &4 = A. On the other hand,

Vpgih = Vugi
hence ey = g,. Thus, we obtain ¢, = gpld == 1, and hence », o
weakly to 1.

Next, »,

CONVErges

. == VggHy,, Where ug = 1, —2s, > 0. If § is an accumulation
point of », o Ghen A = ex 4. Thus, in virtue of the symmetry of & and 4,
we obtain C(e) = 0(4), and 80 exAd = 1. Since Ax Vg, == Vg, WO DAVE Ak g = g,
which gives & = 2. ! g

Now, using Proposition 5.2 from [207, we infer that (*iep, I8 @ con-
tinuous semnigroup, where D, = DU{0}, » = A Since {v; te Dn (0, 17
is uniformly tight, by Proposition 5.3 in [20] we tind that there oxists
& unique continuous serigroup ("i)iso With the desired properties.

CoROLLARY 2.1. Let (u,) be a sequence of symmetric probability measures.
on G Assume that py, = p, B, = phy_y. If w has w0 idempotent
factors, then there emists a unique contimuous semigroup (m)so of symmetric
measures - such that vym = p,, n = 0,1,... Moreover, lim », = 0.

[N

PROPOSITION 2.2. Assume that @ has no non-zero elements of order two.
Let p be a symametric Gaussian measure on G. Let A be the maximal idempo-
tent factor of u. Then there exists o ULGUE CORLINMUOUS Semigroup of symmetric
Gaussian measures (v,)., such that vy = w. Moreover, lim v, == A,

0+
Proof. Leb v, be a symmetric Gaussian measure such that

Y1p¥Vyp = W
From (2.5) we have

Ma(A) = pru(24).
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Hence, if @ e 0(2), then wsw, = v,, and so Axvyy = vy, By induction,
we obtain vy sueh that vakvm = 01, By Lemma 2.3 we obtain
the conclusion.

COROLLARY 2.2. Assume that G has mo nmon-zero elements of order

two. Then every symmetric Goussian measire u is infinitely divisible.

3. Essential symmetry of Gaussian measures. Throughout this
geetion. ¢ denotes o metric abelian group having no non-zero clements
of order two.

Wa prove that overy Gaussian meagure on G is essentially symmetric,
i.e., I8 a translation of & symmetric Gaussisn meagure. The main tool used in
the proof of this fact iy the theory of probability operators. We gtart with
some definitions and basic facts concerning those operators.

By U0(@) wo will denote the space of all real-valued bounded fune-
tions defined on G which are uniformly continuous with respect to a
fixed tranglation-invariant metric on . By B(@) we will denote the space
of all veal-valued Dounded functions defined on G which are Borel measar-
able. :

Now, given a probability measure u on @, define T,: B(h—B(Q)
by the formula ’

(3.1)

Tf@) = [ flo-+y)uldy).
It is easy to see that if ', == T, then g = » and that T we = T,T,.
Now, let 0(») == 2o, 0 induces an operator f-=fo0 from B(G) into
B(@), where (fol)(x) == f(2x).If @ is such that 0 is a Borel automorphism
of @, then we can also define 67 (z) = #/2. 6~ induces, as above, an oper-
ator f-=fo 674 The operators induced on B(G) by 0, 0~ will be denoted by
the game symbols.
Limmma 3.1, Let u be a Gaussian measure on G. Assume that 6 is bi-
measwrable. Then
(3.2) T,0 == 0T 5,5 = 0(T,\T5.

Proof. By the change of variables formula we have

[ 7)) 0w (ay) = [ fo 0(y) u(dy)

for every fe B(@). From (2.3) we infer that 0(u) = w*ji. Thus, by (3.1),
we oblain

(T,00) (@) = [ f(20+4-29) p(dy) = [ F(20+1)0(u)(dy)
= [ f(@0+y)(proxg) (dy) = (0T 003f) (@),

‘which. completies the proof.
Tumormm 8.1. Assume that G s a Borel space and that 0 is a Borel
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isomorphism. of G. Let u be o Gaussian measure on G without {dempoient
Jactors. Then there exists an xy € G such that

po= ()1 *0,

where (uxfi) , 18 the symmetric Gaussion square root of usx.

Proof. Let p, = (usf)m be the symmetric Gaussian root of uiji
of order 2™. By Proposition 2.2, lim u,, = 0.

Now, gince uj is Gaussian, we obtain from (2.4) applied to f, g € B(®),

= [ [ flo+o,)g(@+as) (uxa) (deoy) (usa) (desy)

;fff (@+ 1) g (@ +25) pi* (deoy) i3 (Ao
= [ [ Flo+ o1+ 20) g (04 0, — 0) oy (dy) o (o)

-qu;f(w) uw.q

= Ty, 9(0),
where
= [ 1 +a) gy~ o) (dwy).
Analogously
T/Anplf(m)Tut,lllg(w) = T,uqq(m) -
Hence
Tp M./AfT[M\[lg) IAI ) == T,Tli(p
= Tu#u(p T ( ,qu)
= T;(Tpnylfmmulg) .
Putting f = ¢, we obtain
(33) Ty (Tuf)") = Tal(Tpup ') -
Now, by Lemma 3.1,
. Ty 6 = 0T yuzyety
(3.4) T,6 = 0T 2.7,
150 = 01%a,,.

Using (3.3) and (3.4), we have for f & B(G)
Toy((TuufF) = L (T 07 F)F) = 2, (0 (Tpizen 675
= 0T uua{( Ly 67 F ) == 6T as((T y0a 672 f)Y
= 6T u;a‘#( T,,;S,”ﬂ ') ) = OTM*;”((TI‘“‘; 0-—1f)2)
= Tl‘( Tﬂf)z)'
So, we have

(3.5) (T fY) = T3(T.87),
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for f e B(@). Tence,
formula
(3.6) VT, f=T.f

defines on (T, (the range of T, ) & linear isometry V from a subspace
of Ly () mtoL, (@)- .
We extend V to Ly(u,). First of all, observe that

0V2T(,M',;).2 = 0L sy = 1,0 = VTMIG -——:LV@T

T,f=0 pr-ae, then T,f =0 g-a.e. Thus, the

T (mrmyrd
Hence

OVAf = VOf for feR(Tume).
Hence, if b = T, f for u certain f e B(@), then
(3.7) VI Je = VI, f == VI, 0(07'f) = VOI ,5m 67 f
= gV* T,W).z@ Y = 00T, 07 f
= 0T 2672, f = 0T 02 6.
Thus, if we show that the formula
VT h =0Tw6"'h  for heB(@)

defines a linear mapping V' on a subsgpace R(Ty,) of Ly(my) into Ly(f),
then (3.7) shows that V' is an extension of V. This extensgion will be denoted.
in the sequel by the same symbol V.

Hy,

More gencrally, we will show that an extension of V to U 32(1' )
can be defined by the following formula:

(3.8) Ve, h = 0”‘11’#,2%_10‘"*% for heB(G).
Let b € B(G). From (3.4) and (3.5) we have
To((0T 2 07 1)) == 0T 503, (T 267 R)?)

= 0T,7~2,,,,,,1((T,,1.,‘0“1h)2)

= Tuapa((Luwz 077 B)") = Ty (T, B).
By induetion, .
(3.9) 1’;((0"”11’,‘_2"~1 g~ RY) = T ((T,,nh) ),
for every h e B(Q) and n = 1,2, ... Moreover, if

h = ’T/‘nf" = 'T"n-l-lf’- e = T"n+mf”'
for some f, ..., f,, € B(&) and some positive integers n, m, then
Tl‘n+k—1f7""“1 = ,,HMT,,Mkf,a_l == l’lun_mf,ﬂ for 1<k m.

Thus
(8.10) 9 =fo— T, pfo-r € Ker Ty, .
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From (3.9) and. (3.10) we obtain.
(311) 0"+70_1TF.2¢1+75—-1 0—17,-‘k+1f]n — 0n+7c—1T”mn‘Hﬂw10-nvln»|-117”n’l-hfk’—1
p-a.e. Using (3.4), we obbain

(3.12) - gkt i — o4l 2 f—n-khl

gl 7 (uey
In virtue of (3.12) equality (8.11) can be written in the form

-k 1 ~n—l+1 |- T e e
ot T a2t ERY/ b+ f = (E I.T Wl Al Iﬂ.ww),zn+lc-2 [/ I“Jf‘/a«-l

n+lc—1 — =T} 1 e YUAR2 1 e Qe Jt o 2
== T(u‘sll)*znh‘ To-2 0 fﬂ_ 0 1",2,7,4.7,;_39 d flﬂ—- 1

g-a.e. for 1< k < m. Hence

(3'13) On-—lTﬂ‘znwl 0—-n+1 fo — o'nnl--m---111”,“2711_\_7'7‘“‘Z 0~n~7'lz»l~1fm

p a.e., which means that (3.8) defines a linear mapping on the subspace
U (T, )ofL (1) Into Ly (). Putting # = 1 in (3.13), we sce that this

ma,ppmg is an extension of the mapping V defined by (3. 6). Moreover,
(3.9) shows that this extension is also an isometry defined on a subspace
of Ly(p;) into L, (g).

Next, observe that if & e UC(@), then Ty, b tends uniformly to h
as n—oo, by the weak convergence of u, to 0 Hence R(Ty,) eonmms

a dense subset of UC (). Since & is a metric space and 118 regular, U.%(T )

is dense in Ly, (u,). Thus, we can extend V to Ly (uy). This extcmlon, denote(l
in the sequel by the same symbol, is also an isometry.

NOW we will show that V is multiplicative on U:%(T ) Let B,
hye U.@(T ,,)- Then "~

by =T,.1;

for an integer n’ and some f, e B(@), ¢ =1, 2. As in the first part of the
proof, we obtain

hyhy = Lonr 0@y
where
= [ F1(y + 2 fa(Y — 82) pryr ., (A5).
Hence

V(luha) = 67T o 6.
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On the other hand, in o similar way

(Vhy) () (Vh) (@)
(On-—lT ,,m' 10 ' l—lf (’l (on IT '2” 10—71 +1f)(’v)

(i)™ ~H(dens) p*™" (s
= 0" f ” (07" F) (@ a0y -F ) (07 f) (w4 wl—wz)(u*ﬁ)ﬂ”'“l(dmg)} w (dwy)

w QY T,,*"’-””{ (m),

where
w(y) = [ (071 (-2 (07 Fa) (y — ) (s ™" = (dve)
= 07 [ oy + @) faly — @2 i (A2) = 67" ().

Heneo

V{fhg) = (Vhy)(V ko)
for h; = U.”/?(l,,“) b1, 2.
My ]

Noexh, we show that
{(3.14) Vik| = |Vh] for hely(u).

This part of the proof seems to be known; it is included for the sake of
completeness.

We first show (3.14) for I e Uﬂ(l’“ Let b = U#(T,,). Then 1P
Rl =l

< ¢ Lot w,(t) be a sequence of polynomialy convergent uniformly on
[0, ¢] to Vi. Then w, (h*)—[h| in La(,ul) Also 1w, (VA )| Vh| in Ly (7).

Since V is multiplicative on the algebra U!%(.l’ﬂ ), we have

T,
Va0, (B3) == 10, (VH2) == wu{ (VRY).
The (,[(‘H'll‘(‘d conclugion now follows from the continuity of V.

Sinee U%(’l’ ) % denso in La(uy), wo obbain (3.14). In particular,

fpenl

V iy positive.
Tinally, from Theorem 2 in [14] it follows that V" is pointwise induced,
i.e,, there is a (measure preserving) transformation %: (@, B) (G, 1)

suoh that
(3.15) (V) (@) = gk (@)

6 — Studla Mathematica 69.2
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for every g e€L,(p,). Denote

(L,f) (@) = fle+y), for feB(@).
Then . ’
BVT,)@) = BTN = LI
s VT Lyf)(m) (VL, T, f)(®),
for f eC (@) 50 L, Vh = VL, for he A(T ) 0 O(G). Hence, in virtuo of
(83.18) we obtain :
(VTﬂlf)(?/) = (Lu V-Tulf)(o) = (VTulLyf) (0) = /11 :uf)(h(o))
= (L, T,,lf)(lc (9))
= TEOHY) = T N0 for Fe0E)
where %, = k(O) €@. Since
VT, f = T.f,

PN

we obtain

T T

# = Lppemy e

Thus

Bo= @ = (UxE);%* Lo,
which completes the proof.

COROLLARY 3.1. Let u be a Gaussian measuw on G without zdempotem
Jactors. Then there ewisis an element w, € G such that

B= ()0,
»w»heﬂ' (,u*,,¢)1,2 is the symmemc Gaussian square root of pap.

PROOF. By Proposition 2.1 we infer that there exists an wl €@ suclh
that g+, is concentrated on a Borel subgroup &, of & which is & Borel
space and which has the property that z—2x is a Borel igomorphism of
G,. Clearly, usz, restricted to &, is a Gaussian measure on &, without

idempotent factors. By Theorem 3.1 we infer that there exigts an olumont
@y € @, such that

ATy = (pefE)yo* By,
Thus, we have ‘ '

M= () % Toy
Whele @y == ,— 2y, Which completes the proof.

In the case of vector spaces we can prove an analogue of Corollary 3.1
without using Lemma 2.2 and under slightly defelent assumptlons,

i
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COROLLARY 3.2. Let & be a real vector space which is a Borel spacf;
Assume that (@, y)—x —y 8 measuiable with réspect to B x B and & and that
the mapping a—>uz of R into G is continuous for every. fived o e@. Let
be a Gaussian measure on &. Then there exists an x, € G such that

fo== (i)l
where (uwji)y, 18 the symmeiric Gaussion square root of s

Proot. Observe that in the proof of Theorem 3.1 we have only used the
Borel measurability of the mappings

(m P~>w-by  and  @-2tz, mos= L1, 2, ...

and, tho fact that u, converges weakly to zero, where p, is the symmetrie
Gaussian root of uxii of order 2" However, the Borel measurability of
(@, ¥)—>z-+y and @-2" is a consequence of the Borel measurability of
(@, y)—>@w—1y; hence, by Kuratowski’s theorem, z—>x[2™ is also Borel
measurable. Turther, the fact that u, converges weakly to zero is a con-
sequence of the continuity of e—>aw as well as (2.5) and the application of the
change of variables formula
[£(@) o) = [ f(@[2") (uwit) (d)—>F(0),

tor every f & 0(G). This completes the proof of the corollary.

'4. The zero-one law. Throughout this seetion ¢ will denote a ¥ausdorft
abelian. group, unless stated otherwise.

DErrNTiioN 4.1, Let ug, gy be two probability measures on &. uy,
us.axe called associated probability measures’ 1[ there exist probablhty
meagures vy, ¥, sueh that ! :
(4.1) . Py X phe) == 93 ><7’g‘-

TavMA 401, Asswme that o-»2% &8 bi-measurable and one-lo-one. If
Uuy fog O7e associuied and symmetric, then . = wy and, by (4.1), they are
Gaussian, If py, uy are associaled and are translations of some symmetric
measures, thow ., ty are Goussian and wy is o translation of w,.

Proof. Asume that pg, gy are symmoelrie probability measures
sutistying (4.1). Then, in the same way as (2.3), we ohtain

(4.2) L R X ) = (g ).
Sinee vy = pykfiyy vy = Hpkily = flakilyy WO have,

Py == py ==y wE Py
By (4.1) we obtain
Cpa({m; 2w e AY) = vxva(4),
pa({m; 20 € A}) = vywwy(A);
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80
Ua(A) = vypvy(24) = wxTe(24) = py(4).

Nexh, if py == uisdy, pa= pyiy, Where uy, ug arc symmetric, then by (4.1)
and the change of variables formula it follows that

’ 4
’/’(M; X fg) == vy Xy

I ' . .
where v, = vy#( — @] — @) andl vy == vyx(— @y + &), Thus gy, g, 9re associ-
0 T ! ’
ated and symmetric; hence they are Gaussian and g, = gy, and so

fhy = k(g —2y).

ProrosimioN 4.1. Let @ be o metric group having no non-gero elemenis
of order two. If py, pa are Gaussian measures on G withowt idempotent factors
and satisfying (4.1), then there exists an clement x, € G such that

fhy == oy .

Proof. This follows immediately from Lemma 4.1 and from Corollary
3.1. 2
PRrROPOSITION 4.2. Let G be a real wvector space which is & Borel space.
Assume that the mapping (z, y)-+x —y 48 B X B measwrable and that a—ap
is continuous for every fixved e G. If u,, ps are two Gaussian measures
satisfying (4.1), then u, = u.xx, for an element x, € G,

Proof. Thig is an immediate consequence of Corollary 3.2 and Lemmi
4.1.

LemmA 4.2. Let G be a countable abelian group endowed with the discrete
topology. Let u be o Gaussian measure on @. If u({0}) > 0, then w is the
normed Haar measure concenirated on a finite subgroup I of G. Moreover,
I does not contain non-zero elements of order two.

Proof. The arguments needed to prove the first part of this lemma ave
standard and can be found for example, in [17], p. 101, Remark 2; for
a detailed proof, see [6], Lemma 2.

We prove the last part. Let I = {w; u({z}) > 0}. From the first
part of the lemma, I is a finite subgroup of G and w is the normed Iaar
measuare concentrated on 1. In particular; p is symmetric. Since g is Gaus-
gian (and symmetric), its characteristic function g satisties the equation
(4.3)

Blr+yax—y) = wlx)%a)?  for  g,yed,

where G denotes the dual group of G.- p s an idempotent, and hence
a(y) =0 or u(y) =1. Since

w(y) = [ y(@)u(de) = [ y(@)uds),
I

icm
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w(y) = 1 it y(I) = {1}, that i, w(y) =1 iff

yed(@ 1) = {y eé‘; v(@) = 1 for z e I}.

Thus, it we denote H = A (@, I)
(see 2.1.3 in [19]) we obtain

I = A(G, H).

By (4.3) we seo that M iy closed under divission by two:

» then, by the duality between annihilators

2veH=>yeH,

i?[(m(.ﬂ,e G[H does not econtain any non-zero element of order 2. By the
duality Detween subgroups and quotient groups (see 2.1 in [19]) we infer
that I = A(G, H) and (G/H) are isomorphically homeomorphie. Since
fintbe groups arve self-dual, I is isomorphic to é/ﬂ, which completes the
proof.

TaworrM 4.1. Let G be o Hausdorff abelian group such thoat z—20 ds
one-to-ong and bi-measurable. Assume that every Gaussian measure on QG
withowt idempotent factors is a translation of a symmelric measure. Let p

be a Gaussian measure withowt idempotent factors. Then for every ®B*-
measurable subgroup B of G we have

I =0 or () =1,

Proof. It ig standard that it suffices to prove the theorem for o-com-
Dact subgroups of G. Indeed, if F e #* iy a subgroup of ¢ and u(F) > 0,
then there exists o compact subset K = I such thatb u(K) > 0. Then the
subgroup P, generated by K is o-compact (hence Borel), u(F,) > 0,
and 'y < . Thus, if we prove that u(F) = 1, then also u(#) = 1. Hence,
we can assume without loss of generality that w(F)> 0 and that I is
a o-compact (hence Borel) subgroup of @.

Now, let 7 be the subgroup of @ generated by the set

{we@; u(F-+m) >0},
Bince thero ave wt mowst countably many cosets of I having positive measu-
1o p, I consists of countably muny cosots of ¥ and therefore
Hen.
By the definition of 77 we have

w4a) =0 it w¢l.

Henco
0 < u(F) < u() < pl{e; 20 € B}) = vyxv,(H)
= [ B (0 —a) u*s (do)
= p(@)p**(H) = ... = (u(B),
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which gives u(B) = 1. Thus, x restricted to ¥ is Gaussian. Let = be the
canonical homomorphism of E into B/F (with the diserete topology).
Since E|F is countable, = is Borel measurable. It is easy to see thab m(u)
is a Gaussian measure on B/F. By Lemma 4.2 n(u) is the normed Haar
measure concentrated on a finite subgroup I which does not contain
non-zero elements of order two. Clearly, we can assume that H/F = I,
and henee T is closed (in ) under division by 2:
well; 26el} =F

Agsume that card B/F > 1. Then B/F is isomorphic to the direct sum
of cyclic groups
BIF = Z(k)® ... BZ (L),
where Z (k;) denotes the cyclic group of order k;, k; > 1,0 =1,
Fy=aYZ(k)D... @Z(kn)).

Then F, is a Borel subgroup of @, B/F = Z(k,), m,(u) is the Haar measure
on Z(k,), where m, is the canonical homomorphism. of H intq B[R, and

(4.4) 0< p(Fy) <l

Thus, in order to prove our theorem it suffices to show that (4.4) leads
to a contradiction. Hence we can assume that B/F = Z(k), k > 1.
Now, since =(u) is the Haar measure on E/F, we have

w(F+a) = u(l) =1k,

vony M Lot

for every « € E. Hence

vo(F+0) = usfi(F+0) = [w(F—o+y)uldy) = p(F),
B
for every « ¢ H. Next, let A < F, u, v € E. Since F is closed under division
by 2 (in H), we have
oty el+u,
s—yeF—u-—20.

vel—v,
yeF4uto,
Hence
pxp({(@,y) e BxB; ot+yed+u, s—y e F—u—20})
= 9(4 +u)ry(F—u—20) = v (A u)pu(F).
On the other hand,
pxp({(w,y) e B xE; oty edA+it, z—y e F—u—20})
= pxpl{(®,9) € (F—v) X(F+u+0); o+yed+u)

= fﬂ(A + U4 — ) p (de) .

F—v

icm
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Thus, we obtain

(4.5) vi(A ) = 1/;»(1?) [ 0+ u—o) u(dw),

F—a i
for A ¥, u,vel Now, by ulp we will denote the restriction of u to B,
Be 4. L(xt % e INF Dbe such that su ¢ F for 0 < i < k. Let us denote

o= el Ty, 1 0,1,...,2k.
w i o DProbability measure concentrated on I +1u. Hence, if we define
= (— Tu)xuy,

then p; is a probability meagure concentrated on I 1=0,..,2E We

will show that g, uy, ..., g, are associated Gaussmn measures w1thout
idempotent factors. By (4 5) we obbain

pop(A ) =1[u(E) [ p(A+Tu—a)p(do)

Inu

= I f(y*('n—-«l)’w)(x’l——

Iy

(@ —n0)) u(d)

=k f (1 (m —T)w) (A4 — ) (o — ) (dy)

_ =5 () (e ) (A.) for 0<Ig<n <2k,
(4.6) (A W) = pwp(A+T) = p(F) ¥, (4)

for 0 <2k and 4 e Eng. Analogously we obtain

(4.7) va(d 1) = paE(A+ ) = p(F) pouii,(4)

for 0 <I<n< 2k and 4 e Fng.
Now, let 4 < B, A € 4. Then, for fixed n, 0
N lo—1

*‘:U-Ai,

drmn,

<n<k

where A, == AN(F+iu). By (4.6) we obtain

() = poxp((Ay— i) +-iu) = u(T) (1, *Mn)(Ar‘W)

= (I f P (A =0~ ) i ()
= [ (A=), (da)
N
== g (pinu)(d;)  for w=0,...,k,
and go
nopl—1
pia(d) = 3 prp(dy) = porprnn(A).

A=n
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Thus
(4.8) wkp = pox(penu)  for  mo=0,...,k.

By (4.8) we infer that if 4, has an idempotent factor 1, then wxu has tho
sime idempotent factor A Flence p*3#7 has the same idempotont factor A,
This means that
W*‘u*s*‘u‘ = M*S*/I
for every z e C(4). Since, by (2.3)
p(A) = p*E(24),
" wé have’ '
wrp(d) = 204 pwi(24) = poag(24) = u(d) for  we 0(2).

Thus, x has the same idempotent factor 1. By the assumption, A == 0,
nence u, has no idempotent factors, n == 0, ..., k.
Next, observe that for #,y e F and 0<4,I<<k
w+yel+(j-+1)u,
o—y e+ (j—T)u.

¢ el +ju,
yePF+lu,

Hence, for 4, B < we have

pxpl{(@, y); o+y e A+ (j+Du, o—y e B+(j—1u})
= (o =) X (e (— 1) (97 (4 % B))
= (T (g X )~ (4 x B)).
On the other hand, by (4.6) and (4.7) we obtain
wxul{(@,9); e+y e A+(j+Du, v—y e B+ (j—)u})
= a4 +(§ 1) w) unig( B + (§ — 1) u)
= ()P sy pa(A) iy (B)
Thus, we have
s X fa(y™ (A X B)) = i g (A) yuin(B),
forj,1 =0,1,...,%, and A, B e Fn7%. Hence 4y oy are associated Gaus-
sian measures on F without idempotent factors for j, I =0,1,..., k.
By Lemma 4.1 we infer that
Hi = Dyxlhy
Since, by (4.6),

for some w8, ;e F, i =1,2,..., k.

Ha—p¥ iy = Bpepo  for 0 a<<I<E,

icm
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we have
(@p @)% " = i pug?.
As before, wo see that uj® has no idempotent factors, and hence
By, =2 for 0g<na<<I<h.
To(w @)% iy = pg.
Sinee uy hag no idempotent factors, wo obtain

T(uw-2,) = 0. _
vLet o == w--2;. Then o' e INF, u’ generates a cyelic group of .order
I and oL

fw'; 1=0,1,...,k—1}nT = 0.
Hence

B =Z(k)®F.

Moreover, .
P iy = depieu |,
and hence

po= Ay g,

where A, is the normed Haar meagure concentrated on Z = {lu'; 1=0,
1, ..., k—1}. This contradiets the assumption that ux has no idempotent
factors and. completes the proof of the theorem. ‘

COROLLARY 4.1. Let G be an LCA group such that x—>2x is an auto-
morphism. If w is a Gaussian measure on G without idempotent: factors,
then o -

u(l) =0 or u(l) =1

Jor every B"-measurable subgroup I of G-

Proof., This follows immediately from Theorem 4.1 and the fact
that overy Gaussian meagure on such g group is a translation of a symmetric
moayure (see [137).

JOROLLARY 4.2. Let G be a meiric abelian group having no non-zero
dlements of order two. Lot u be a Gaussian measure on G without idempotent
factors. If ' is a #"-measurable subgroup of G, then u(F) = 0 or u(F) = 1.

Proof. This is a direct consequence of Theorem 4.1 and Corollary.3.1.

Remark 4.1, If ¢ is a complete separable locally convex space,
then this corollary can be proved without using Corollary 3.1. Indeed,
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every Gaussian measure y on G ig then of the form @exu,, where u, ig
symmetric and #, is the expectation of u (sce [8]). These facts are also true
if @'is a separable Orlicz space (non-necessarily locally convex) (see [5]).

TeEEOREM 4.2. Let G be a metric abelian group. Let u be a Qaussian
measure such that uxg is embeddable into a 0-continuous semigroup of Gaus-
sian measures. Let F' be o B"-measurable subgroup of G. Then

p(l) =0 or pl)=1.

Proof. As in the proof of Theorem 4.1, we can agsume that I ig
o-compact. We can also assume that u iy gymmetric (see [10]). Ifence,
throughout the remaining part of the proof we assume that  is & symmotric
Gaussian measure which is embedded into a 0-continuous semigroup (v)s,
of symmetric Gaussian measures and that F is a o-compact subgroup
of @ such that u(#F) > 0. From the first part of the proof of Theorom 4.1
we infer that

E={re@; ulf+a) >0}

is & o-compact subgroup of G such that B/F = I ig finite and has no non-
zero elements of order two. Moreover, w(u) is the normed Haar measure
on I, where w iy the canonical homomorphism of B into B/F. Sinco I
does not contain non-zero elements of order two, F' is closed (in ) under
division by 2, that is

wel; 20eF} =T.

On the other hand,|@, = {»; 2o = 0} i3 a closed. subgroup of @, and hence
GG, is Hausdorff. Hence @/@, is metrizable. Let s,: G—->G/@, be the
canonical homomorphism of & into @/@,. Since =, is continuous and F
is o-compact, m,(H) is also o-compact (he}lce Borel) in G/G,. Hence we
infer that 7,(p) is concentrated on u, (). Next, if « ¢ B and o (@) € 7y (F),
then 2(x—f) =0 for an element feF. Since » ¢ ¥, »—f ¢ B. Since F'
i closed (in ) under division by 2,
a—fel.

Thus

{z € B; ny(®) € my(F)} = F.
Hence

WE) = ul{o € B mo(a) & m(BV}) = oy o () = iy () ()

because 7y (F) is also o-compact in G/@,, and hence Borel measturable.

Thus, m,(#) is a Gaussian measure on G/G,, GG, is a metric group
having no non-zero eletnents of order 2 and my(F) is a Borel subgroup
of G|@, with the property

(4.9) 10 () (7)) = ().
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Morcover, my(u) is embedded into a 0-continuwous semigroup of symmetric
Gaussian measures, namely into (my(%))s,. By Proposition 2.2, ot(u)
hag no idempotent factors. By Corollary 4.2 we obtain s (1) (o () = 1,
which, in virtue of (4.9), completes the proof. '

Now, let us recall Parthasarathy’s definition of Gaussian measures
on LOA groups (see [17], IV).

Lot @ be a second countable LOA. group. A probability measure u
is callod. Gaussion in the sense of Parthasarathy (P-Gaussiam, briefly) if
its characteristio function g is of the form

B(y) = y(m)oxp(—p(y), €6,

whare a, € ¢ and @: G—R is 2 non-negative continuous funetion satistying

(4.10) Plr-+9)+o(x—9) =200 +20(), gz, 7eb.

Trvery P-Gaussian measure is Gaussian in our sense and, if it is symmetric
(that i, if @y = 0), it is embeddable into a unique 0-continuous semigroup
of symmetric Gausgian measures. It is well known that no P-Gaussian
measure has any idempotent factors. Thus, from Theorem 4.2 we obtain

COROLLARY 4.3. Let G be a second countable LOA. group. Let u be a Gaus*
sian measure in the sense of Parthasarathy. If I is a B-measurable sub-
group of G, then

() =0 or u(F) =1.

Remark 4.2. It iz well known that cvery symmetric P-Gaussian
meagure u is concentrated on & connected subgroup of G. Thus, we can
agsume that @ is connected and that the support of a Gaussian measure
u is equal to @. Now, if 4 is absolutely continuous with respect to the Eaar
measgure, then every Borel subgroup of & having positive measure u must
be open: this is an immediate consequence of (20.17) in [12]. Since &
is connoected, every non-cmpty open subgroup of @ is equal to G.

owever, it iy well known that thero are Gaussian measures which
are gingular with respect to the Iaar measure (see [17], IV). In this situ-
ation we flo not know any divect proof of Corollary 4.3.

In the end of this gection we prove that o certain version of the zero-one
law for Gausgian meagares on measurable groups can be derived from the
proof of Theorem 4.1. First of all, observe that in the definition of a Gaus-
gian monsure we have only used the measurability of the mappings

(@,y) =0ty

(with respect to the appriopriate o-fields). This fact provides a motiv-
ation for introducing the following definition.:
Dmprvrrzon 4.2, Lot @ be an abelian group and let # be a o-field
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of subsets of G. (G, #) is called a measurable group (m.g.) if the mapping
(2, y)»&—y is measurable with regpect to # and the product o-field
B XB.

The importance of this notion follows from. the fact that many fre-

quently occurring vector gpaces with the nsual o-fields arve of this type;
e.g., the space D[0, 1] with the Borel o-field (with respect to the Skorohod
topology) (see [2]) or an axbitrary vector space with the ¢-field generatod
by a family of linear functionals.

It (@, &) is & m.g.,, wo can define the convolution of probuhility
meagures and we can congider Goussian measures on (¢, #) in the sense
of Definition 2.1. It is eagy to see that equality (2.8) as well as Liemmsa 2.2
and Lemma 4.1 remain true for Gaussian measures defined on a m.g.

"Now, it iy easily seen that in the proof of Theorem 4.1 we have only
used the fact that a Gaussian measure u has the property

ke = p=>g =0

and (roughly speaking) the possibility of using Lemma 4.2. The latter fact
can be established exactly in the same way as in the firgt part of the proof
of Theorem 4.1, if F' is a #-measurable subgroup of a m.g. (¢, 4). However,
if 7 is only #"-measurable, the previous arguments cannot be applied
and the situation becomes more complicated. In the proof of the next
theorem we show that we can again ensure the possibility of using
Lemma 4.2. Some ideas used in this proof are similar to those used in the
first part of Theorem 4.1 and in Lemma 1 in [6]. However, for the sake
of clearity and convenience, we give a complete proof.

THEOREM 4.3. Let (G, #) be a m.g. such that x—2x is one-to-one and
bi-measurable. Assume that every Goussion measure v satisfying

(4.11) . vi0 = y=>p =0

s a translation of o symmelric measure. Let u be o Gaussian measure sati-
sfying (4.11). If F is a B*-measurable subgroup of G, then

w(@) =0 or p(F) =1.

Proof. Let y be a Gaugsian moasure on (&, #) sabisfying (4.11).
We can assume without loss of generality that s is symmetaie. Lot 7 be
#*-measurable subgroup of G such that u (&) > 0. Liet yypn be the symme-
tric Gaussian root of order 2 of u. We show that ' e #*14 and that gy, (F)
= 1. Since ujf, = u, this will imply that p(F) = 1.

First of all, we show that for every w e &, o & #*112 and that p,,(F)
> 0. To show this, let ¢, D € & be such that

0sF<sD and w(D\CO) =0,
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Bineo p == gk, WO have

(4.12) J 11 (DNO) = ) g () = 0.
Lt
: Iy == {o; I ++o e By,
By the symmetry of uy, and (4.12) we infer that F, e #“/2 and that
e () = 1. Binco I'-|- By, 2 By, wo have F--F, € #*i2 and gy (B4 Fy)
¢ Lo We thus have two possibilities: 1o < B - By and- then -2 e B2
or - is dinjoind from J'-J- 1y, which implies that ¥ - is & null set, and
heneo B a & g6 Wo have thus proved that F--o e 42 for every

@ & . Moveover, 8inee pykp, (F) = 0, there exists an element @,e@
gueh thatb

(4.13) (B -1-wg) > 0.
Now, let ug denoto
By = {oy Ptmy—ax e @y, B, = {m; F—g,+n B},

By the arguments wo have just used and by the symmetry of uy, we
infor thuat Fy, By e #n and that uy,(Fy) == uy,(F;) = 1. Hence, in
virtue of (4.13), there existy an @, € & such that

Fofewg—my € B, F—gy-+n, € B,
Paga (T g =) == paygy (B — 20 m,) > 0.

Now, 1ot 2y, 2, € G, Since I'-|-z, € B2, 4 == 1, 2, there exist O, D; e &
such-that ¢, € F'4-2, = Dy and u,), (DNC;) = 0, 4 = 1, 2. Since

(4.10) Hua(])f\at) e ‘l’l‘,l//l*l'tl‘/'l.(Di\O'i)
== gy X ({(0, 9); 2 +y € DNOY)
=2 g ><,u1,4({(m, y); #—y € -Di\oi}) ’

(4.14)

wo obtain _
@18) {0, 1); ooky e B ba} e (BxAysnn, i =1,2.
Moveover, in virtue of (2.1)
0 == gy X pupa{{(@, 9 01y € DyNOyy @ —y € Do}
gy X papg((DyNOy) Xl-nﬂ)
g X faga{ Dy X (DO
§O
(4.17) P(fhagy X ,"‘J/w)((lﬂ“|‘“ 2y) X (&4 zﬂ)) st (g X ) (O X Cy)
== piygy X piage (01 X Og)
= lhyja X‘ML/z((F']‘%) X (—F‘i‘za))-
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Next, we have
{w,9); 2+y eF} = {(@,9); 2-+y & (T +y— )+ (F —2y-+2,)}
2 (F+ag— o) X (F—2g+2,);
hence from (4.14), (4.15) and from the first part of (4.16) (applied to 2, == 0)
we obtain
P (B = pyp(0y) = Hgat e (Cr) == gy XML/:}({(W: ¥); ey e 01})
= X ({2, 9); @ +y €7
= gy (T 00— 24) iy (F — @y @) > 0.
By repeating this reasoning we infer that F-+me #%s for every
» € @, and that u,,(F) > 0. Analogously, ¥ --o e 41, for every @ € @, and
puags (1) > 0.
Now, let B be the subgroup of G generated by the set
_ {5 wye(F+a) >0},
Then F consists of countably many cosets of ¥, and hence

B e gMlanBilsnghils,
Clearly

(4.18) pyg(B—a) =0 if
It is not difficult to see that also
(4.19)

z¢H.

#1/4(1’7—03) =pp(B—w) =0 it a¢l.

Mcreover, it can be checked, by arguments similar to those used above,
that B € #“12 implies 1/2F € #vs, and then

/‘1/8(1/2 B) = By (B).
Since ¥ < 1/2 B, from (4.18), (4.19) and the above equality we obtain

0 < s () < piaps (L2 B) = puypo(B) = [ poyyo (B —a1) il ()

= s (B) W (B) = [y (B)* = ... = (e ()"
Henqe

1 = pyy(B) = (12 B) = oy (B) = (MM(E))z = sy ().

Hence we infer that p,, is a Gaussian measure on a m.g. (¥, Ena).
Moreover, F+xe B4 for every o €@, and py(F) > 0. Let = be the
canonical homomorphism from % into /F. In virtue of (4.17) we gee that
7 (py,) 18 & Gaussian measure on F/F endowed with the o-field of all sub-
sets. Thus, we can apply Lemma 4.2 to m(u,,). Finally, it remains to
observe that the arguments used in the second part of the proof of Theorem
4.1 can be applied without any change. This completes the proof.
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5. Gausgsian. processes with values in LCA groups. Throughout this
section ¢ will denoto an LOA group satistying the second countability
axionm and such that 26 = 6.

Lot 1" be a set. By (¢, &%) wo will denote the Cartesian product
of I' copies of G with the produet o-field. ¥ T = {1, ..., n}, we write
(G, g™ it T iy eountable, we write (%, #*). Now, let X be a subgroup
of ¢F with coordinntowise addition. By #(X) wo will denote the o-field
induced on X by @7, that is, the o-field gencrated by the sets of the form

{w GX; <(I)(t1), AR w(tlc»’ EB};

whore &, ..., el and B e @’ Lot us define, for t,,1,,
natural projection m . from X into G*:

s i) ’*‘:(m(ti), ooy BB

Let u bo o probability measure on (X, #(X)). By g, ..,y We will denote
the probability measure on (G, #%) induced by u and .. 4 L6is easy
to verify that (X, @(X)) is & m.g. and that g is a Gaussian measure on
(A, #(X)) it and only ifl gy . 4, i & Guussian measure on (6, 5”) for every
By oony B & T TG can also be checked that w satisties the condition

(8.1)

whenesver p, satisfios this condition on (&, #) for every t € G, that is, if
w has no idempotont factors. I X == %, then (5.1) i equivalent to the
faet that g hay no idexpotent factors for any ¢ e T

Now, we arc in o position to state and prove the zero-one law for
Gaussinn moengures on (6%, #°).

THROREM B.1. Let u be o Gaussion measure on (G°, ). Assume
that p, has no idempotent factors for any t e L. If F is o (B>=)-measurable
subgroup of G%, then

oy by €T, the

) =0 or u(F) ==

Proof. By tho provious remarks wo infer that x satisfies (5.1). How-
aver, G with the product topology is a metrizable topologically complete
group and &% is ity Bovol o-fiold. Thus u is » (tight) probability meagure
on ¢* gnd therebore has no idempotent factors. In virtue of Theorem 4.2
and Gorollary 2.1 it suffices to construet a sequence of gymmetric Gaus-
slan monsures g, on @ such that ) )

(6.2) P PR Uy el U

Lot by, ety DO tho charactoristic function of m, 4, (uxj) = ”h-uﬂrc*ﬁﬁ---tl,g‘
Sinece gy gy, 80 characteristic function of & Gaussian moeasure on G*,
. oogl R . B b . I » 1e P

it satistios oquation (4.3). Morcover, gince hy ., 18 positive, it is of the
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form
By ooty = XD (=05,

where ¢, _; 8 a nonnegative continuous function from G* into B satis-
fying (4.10). Let » be an integer and let

MY, = exp(—1/2nq, )

It iy easily seen that hg?:?“ t,, defines & consistent family of symmetrie Gaus-
sian measures {/Aﬁ’?utk}. By Kolmogoroff’s Extension Theorem we infor
that there exists a probability measure, say u,, on (@®, #*) extending
this family. It is easy to seo thab {u,} satisty (5.2).

Now, we state and prove an analogue of Kallianpw’s zero-one law
[16]. It also containg the result of Jain [15],

TevorEM 5.2, Let u be a Gaussian measurc on (X, %(X)). Asswme that
w has mo idempotent factors for any tel. Let B be o % (X)"measurable
subgroup of X. Then u(F) = 0 or u(H) = 1.

Proof. Tet F be a #(X)*-measurable subgroup of X such that u(F)
> 0. Then there exists a sequence {#;},, €T, and B e #* such that

{feeX; Lo(ty),...,0(,),..>eB s I
and.

ulfe eX; @), ..., (n),...> € BY) > 0.

Since ¢* is a metrizable topologically complete space, we can assume thatb

B is compact. Let D be the subgroup generated by B. D is c-compact
(hence Borel) and

0<plfeeX; @), ... @(ty), ... € DY) < u(F).
Now, let » be a probability measure defined on (¢, #*) by the formula
v(4) = p(fwe X5 ((h), ..., alty), ...> € 4)).

It is easy to see that » iy a Gaussian measure on G, without idempotent
factors and such that »(D)>0. By Theorem 5.1 we obtain y(D) == 1.
Hence u(F) = 1, which completes the proof.

Putting & = R, we obtain Kallianpur’s result (in fact, a stronger
vergion of his theorem, without any additional agsumption concerning
the covariance function, ete.). Observe also that Theorem 5.2 can be ob-
tained independently of Theorem 3.1. Indeed, in the case of G= (or even
G, for arbitrary T) the conclusion of Theorem 3.1 is.an easy consequence
of the correspondence between (Gaussian) measures and families of (Gaus-
sian) finite-dimensional distributions.

B XV)VG now list some natural examples of groups having the form (X ’
(X)) ‘
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Tixamrerss., 1. Lot Dy == Dg [0, 1] be the space of functions f defined
on [0, 1] with values in @ which. are right-continuous and have left-hand,
limits. Dy, endowed with the so-called Skorohod topology, is a separable
gopologically complete space (see [2] for @ = R, and [3], for the general
cage). Moreover, it is well known that the Borel o-field in Dy is generated
by projoections my . 4, that is, equals %(Dg).

2. Lot Oy =2 Og[0, 1] be the space of all continuous functions defined
on [0, 1] into @ with. uniform convergence. As before, the Borel o-ficld
in Og is oqual to #(0g).

3. Obviously, (G*, #%) is ulso a space of the above fype.

Now, let (£, 2, P) be a probability space. A family & = {&(¢); t e T}
of random variubles with valuoes in @ will be called o G-valued stochastic
procoss. § I8 ealled Gaussian it for every 4,1, ...,%;t e, the distri-
pution induced on (G*, %™ by

C(h)y s (0D

i Guussian. Now, lot X denote, as before, a subgroup of GF. If £ has the
garuple paths in X, then it induces o mapping &: QX taking o into the
gample path corvegponding to w. It is casy to see that  is measurable
with vespoct to 2 and #(X), Let g, be the distribution of & on (X, #(X)).
Now, wo can formulate Theorem 5.2 in terms of stochastic processes.

QonoreAry h.l, Let & be o G-valued Gaussion stochastic process with
the sample paths in X. Let p = g be the distribution of . Assume that py
Tas o ddempotent factors for any tel. If I is a #(X)“-measurable sub-
group of X, then

P{feF) =0 or P{fcFp=1.

Now, lot & == {£(t); 1 &[0,1]} be a Wiener process with values
in @, that is, o separable (in the sense of Doob) G-valued stochastic process
with independent increments such that the characteristic function of £(?)
is of tho form. exp(—1tp), where ¢ is & continuous non-negative function
sadintying (4.10). Tt is known that & has continuous paths (with probability
one). Using Corollary 5.1, we obbain.

OoROIXARY B.2. Let & = {£(4); $&[0,1]} be a Wiener process with
values in G Lel u be the distribution induoed on Oy by & If F isa A (0g)"~
meagurable subgroup of Oy, then

P{Eem)=0 o P{fel) =1.

Acknowledgement. I would like to expross my gratitude to Dr. A. Twa-
nik for his helpful comments concerning Theorem 3.1.

7 — Studla Mathematica 60.2


GUEST


188 T. Byczkowski

Added in proof. Recently, the author has revealed that the proof of Theoven, 4.2
is incorrect; namely, we cannot claim that G/GY has no elemonts of order 2. At this
time, the author does not know whether such a theorem is true or not. Mowever,
a detailed inspection of the proof of Thoeorem 4.1 yields the following result:

Lot G a Hausdorff abelion group. Assume that every Gaussian measure on G without
idempotent factors is essentially symmeiric. Let u be a Gaussian measure on ¢ withowt
idempotent factors. Suppose that p has o symmelric Gaussian root of order 4. Then for
every B*-measurable subgroup F we have p (1) == 0 or 1.

In virtue of this modified version of Theorem 4.2, Corollary 4.3 as well ag all
results of Section 5 remain valid, under additional asswmption that 26! == ¢. Also
Professor A. Tortrat has pointed out that the assumption of bi-measurabilily of 0
is superfluous (except in Th. 4.3) since we may assume that & is o-compact.
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