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A mean value inequality for positive integral transformations with
application to a maximal theorem

by
W. B. JURKAT and J. L. TROUTMAN* (Syracuse, N.Y.)
Abstract. An integral mean value inequality of the Riesz type is derived and"

applied to obtain a sharp form of the maximal inequality of Jurkat and Troutman
in dimension one generalizing the classical result of Hardy-Littlewood.

1. Introduction. In this paper we present conditions under which
a positive integral transformation of the form

v
@ Kg(o,y) = [k(z, g)d  (0<y<a),
0

admits estimation from above by [K1(z, y)] sup Kg (v, v) where 1 denotes
the unit function and K satisfies o<vsy

@) Kl(g,0) =1 (2> 0).

The method used is an integral analogue of that given for finite sums
by Jurkat and Peyerimhoff in [1], [2] and the result constitutes a sharpening
of the mean value inequality of M. Riesz.

The normalization (2) is automatically achieved for a kernel

k@, 1) = @,(t) = o p(ta™?)

when ¢ is positive with a unit integral over J = (0, 1) and vanighes else-
where. Such kernels provide through convolution a standard approxi-
mation of the identity, and in a previous paper [4], we have shown that
for any meagurable f> 0, the associated maximal function,

(3) Mf@) Esw [ g f @),
>0 3
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gatisties the following inequality:

1
(4) (M) < A [pr@)f*@d)ds (> 0),
0

where the asterisk denotes the formal decreasing rearrangement (defined
below), and the constant 4 e[1, 6]. For ¢ =1 on J, this would be the
classical inequality of Hardy-Littlewood [8], provided that the constant
A — which ariges from a well-known covering principle — can be taken
ag unity. In the concluding section of the present paper, we show that
under some restrictions on ¢ (which still admit the Ceshro kernels ¢(f)
= a{l—1)"",¢,eeJ) our mean value theorem supplies a Vitali-like
covering argument which yields the maximal inequality (4) with 4 =1.
That A = 1 is the best possible constant for this inequality was established
in [4].

2. Notation. M, (M) denotes the class of (non-negative) extended
real valued Lebesgue measurable functions on R, and L% the usual
equivalence class of essentially bounded functions. |B| (|Z|,) denotes the
(outer) measure of a set B = R and the formal decreasing “pearrangement”
of an extended real valued function F is defined by

F*(&) = inifr > 0: ||| >7lo< & for
3. A mean value inequality.
TEROREM 1. Let k(-,+) be defined, positive, amd for each », be y-mea-

surable in the triangle 4, = {(x,y): 0 < y< o< a} for some a & (0, o0);
and satisfy in oddition the following eonditions:

E>0.

(1) ka(w,t)dt =1 Vuze(0,a);
0

5) [ k(y, ) —b(@, O]dt >0 asa N ye(0,a);
0 -

(iii) for each (x,y) € dq, k(z, *)/k(y, *) decreases on (0, y).

Then for each g cIN[0, a) which is locally (osseﬂ:tially) bounded from
below, ‘

Eg(,y) = [ bz, HgB)d
o

is defined and salisfies the inequality
Ky (»,y) < KEl(w, y) sup Kg(v,0).
o<y
Proof. For g e L*, |Kg(x, )| < lgh.BEL(z, ¥) < gl from (i) when
0<ys<xwo<a and it is clear that for each € (0, a), Kg(=, -) is conti-
nuous on [0, «]. The remaining integral requirement (ii) ensures that for

e _ ®
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wzy=ze(0,a), Kg(z,y)

Ky (2, y)—~Hyg(z,2)| <

— Kg(z,2) as X 2. Indeed,

[Eg(w, y)—Kg(z, )|+ |Kg (2, 2) — Kg (2, 2)|

<f7c(w, t)lg(t)ldt+f|k<z,t)—k<m,t)ilg(t)ldt
z ]
Y : z
< |Ig|1w(fk(x,t)(lt+flls(z,t)—k(w,t)[dt)

< gl f 2[k(z, 1) — (@, 8)]*dt,
by a double application of (i).

To prove the inequality, assume first that 0
vanishes mdcnt]c&lly 111 (0 2,) for some 2, €

€ 4,, introduce w(-) = k(w,

integration(s) which show that with ¥ = (0, y],

v
& )a_eng(w,y) of'w Vk(y, Dg(t)di
) =

T El(z,v)

f w()k(y, )@t
}[ Hy(y, t)dw(t)

[6(y, ) EL(y, t)dw (i)

— - b

- [El(y, tydw(t)
J

f Kl(y, t)dw(t)
b4

=G(y,9,), for some y, € [z, ]

by the continuity of Kg (hence of K1 and @) in its second argument,
and the first law of the mean. If ¥, = y, the first step of the proof is com-
plete; otherwise repetition of the above argument produces either the
desired termination or a decreasing sequence {y,} with a limit 2 € [%,, ¥)
., @(,y) = @Yy, Yny1). Thus, by the
continuity property of Kg established above and extended to @, it follows

such that for each » =1,2,...

from (i) that G(z, ¥) = G(z,2) = Kg(2, 2).

Next, each g € M (0, «) is the pointwise limit from below of a sequence

of funetions 0 << g, e L™, n =1, 2,.

n =1,2,..., for which by standard monotonicity arguments,

< Kg(@,y) = limEg, (2, y) = K(z, y)im Kg, (%, 2,)
k3 n

< Kl(z, y) sup Kglv,v).

0 <pty

<gelL® and that ¢
(0, @). Then for fixed (z, ¥)
MVEy, - ) which decreases on (0, y) by (iii)
and is extended to va:msh at y. Hence the Fubini theorem affords partial

y ++.; each vanishing in a neighborhood
of 0. Hence with (x, ¥} as above, there exist a sequence 2, e (0, ],
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Finally, when ¢ is measurable and (essentially) bounded from below
by —m on [0, a) so that g-+ml eM* (0, a] we have

Kgo,y)  E@g+ml(@,y) _

= m
Kl(z,y) El(z,y)

< sup K(g+ml)(v,v)—m = sup Kg(v, ),
<oy <oy

which clearly implies the desired result.
Remark. When g e IS [0, a) the corresponding two sided mean
value inequality follows.

4. Application to a covering argument. To estimate the maximal
function M f of (3), for fixed ¢ and f, it is known since F. Riesz [5], that

a most fruitful approach is to obtain a precise estimate of the size of the

def
sets B, =

{w: M, f(z) > v} (v > 0) by means of intervals of size h for which
@pxf(x) = f @, (1) f(z—1t)dt > 7. In this section we show that Theorem 1
[}

affords such an estimate under the following conditions on g: (Compare
with [3], Theorem 4.3.)

(a) g is positive, increasing, and differentiable on J = (0, 1) and
vanishes elsewhere;

© () of]qa(t)dt= 1

(¢) tp’ (t)/p(?) increases on J;
(d) (—1)¢'(t)/p(t) increases on. J.

Here, “increasing” is to be interpreted as nondecreasing in each instance

50 that ¢ = 1 on J is admissible. Moreover, it is straightforward to verify

that the conditions are satisfied by the important class of Ceshro kernels
@(?) = a(L—1)*""' for t, aed.

LevmA. If ¢ satisfies conditions (5) and f e M+ is bounded with com-
pact support, then when = > 0, with each © e ., Jv > 0 such that (@ —v, @]
< H, and gxf(o) > 7. ‘

Proof. Under the hypotheses, g,+f(#) is jointly continuous when
k>0, e R and so M, f is measurable. Indeed, for each v >0, E, is open
and thus for each fixed « ¢ B, we have (¢, o] < F, for a minimal a which
we may suppose finite since otherwise the lemma ig trivial; in particular
a ¢ B,. Since weB,, h >0 for which gf(x) > and we need only
consider h > y"—isﬁw——a. Set k{s, t) = g,(t) and observe that as s~ 2> 0,

Ed 1
[ et —ga(dldt = [o(t)at -0
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sinee p is increaging. Moreover, for v< s, @,/p, is decreasing on’ (0, v)
(an easily verifiable consequence of (5e)), and it follows that the kernel
k(-,-) so defined meets the conditions of Theorem 1 which. with g(?)
= f(z—1) supplies the estimate

v v
I [gOf0—@t < [ g (0)32,] ()
0 [}

‘where

0,f(@) = sup g, «f(2).
[2327)

Next, with u % h—y, it follows from (5d) that g,(¢+y)/p.(t) is also
decreasing for ¢ € (0, u); hence, as in the first step in the proof of Theorem 1,
with ¢(t) = f(a—t), we obtain the estimate

Lk . [ pu)fla—t)at
1 % [ t+fa—0a< [opli+y) sup | g |&
% s t<o<<y f‘Pu(t) dt
[

and we may further bound each ratio within the parentheses exactly
as above by @,f(a) which cannot exceed 7 since a ¢ B,.
Combining these estimates with obvious substitutions gives

T < gpxf(e) =T+ 1T
v h
<9,f(@) [pu()@+r [ ()t
o v

which is only possible providing @,f(@) > z; le. gxf(w) > 7 for some
ve(0,y] so that (z—v,s] = (v—y,2] < B, as desired.

Under the conditions of the preceding lemma, when —oo<< a ¢ H,
we have from continuity that for each ze(a,d] < H,,

h(z) = max {v: pxf() =7}
o<v<zE—a
is well-defined and positive. This defines on (@, b] a function h such that
0 < h{x) < o—aand g,+f(2) > v Vo e (a,b] With this 7 as choice function,
a straightforward application of transfinite induction on the countable
ordinals (utilizing the fact that an uncountable family of positive numbers
cannot be assigned a finite sum) shows that (a, ] may be represented
as the union of a countable family of disjoint intervals I, = (2, by, #,1
for which g, *f(w,) > Vn =1,2,...
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5. The sharp maximal inequality (4 = 1).

TrmorEM 2. If ¢ satisfies conditions (5) and f e M+, then the mawimal
Junction (3) satisfies the following inequality:

1 .
(MO < [o*f*@e)a (&> 0).
0

Proof. The proof is essentially that of Theorem 1 of our earlier
paper [4], and only the significant features will be indicated here. We first
* consider a bounded f with compact support and restriet attention to 1 < 6
for some 8 > 0. The associated sets BY are open and bounded for each
v > 0, and hence, by standard techniques utilizing the covering argument
of the preceding section, admit for each ¥ =1,2, ..., approximation
in meagure within 1/ from within by a finite sequence of digjoint half-open
intervals I,,(N) of lengths h, (N) satisfying the same inequality as above.
Moreover, we can arrange that as N oo, Hy Lt 3 b, (N) 7 |BO)].
Introducing ) . "

ox®) = D o(hz" (@, —y))

n<N

and observing that for & > 0, ¢ (&) = ¢*(4/Hy), We obtain exactly as in
[4], the estimates )

Hy<7' [onf@)dy <= [ o ()f* 0)dt;
1
v < [o*@)f* B dt;
0

1
(MPH*E < [ o) (t&)a (&> 0).
0

The restrictions on & and f are vemoved by standard approximation and
monotonicity arguments.
Remark. If f e M*(J), and vanishes elsewhere, it was shown in [4]

that

1 . .
[ Of e)at = M f*(¢), ¢ed.

0
Inasmuch as the maximal inequality (4) is also valid in R™ for an appro-
priate constant A ([4], Theorem 1), it would be desirable to find the best

constants or more appropriate multidimensional analogues for the results
of this paper.
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