

STUDIA MATHEMATICA, T. LXIX (1981)

A mean value inequality for positive integral transformations with application to a maximal theorem

Ъъ

W. B. JURKAT and J. L. TROUTMAN* (Syracuse, N. Y.)

Abstract. An integral mean value inequality of the Riesz type is derived and applied to obtain a sharp form of the maximal inequality of Jurkat and Troutman in dimension one generalizing the classical result of Hardy-Littlewood.

1. Introduction. In this paper we present conditions under which a positive integral transformation of the form

(1)
$$Kg(x, y) \stackrel{\text{def}}{=} \int_{0}^{y} k(x, t)g(t)dt \quad (0 < y \leq x),$$

admits estimation from above by [K1(x, y)] sup Kg(v, v) where 1 denotes the unit function and K satisfies

(2)
$$K1(x,x) = 1 \quad (x > 0).$$

The method used is an integral analogue of that given for finite sums by Jurkat and Peyerimhoff in [1], [2] and the result constitutes a sharpening of the mean value inequality of M. Riesz.

The normalization (2) is automatically achieved for a kernel

$$k(x, t) = \varphi_x(t) = x^{-1}\varphi(tx^{-1})$$

when φ is positive with a unit integral over $J \equiv (0, 1)$ and vanishes elsewhere. Such kernels provide through convolution a standard approximation of the identity, and in a previous paper [4], we have shown that for any measurable $f \geqslant 0$, the associated maximal function,

(3)
$$M_{\varphi}f(x) \stackrel{\text{def}}{=} \sup_{h>0} \int_{0}^{\infty} \varphi_{h}(t)f(x-t) dt,$$

^{*} The work of the first author was supported in part by a contract from the National Science Foundation.

satisfies the following inequality:

$$(\mathcal{M}_{\varphi}f)^{*}(\xi) \leqslant A \int_{0}^{1} \varphi^{*}(t)f^{*}(t\xi)dt \qquad (\xi > 0),$$

where the asterisk denotes the formal decreasing rearrangement (defined below), and the constant $A \in [1, 6]$. For $\varphi = 1$ on J, this would be the classical inequality of Hardy-Littlewood [5], provided that the constant A — which arises from a well-known covering principle — can be taken as unity. In the concluding section of the present paper, we show that under some restrictions on φ (which still admit the Cesàro kernels $\varphi(t) = \alpha(1-t)^{\alpha-1}$, t, $\alpha \in J$) our mean value theorem supplies a Vitali-like covering argument which yields the maximal inequality (4) with A = 1. That A = 1 is the best possible constant for this inequality was established in [4].

2. Notation. \mathfrak{M} , (\mathfrak{M}^+) denotes the class of (non-negative) extended real valued Lebesgue measurable functions on R, and L^{∞} the usual equivalence class of essentially bounded functions. |E| ($|E|_0$) denotes the (outer) measure of a set $E \subseteq R$ and the formal decreasing "rearrangement" of an extended real valued function F is defined by

$$F^*(\xi) = \inf\{\tau > 0 \colon ||F| > \tau|_0 \leqslant \xi\} \quad \text{ for } \quad \xi > 0.$$

3. A mean value inequality.

THEOREM 1. Let $k(\cdot,\cdot)$ be defined, positive, and for each x, be y-measurable in the triangle $\Delta_a = \{(x,y)\colon 0 < y \leqslant x < a\}$ for some $a \in (0,\infty)$; and satisfy in addition the following conditions:

(i)
$$\int_{0}^{x} k(x, t) dt = 1 \quad \forall x \in (0, a);$$

(ii)
$$\int_{0}^{y} |k(y,t)-k(x,t)| dt \to 0$$
 as $x \ge y \in (0, a)$;

(iii) for each $(x, y) \in \Delta_a$, $k(x, \cdot)/k(y, \cdot)$ decreases on (0, y).

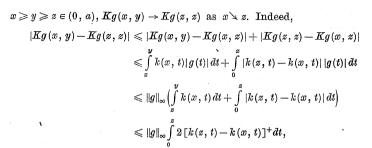
Then for each $g \in \mathfrak{M}[0, a)$ which is locally (essentially) bounded from below.

$$Kg(x, y) = \int_{0}^{y} k(x, t)g(t)dt$$

is defined and satisfies the inequality

$$Kg(x, y) \leq K\mathbf{1}(x, y) \sup_{0 \leq v \leq y} Kg(v, v).$$

Proof. For $g \in L^{\infty}$, $|Kg(x,y)| \leq ||g||_{\infty} K1(x,y) \leq ||g||_{\infty}$ from (i) when $0 < y \leq x < a$, and it is clear that for each $x \in (0,a)$, $Kg(x,\cdot)$ is continuous on [0,x]. The remaining integral requirement (ii) ensures that for



by a double application of (i).

To prove the inequality, assume first that $0 \le g \in L^{\infty}$ and that g vanishes indentically in $(0, x_0)$ for some $x_0 \in (0, a)$. Then for fixed $(x, y) \in \Delta_a$, introduce $w(\cdot) \stackrel{\text{def}}{=} k(x, \cdot)/k(y, \cdot)$ which decreases on (0, y) by (iii) and is extended to vanish at y. Hence the Fubini theorem affords partial integration(s) which show that with Y = (0, y),

$$G(x, y) \stackrel{\text{def}}{=} \frac{Kg(x, y)}{K\mathbf{1}(x, y)} = \int_{0}^{y} \frac{w(t)k(y, t)g(t)dt}{w(t)k(y, t)dt}$$

$$= \frac{\int_{Y} Kg(y, t)dw(t)}{\int_{Y} K\mathbf{1}(y, t)dw(t)} = \frac{\int_{Y} G(y, t)K\mathbf{1}(y, t)dw(t)}{\int_{Y} K\mathbf{1}(y, t)dw(t)}$$

$$= G(y, y_1), \quad \text{for some } y_1 \in [x_0, y]$$

by the continuity of Kg (hence of K1 and G) in its second argument, and the first law of the mean. If $y_1 = y$, the first step of the proof is complete; otherwise repetition of the above argument produces either the desired termination or a decreasing sequence $\{y_n\}$ with a limit $z \in [x_0, y)$ such that for each $n = 1, 2, \ldots, G(x, y) = G(y_n, y_{n+1})$. Thus, by the continuity property of Kg established above and extended to G, it follows from (i) that G(x, y) = G(z, z) = Kg(z, z).

Next, each $g \in \mathfrak{M}^+(0,a)$ is the pointwise limit from below of a sequence of functions $0 \leqslant g_n \in L^{\infty}$, $n=1,2,\ldots$; each vanishing in a neighborhood of 0. Hence with (x,y) as above, there exist a sequence $z_n \in (0,y]$, $n=1,2,\ldots$, for which by standard monotonicity arguments,

$$egin{aligned} 0 \leqslant Kg(x,y) &= \lim_n Kg_n(x,y) = K\mathbf{1}(x,y) \lim_n Kg_n(z_n,z_n) \ &\leqslant K\mathbf{1}(x,y) \sup_{0 < x \leqslant y} Kg(x,y). \end{aligned}$$

Finally, when g is measurable and (essentially) bounded from below by -m on [0, a) so that $g+m\mathbf{1} \in \mathfrak{M}^+(0, a]$ we have

$$\begin{split} \frac{Kg(x,y)}{K\mathbf{1}(x,y)} &= \frac{K(g+m\mathbf{1})(x,y)}{K\mathbf{1}(x,y)} - m \\ &\leqslant \sup_{0 < v \leqslant y} K(g+m\mathbf{1})(v,v) - m = \sup_{0 < v \leqslant y} Kg(v,v), \end{split}$$

which clearly implies the desired result.

Remark. When $g \in L^\infty_{loc}[0,\alpha)$ the corresponding two sided mean value inequality follows.

- 4. Application to a covering argument. To estimate the maximal function $M_{\varphi}f$ of (3), for fixed φ and f, it is known since F. Riesz [5], that a most fruitful approach is to obtain a precise estimate of the size of the sets $E_{\tau}^{\det}\{x\colon M_{\varphi}f(x)>\tau\}$ $\{\tau>0\}$ by means of intervals of size h for which $\varphi_h*f(x)\stackrel{\det}{=} \int\limits_0^{\infty} \varphi_h(t)f(x-t)dt > \tau$. In this section we show that Theorem 1 affords such an estimate under the following conditions on φ : (Compare with [3], Theorem 4.3.)
 - (a) φ is positive, increasing, and differentiable on J=(0,1) and vanishes elsewhere;
- (5) (b) $\int_{0}^{1} \varphi(t) dt = 1;$
 - (c) $t\varphi'(t)/\varphi(t)$ increases on J;
 - (d) $(t-1)\varphi'(t)/\varphi(t)$ increases on J.

Here, "increasing" is to be interpreted as nondecreasing in each instance so that $\varphi = 1$ on J is admissible. Moreover, it is straightforward to verify that the conditions are satisfied by the important class of Cesàro kernels $\varphi(t) = \alpha(1-t)^{\alpha-1}$ for t, $\alpha \in J$.

LEMMA. If φ satisfies conditions (5) and $f \in \mathbb{M}^+$ is bounded with compact support, then when $\tau > 0$, with each $x \in E_{\tau}$, $\exists v > 0$ such that $(x - v, x] \subseteq E_{\tau}$ and $\varphi_v * f(x) > \tau$.

Proof. Under the hypotheses, $\varphi_h * f(x)$ is jointly continuous when h > 0, $x \in \mathbb{R}$ and so $M_{\pi}f$ is measurable. Indeed, for each $\tau > 0$, E_{τ} is open and thus for each fixed $x \in E_{\tau}$ we have $(a, x] \subseteq E_{\tau}$ for a minimal a which we may suppose finite since otherwise the lemma is trivial; in particular $a \notin B_{\tau}$. Since $x \in E_{\tau}$, $\exists h > 0$ for which $\varphi_h * f(x) > \tau$ and we need only consider $h > y \stackrel{\text{def}}{=} x - a$. Set $k(s, t) = \varphi_s(t)$ and observe that as $s \searrow z > 0$,

$$\int_{0}^{z} |\varphi_{s}(t) - \varphi_{\bullet}(t)| dt = \int_{0}^{1} \varphi(t) dt \to 0$$

since φ is increasing. Moreover, for $v \leqslant s$, φ_s/φ_v is decreasing on (0, v) (an easily verifiable consequence of (5c)), and it follows that the kernel $k(\cdot, \cdot)$ so defined meets the conditions of Theorem 1 which with g(t) = f(x-t) supplies the estimate

$$I \stackrel{\text{def}}{=} \int_{0}^{u} \varphi_{h}(t) f(x-t) dt \leqslant \int_{0}^{u} \varphi_{h}(t) dt \Phi_{u} f(x)$$

where

$$\Phi_{y}f(x) \stackrel{\text{def}}{=} \sup_{0 < v \le y} \varphi_{v} * f(x).$$

Next, with $u \stackrel{\text{def}}{=} h - y$, it follows from (5d) that $\varphi_h(t+y)/\varphi_u(t)$ is also decreasing for $t \in (0, u)$; hence, as in the first step in the proof of Theorem 1, with q(t) = f(a-t), we obtain the estimate

$$\Pi \stackrel{\mathrm{def}}{=} \int\limits_0^u \varphi_h(t+y) f(a-t) \, dt \leqslant \int\limits_0^u \varphi_h(t+y) \sup_{0 < v \leqslant u} \left(\int\limits_0^v \varphi_u(t) f(a-t) \, dt \over \int\limits_0^v \varphi_u(t) \, dt \right) dt.$$

and we may further bound each ratio within the parentheses exactly as above by $\Phi_u f(a)$ which cannot exceed τ since $a \notin E_{\tau}$.

Combining these estimates with obvious substitutions gives

$$\begin{split} \tau &< \varphi_h * f(x) \, = \mathrm{I} + \Pi \\ &\leqslant \varPhi_y f(x) \int\limits_0^y \varphi_h(t) \, dt + \tau \int\limits_y^h \varphi_h(t) \, dt \end{split}$$

which is only possible providing $\Phi_y f(x) > \tau$; i.e. $\varphi_v * f(x) > \tau$ for some $v \in (0, y]$ so that $(x-v, x] \subseteq (x-y, x] \subseteq E_{\tau}$ as desired.

Under the conditions of the preceding lemma, when $-\infty < a \notin E_{\tau}$ we have from continuity that for each $x \in (a, b] \subseteq E_{\tau}$,

$$h(x) = \max_{0 < v \leq x-a} \{v : \varphi_v * f(x) \geqslant \tau\}$$

is well-defined and positive. This defines on (a,b] a function h such that $0 < h(x) \leqslant x - a$ and $\varphi_h * f(x) \geqslant \tau \ \forall x \in (a,b]$. With this h as choice function, a straightforward application of transfinite induction on the countable ordinals (utilizing the fact that an uncountable family of positive numbers cannot be assigned a finite sum) shows that (a,b] may be represented as the union of a countable family of disjoint intervals $I_n = (x_n - h_n, x_n]$ for which $\varphi_{h_n} * f(x_n) \geqslant \tau \ \forall n = 1, 2, \ldots$

5. The sharp maximal inequality (A = 1).

THEOREM 2. If φ satisfies conditions (5) and $f \in \mathbb{M}^+$, then the maximal function (3) satisfies the following inequality:

$$(M_{\varphi}f)^*(\xi) \leqslant \int_0^1 \varphi^*(t)f^*(t\xi) dt \quad (\xi > 0).$$

Proof. The proof is essentially that of Theorem 1 of our earlier paper [4], and only the significant features will be indicated here. We first consider a bounded f with compact support and restrict attention to $h \leqslant \delta$ for some $\delta > 0$. The associated sets $E_{\tau}^{(0)}$ are open and bounded for each $\tau > 0$, and hence, by standard techniques utilizing the covering argument of the preceding section, admit for each $N = 1, 2, \ldots$, approximation in measure within 1/N from within by a finite sequence of disjoint half-open intervals $I_n(N)$ of lengths $h_n(N)$ satisfying the same inequality as above. Moreover, we can arrange that as $N_{\mathcal{I}} + \infty$, $H_N \stackrel{\text{def}}{=} \sum_n h_n(N)_{\mathcal{I}} |E_{\tau}^{(0)}|$. Introducing

$$\varphi_N(y) = \sum_{n \leqslant N} \varphi \left(h_n^{-1}(x_n - y) \right)$$

and observing that for $\xi > 0$, $\varphi_N^*(\xi) = \varphi^*(\xi/H_N)$, we obtain exactly as in [4], the estimates

$$\begin{split} H_N \leqslant \tau^{-1} \int \varphi_N(y) f(y) \, dy \leqslant \tau^{-1} \int\limits_0^\infty \varphi_N^*(t) f^*(t) \, dt; \\ \tau \leqslant \int\limits_0^1 \varphi^*(t) f^*(t|E_\tau^{(\theta)}|) \, dt; \\ (M_\varphi^{(\theta)} f)^*(\xi) \leqslant \int\limits_0^1 \varphi^*(t) f^*(t\xi) \, dt \quad (\xi > 0) \, . \end{split}$$

The restrictions on h and f are removed by standard approximation and monotonicity arguments.

Remark. If $f \in \mathfrak{M}^+(J)$, and vanishes elsewhere, it was shown in [4] that

$$\int_{0}^{1} \varphi^{*}(t) f^{*}(t\xi) dt = M_{\varphi} f^{*}(\xi), \quad \xi \in J.$$

Inasmuch as the maximal inequality (4) is also valid in \mathbb{R}^n for an appropriate constant A ([4], Theorem 1), it would be desirable to find the best constants or more appropriate multidimensional analogues for the results of this paper.

References

- W. B. Jurkat and A. Peyerimhoff, Mittlewertsätze bei Matrix- und Integral-Transformationen, Math. Z. 55 (1951), 92-108.
- [2] -, Mittlewertsätze und Vergleichsätze für Matrixtransformationen, ibid. 56 (1952), 152-178.
- [3] -, Inclusion theorems and order summability, J. Approx. Theory 4 (1971), 245-262.
- [4] W. B. Jurkat and J. L. Troutman, Maximal inequalities related to generalized a. e. continuity. Trans. Amer. Math. Soc. 252 (1979), 49-64.
- [5] F. Riesz, Sur un théorème de maximum de M. M. Hardy et Littlewood, J. London Math. Soc. 7 (1932), 10-13.

Received March 20, 1978 (1414)