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Abstract. This paper continues the development of the theory of conjugate
éransforms in the study of 7, semigroups of probability distribution funetions, If 4+
i the space of probability distribution functions which are concentrated on [0, oo)
and T is a ¢-norm, i.e., a suitable binary operation on [0, 1], then the operation rp
ig defined for 7, G in 4+ by

vy (F, G) (@) = sup I(F(u), G (v))

U+v=1

for all #. The pair (4+, vp) is then a semigroup. For any Archimedean t-norm T, we
defined in [6] a conjugate transform Op on (4+, 7p) and established the basic algebraic
properties of these transforms. In this paper we first establish that conjugate trans-
forms and their inverses are ‘continuous’ mappings on these zp semigroups. We then
show that conjugate transforms are a very effective tool in studying the convergence
of distribution functions and their Tp products in zp semigroups. In general, theso
transforms are shown to have many of the same properties that the Laplace transform
has on the convolution semigroup.

1. Introduction. 7, semigroups are the most prominent of several
classes of semigroups of probability distribution funetions which are of
central concern in the theory of probabilistic metric (PM) spaces [10],
[11], [18]- An understanding of the basic properties of these semigroups
is therefore a major area of study in this theory [2], [4], [5], [8], [12].
Conjugate transforms have proven to be a very valuable tool in this study.
In particular, B. Schweizer and the author have shown in [7] that these
transforms have application to the study of betweenness in PM spaces.
Conjugate transforms are an adaptation of the “conjugate function”
concept used in Convex Analysis [9] and are similar to the maximum
tramsform used by R. Bellman and 'W. Karush [1]. Another recent appli-
cations of conjugate transforms to 7, semigroups appears in [17].

If A% is the space of probability distribution functions which are
concentrated on [0, co), then, for any 7, operation corresponding to

* The contents of this paper are drawn from the author’s Ph. D. thesis at the
University of Massachusetts. The author would like the thank his thesis advisor,
Professor B. Schweizer, for his very helpful commentg-anderritieisms while this re-
search was carried out. T
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an  Archimedean #norm T, we defined in [6] the T-conjugate
tramsform Oy on the gemigroup (47, v). For any 7 e 4%, (. F is a function
from [0, co) into [0, 1]. If o/, is the corresponding space of T-conjugate
transforms, ie., &y = COp(4™), then in Section 2 we ghow that if {F,}

is a sequence in 4% which converges weakly to ' in A*, written r,3F,
then Oy Fy, (2) - CpF(2) for all 2 > 0. Conversely, if {g,} is a sequence in .,

and, for some ¢ € &y, @,(2) = ¢(2) for all 2> 0, then Crp, > Ohp in 4+,
where Oy, is the inverse T-conjugate transform. Thus both Cp and Oy are
continuous under the above convergence. Moreover, in this setting if A%
is the subspace of I-log-concave distribution functions, then the map
Op: AF — o7 §8 & homeomorphism with inverse Of. The spaces a3
and o, are each shown to be compact and complete, where their respeet;
ive topologies are metrically induced.

In Section 3 we apply our results to the convergence of v, products
of distribution functions. Our key result is that, for any Archimedean
t-norm T, if {F,} is a sequence in 4%, then the sequence {z,(F,, ..., )}
has a non-trivial weak limit in At if and only if there is a sequence of
positive numbers {a;} such that

00
2“‘< oo

=1

and  lim T'(Fy(ay), ..., F,(a,) > 0.
T=>00

Before we present our results we state some definitions and known
facts: The space of probability digtribution functions under consideration is:

(1.1) 4t ={F: R—~[0,1]] F is left-continuous,

non-decreasing and F(0) = 0}.
In particular &, and &, in 47, are defined by

0, =<0,

1.2
€2 1, 0<uo;

and e (@) =0 for all «.

afo) = |
A t-norm is a two-place function T from [0, 1] x [0, 1] into [0,1]
which is symmetric, associative (i.e., T'(a, T'(b, ¢)) = T (T(a, b), ¢)), non-
decreasing in each place, and has 1 as a unit. In particular, we say a conti-
nuous ¢-norm T is (a) Archimedean it T(a, a) < a for all a e (0, 1); and (b)
stréct if T' is strictly increasing in each place on (0, 1] x (0,1]. Note that
& striet t-norm is Archimedean. Standard examples of t-norms are Product,
Minimum, and T, (a,b) = max{a+b—1, 0}.
For any t-norm T, we define the operation v, on F, & in 4* at any
real # by
(1.3) (P, @) (2) = sup T(F(u), F(v)).

U= .
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If the #-norm 7' is left continuous as a two-place function, then 7,
is a commutative semigroup operation on A* with unit ¢, and null el-
ement e,. Moreover, T, is non-decreasing in each place, i.e., 7, (#, H)
> v7(G, H) whenever F > @, where F>G means F(2)> G(z) for all
@ [11], [13]. Hence, we call each such pair (4%, 7;) a 75 semigroup.

A key tool in dealing with Archimedean #-norms is the following
representation theorem [3]:

The t-norm T is Archimedean if and only if there ewists a continuous
and increasing function h: [0,1]->[0,1] with k(1) =1 such that T is
representable in the form

(1.4) T(w,y) = k() h(y),
where W' - is the pseudo-inverse of k, i.e.,
0 0< < h(0)
. h[_u =] H = = ’
(-5 @ =), roy<o<i,

where b~ 4s the usual inverse of b on [k(0), 1]

The function 7 in (1.4) is called a multiplicative generator of the Archim-
edean t-norm T. Note from (1.5) that A" ig a continuous and non-de-
creasing function on the unit interval [0,1]. In addition, A" =&t if
and only if £(0) = 0. These facts yield the result that, if 4 is a multiplicative
generator of the Archimedean #-norm 7T, then T' is striet if and only if
h(0) = 0, i.e., if and only if Al™Y = p~L

For studying convergence we will consider A% as endowed with the
topology of weak convergence of distribution functions. To be precise,
it {#,} and F are in A™, then we say the sequence {F,} converges weakly

to F, written Fni'i F, it F, (x)—~ F(x) at each continuity point = of the
limit function F'. This topology is metrizable via the modified Lévy metric £
which is defined for any F, G in 4% by:

P(F,Q) =int{8] F(a) < G(@+08)+6
and G(z) << F{z+6)+ 48 for 0 <@ <1/8}.

In [14] D. A. Sibley established the following:

(1) 2 is a metric on 4+,

(2) For any sequence in 4% and F in 4%, #(F,,F)~>0as.n-> oo
if and only if 7,3 P.

(3) The metric space (47, £) is compact—hence complete.

In addition from [11] we have that if T is a continuous {-norm, then =,
is continunous (as a two-place function) on the metric space (4%, £).

Finally we list those properties of conjugate transforms, established
in [6], which are necessary to the sequel. Below, for any Archimedean
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t-norm T, the function b will be a fized multiplicative generator of T and h=1
the pseudo-inverse of h. In particular, for T = Product (i.e., T'(a, b) = a-b)
h will be the identity function.

DerFiNiTION 1.1. For any Archimedean #-norm 7T, the T-conjugate
transform for the semigroup (A%, vp) is the mapping Oy defined for 7' € 4+
via:

(1.6) OpF(2) = sup 6 AL (x), for all 2> 0,
20
where hlF' € A is given by
0 2<0
1.7 hE (@) =1 ! =
(L.7) @ {h(lﬂ(w)), 0 < w.

Note that if 0 denotes the Product-conjugate transform, then, for
any F e At,

(1.8) OF (z) = supe™ T (),

230

g0 that, for any Archimedean ?-norm 7T, we have Cp.F = O (hF).
T-conjugate transforms are completely characterized by the following:
TemorEM 1.1. Let

1.9) o = {p: [0, )~ (0, 1]| ¢ is non-increasing, positive,

continuous and log-convex} Ll{6,.},

where 6,(2) =0 for all 2> 0. Then, for any Archimedean t-norm T, if

(1.10) Ay = {p e | ¢(z) = h(0) for all 2> 0},
then oy = {OpF| F e 47} Thus Ap = o and Ap = o if and only if T
ts strict.
DeriniTioN 1.2. Let T be an Archimedean #-norm. Then:
(i) 0% is the mapping detined for any ¢ € o via:
Ubp (@) = W (inte™p(2)),
220

(1.11) for all »,

and where, in addition, Of¢ is normalized so as to be left-continuous.
(Cho will have at most one discontinuity.)

(i) F e 4™ is (Product)-log-concave if logF' is concave on (bp, o),
where bp = sup{z| F(¢) = 0}. Furthermore,

A% = {F € 4| F is log-concave}.

(iil) B e 4t is T-log-concave if hEF is log-concave, where hF e A+
is given by (1.7). Also,

4F = {F e 4| F is T-log-concave}.

icm
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(iv) For any F € A%, the log-concave envelope of F, denoted F, is
defined as follows: F(z) = 0 for < by and on (b, co) the graph of log(F)
is the upper boundary of the concave hull of the graph of log F.

(v) For any F e A+, the T-log-concave envelope of ¥ is the function Fp
in A* given by Fp = A1 (hF), where %F is the log-concave envelope
of hF. (Note that F = F for T' = Product.)

Remark. Even though multiplicative generators are not unique,
we showed in [6] that the results obtained using Z-conjugate transforms
do not depend on the choice of & multiplicative generator % in (1.6), so
long as it remains fixed. In particular, the concepts of T-log-concavity
and T-log-concave envelopes are independent of the choice of a multi-
plicative generator and depend on the t-norm T alone.

‘We then have:

TEROREM 1.2. Let T be an Aréhimedean t-norm. Then, for any F, G € 4,

(P1) Cplop(¥, @) (2) = max{h(0), OpF(2) CpG(2)} for all 2=0.

(Thus, if T is strict, Op(tp(F, &) = CpF-CpG.)

(P2) Op: A - sy is one-to-one, onto, with inverse Cr-

(P3) FTeAT,FT>I«’ and if F e A%, then Fp=DF.

(P4) OpF = Cp(Fy), whence CpCpF = Fop.

(P5) If F =@, then CpF > 0nG.

(P6) OpF(0) = hmhF (%) and hmOTIi’ 2) = hF(0%)..

2. Continuity of conjugate transforms and general convergence.
Our first task is to define a useful topology on the space of conjugate
transforms & via:

DepNITION 2.1. Let #* be the mapping from & x & into [0,1],
which for any ¢, 6 € & is given by
(2.1)  Z*(p, 6) = inf{s| lp(e)— 6(2)| < & for all 8 <2< 1/d}.

THEEOREM 2.1. Z* is a metric on .

Proof. Clearly, since all conjugate transforms are continuous at 0,
we have ¥*(p, 6) = 0 if and only if ¢ = 0.

It is also clear that #* is symmetric.

To establish the triangle inequality let ¢y, ¢, ps € & With Z* (@1, P2)
=7, and £*(@y, ¢) = 8. Assume, without loss of generality, that r<s.
Then, for any e> 0, if s+s<2z<1/(s+eg), then r+e<2z< 1/(r+e),
so that, by (2.1),

(2.2)  1p1(2) — s ()] < la(2) —@2(2)] + lpa(2) —@a(2)| < s+e+rte.

In pa.rtlculaw then, (2.2) holds for any z with 7 +s+4-2¢ <z <1/(r+8-+28)*
Thus Z*(gy, ¢s) < 7-+5-+2¢, whence, since ¢> 0 was arbitrary, the
proof is complete.
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3y c:)nvergence in o we will mean convergence with respect to the
metric £, This type of convergence iy characterized in:

TEEOREM 2.2. Let {p,} be a sequence in o and let ¢ & of. Then £*(p,, ¢)
— 0 if and only if @,(2) = @ (2) for all 2 > 0.

. Pr_oof. Assume @, (2) = p(2) for all z > 0. Let ¢ > 0 be given. Since P
18 continuous, non-increasing, and bounded on [0, co), it is uniformly
continuous. Thus there is a ¢ > 0 so that

(2.8) lp(z) —@(ea)l < ef2 I |oy—ey| < 6.
Choose a finite set of points ¥y, ¥a,..., ¥, 80 that & = Y <Yy <o <Y,
=1/6 and | *
(2.4) We—Yepal <8 for 4 =1,2,..,m—=1.

For each ¢ =1, 2, ..., n there is an integer N, so that

(2.5) [Pa(y) — o)l < &2 for mn>N,.

Let lV = l?la,x{Nil t=1,2,...,n} Then, for any z with e <z<<1/e,
there Is an integer k, 1 < k < n—1, such that g, < 2 < y;,,,. Thug it n > N, s
then since @, , ¢ are non-increasing, we have using (2.3), (2.4), and (2.5) that

|, (2) — @ (2)|
< max{|g, () — @ (@) 19n (Ypr) — @ ()}
< max {|o, (¥2) — @ ()| + 1o (¥1,) — @ (2)], 1@n (¥rt1) — @ (Fraa)| +
Flo W) —@ (@)} <e.

Oonsequenfly, Z* (9, @) < efor n > N, whence L (@) @) — 0. OConversely,
assume £ (@, 9) -0 and let 2> 0. For any ¢> 0 there is an integer
k> 0 so that

(2.6) 1/k < min{e,2} and k> e.

Also, by assumption, for some integer M we have L gy @) < 1/
for n > M. But then, by (2.1) and (2.6), it follows that

lPu(e)~p(@) <1l/k<e for mnx=M,

whence ¢, (2) ~ p(2), completing the proof.

THEOREM 2.3. Let & be the modified Lévy metric on At and let &*
be the metric on o given by (2.1). Then the Prod-conjugate transform 0:
(4%, &) > (o, £*) is continuous.

Proof. Assume that for {¢,} and ¢ in 4*, we have Z(G,, Gy~ 0.
f}hoose 2> 0 and let ¢ > 0 with & < 2 be given. Now, for fix:zd 2, 6%
i decreasing and bounded, and hence uniformly continuous, on [0: o)

icm
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Thus there is a y > 0 so that

2.7) "™ —e ¥l <ef2 I  le—yl<y.
Turthermore, there is an M > 0 such that for o > M,
(2.8) e <M<,

Next, for any § with 0 < é < min{e/2,y, 1/ M}, there is an & > 0 such
that %> N implies Z(G,, @) < 6. Therefore, if n >N and 0 <o << M,
ther, by (2.7) and the definition of %, we have
G, () < =G+ 8)+ 0) < e TG (@) + 0

< (67EHI L g/2)G (@ + O) + &

<Ko PG (pd8) e

< 0G(z)+e,
‘which, combined with (2.8), yields, for » > ¥, that
(2.9) 0G,(2) = supe ™G, (z) < CG(2)+«.

x>0

Similarly, interchanging @, and G in the above argument, we obtain,
for # > N, that 0G(2) < CG, (#)+ e, which with (2.9) implies, for n > N,
that
(2.10) [0G(2) — 0@, (z)] < &.
Since ¢ with 0 < & < #z was arbitrary, (2.10) implies that 0G,(2) - 0G(2)
for any z > 0. In other words, #*(0G,,, CG)— 0, whence C is continuous,
completing the proof.

Note that by definition, for any Archimedean #-norm 7, we have
Ay o Thus £* is a metric on «/,. Using Theorem 2.3, this yields:

COROLLARY 2.1. Let T be an Archimedean t-norm. Then the T-conjugate
transform Cp: (A%, L) — (Ap, £*) is continuous.

Proof. By (1.6) and (1.8) we have, for any ¥ € A%, that Op F = C(LF),
where hF is given by (1.7). Define the map A*: (4%, 2)— (4%, ¥) by
#*(F) = LF. Since h is continuous and increasing, it i clear that if {F,}
is o sequence in A% such that ¥, % F, then hF, > hF. In other words, h*
is continuous. But Oy, can be factored as

(4%, 2)5 (4, 2) S (2, 2.

Since ¢ is continuous and Op(A4%) = o/ by Theorem 1.5, the desired
result follows. ‘
COROLLARY 2.2. Let T be an Archimedean t-norm and let {@,} be a se-

quence in A%, If G, > G, then Op@,,(2) — Op@(2) for all 2 > 0.
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Remarks. (1) The results of R. A. Wijsman [15] can be uscd to
deduce that the prod-conjugate transform O is continuous on the subspace
43 of all log-concave distribution functions. However, sinee using this
fact explicitly would not lead to any significant condensation of our
presentation, we have proven our results (e.g., Theorem 2.3) in straight-
forward and self-contained arguments. —

(2} The converse of the preceding corollary is not true. For, from (I4),
for any T, the T-conjugate transform Oy is not one-to-one on A4*. Thus
there exist G, & e 4% with Gy # @, so0 that 06, = OpG,. Letting {H,}
pe the sequence defined by letting H, = G4 if » is odd and H, = Gg it n
is even, we have that OpH,, (#) — OpG (2) for all 2 > 0, but the sequence {H,}
does not converge weakly in 4+,

(8) It is not true that G, 5 ¢ implies 0@, (0) - 0zG(0). For oxample,

for cach integer n > 0, lot ¢, be defined by ¢, (¢) = g9(#—n). Then By Eoge
But by (P6), for all n,

Ce,(0) = lime,(w) =1 % 0 = Oz, (0).

‘We can obtain a partial converse to Corollary 2.2 by restricting
our attention to T-log-concave functions. Using the fact that (4*, %)
is compact, hence complete, our first step in this direction is:

‘ LemmA 2.1, The space AE of all log-comcave distribution functions
18 o closed, and hence compact, subset of (4+, £).

Proof. Let {F,} be a sequence in 43 and suppose ¥, > F so that
Fedb. Let by =sup{w| F(z) =0}. Let @y, &, %,> by be continuity
points of I so that for some constants p, ¢ > 0 with p--gq = 1 we have
Zy = p@;+ ga2. Then since log is continuous for positive reals and the {F,}
are log-concave, we have

(211)  TlogF(w,) = limlogF,,(2,) > lim (plogF,, (v,) +qlogF,,(x,))
Nn—ro0 n—+oo

= plog F(x,)+ qlog F (x,).
Next let @y, 2, 4, > by be arbitrary with o, < @, < Ty, 80 that if

(2.12) EP = (Zo—&;)/(@a—2;) and ¢ = 1-p,

then @y = p@, -+ g2, with p, ¢ > 0. Now %(F), the set of continuity points
of F, iy dense on the real line. Thus we may choose sequences {zo(n)}
{m()}, {w:(n)} in € (F)N\(by, oo) 50 that x,(n) » 4, for i = 0,1, 2 (ie., w.(n;
converges to x; from the left for ¢ = 0,1,2). For each integer nzlet
2o = (0o(n) =, (m)) | ([@(0) —2y(n) amd g, = (1—p,), 50 that w,(n)
= Pp@s(N) + ¢, @, (n) for all n. Clearly the sequences {@;(n)} can be chosen
so that p,, g, > 0 for all n, i.e. o;(n) < @, (n) < ,(n) for all n. Note by

- ©
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(2.12) that we then have p,—p and ¢, ¢. Thus, using the left eonti-
nuity of F, (2.11), and the continuity of log we have

log F'(#,) = lim log F(w,(n)) > lim (p,log Pz, (n)) + gulog F(w, ()))

= plog F (z,) + glog ' (x,),

whence F is log-concave, completing the proof.

LEvMA 2.2. For any Archimedean t-norm T, the space A of all T-log-
concave distribution funclions is a closed, and hence compact, subset of
(4%, 2).

Proof. Let {F,} be a sequence in A and suppose F, > F, where
F e A*, Now h, the multiplicative generator of 7T, is a continuous, in-

creasing function, whence if hF,, is given by (1.7), then clearly hF, 2 P
But, by the definition of T-log-concavity, {LF,} is a sequence in A4%. Thus
Lemma 2.1 implies that AF € 43 or, equivalently that F is T-log-concave,
completing the proof.

We can now prove the following key resulb:

THEOREM 2.4. For any Archimedean t-norm T, the map

(2.13) Op: (4, %) > (g, Z*)

is a lomeomorphism.

Proof. By (P2) the map (2.13) is one-to-one and onto. In addition,
it easily follows from Corollary 2.1 that the map (2.13) is continuous.
But then by [16], Thm 17.14, a continuous, one-to-one, onto map from
a compact space to a Hausdorff space is & homeomorphism and (g, L7,
being a metric space, is Hausdorff. This completes the proof.

By (P2) we then also have:

COROLIARY 2.3. For any Archimedean t-norm T, the map Op: (Hp, L¥)
— (43, &) is & homeomorphism.

Another property that now follows easily is:

COROLLARY 2.4. For any Archimedean t-norm T, the operation of
Forming T-log-concave envelopes, i.e., the mapping F — ¥y, 18 CONLINUOUS.
In particular if F, % F in A%, then (Fp)p— Fa.

Proof. By Corollaries 2.1 and 2.3 we have that the map €70y is
continuous on (4%, £). Since, by (P4), for any F € 4* we have CrCn B
= Fy, the result follows.

The following immediate consequence of Lemma 2.2 and Theorem 2.4
is useful for studying the convergence of T-conjugate transforms.

COROLLARY 2.5. For amy Avchimedean t-norm T, the metric space
(g, L) is compact, and, hence, complete.
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Two further properties which eagily follow from the compactness
and completeness of (o, L") are:
CoROLLARY 2.6. Let T be an Archimedean t-norm and let {p,} be a sequence
n oL, such that the sequence {g,(2)} converges for all 2 > 0. Then
(1) The function ¢ defined by @(2) == lime,(2) for 2> 0 and ¢(0)
= lim ¢(z) belongs to of 5. e
A0+

(2) If, furthermore, the sequence {®,(0)} also converges and if 6(z)
= lim ¢,(2) for oll 2> 0, then 0 € o, if and only if 0 is continuous at 0.

N—>00

Proof. The proot is an easy cxercise using the fact that conjugate
transforms are continwous functions on [0, o).

We can now characterize the relation between convergence of distri-
bution functions and convergence of the corresponding conjugate tran-
sforms.

THEOREM 2.5. Let T be an Archimedean t-norm. Then for any sequence
{pa} i1 oy @ (7) = @(2) for all 2 > 0 if and only if Ohe, > Che.

Proof. The theorem is just a restaterment of Corollary 2.3.

TEmOREM 2.6. Let T be an Archimedean t-norm and let {F,} be a se-
guence in A*. Then, for B e A%, (F)p > Fy if and only if OpF,(2)
Cp B (2) for all 2> 0.

Proof. The result follows from Theorem 2.5 on letting ¢, = CpF,
for all » and ¢ = C,F and applying property (P4).

Two important special cases are convergence in A" to ¢ and to &,.
As in the theory of infinite produets, convergence to s, corresponds to
divergence. Here we have:

THEOREM 2.7. Let T be an Archimedean t-norm and let {F,} be a se-
quence in A*. Then

(i) B, 5 & if and only if OpF,(2) — 1 for all 2> 0.

(i) F, % e, if and only if O,F, () — h(0) for all 2> 0.

Proof. If Fnl‘?e,,, then, by Corollary 2.2, CpF,(2)~ Opse(e) =1

for all 2 > 0. Conversely, suppose O F, (2) — 1 for all ¢ > 0 and let y > 0,
Then

(2.14) OpF,(1) = max{supe “aF,(x), sup ¢ *hF,(2)}
T2y oy
< max{e”?, hF, (y)}.
Since ¢7¥ < 1 and C,pF, (1) -1, (2.14) implies that AF,(y) — 1, or, since b
is continuous and increasing with A(1) = 1, that 7, (y) — 1, establishing (i).
Similarly, if Fni ooy themn, OpF, (2) — Ope(2) = h(0) for all 2 > 0.

icm°
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Conversely, let 8,(2) = h(0) for all 2> 0 so that, by (1.10_), _BT € .1?(1.
and assume that CpF,(2) = h(0) = 8n(%) for all 2> 0. Now it is easily

shown that 6p = Cpe,, Whence Theorem 2.6 implies that (F g > (Seo)r

= &,. But, by (P3), (F,)p=>F, for all n, whence, necessarily, F,,l'i Eo0s
yielding (ii) and completing the proof.

The next results yield a much simpler test for convergence to &, and
to ¢, in A%, .

LuuMA 2.3. Let T be an Archimedean t-norm and let {p,} be a sequence
in Ap. Then

(i) If @, (y)— 1 for some y > 0, then p,(2) > 1 for all 2= 0.

(ii) If @,(y) = O for some y > 0, then p,(2)-> 0 for all 2> 0.

Proof. If ¢,(y)->1 for some y >0, then, by the non-increasing
character and boundedness of the {p,}, we have that g,(2)—>1 for all
0 <2<y. Also, using the log-convexity of the {p,}, we have, for any
a > 1,that

loge, (¥) < (1—1/a)loge,(0) +1/alogp, (ay)
or, since loge,(0) <0,
0 > logg,(ay) = alogp,(y) > 0.

Thus logp,(ey) >0 or @,(ay)-=1 for any a>1, which establishes (i)

Similarly, if {,} is a sequence in s/r such that oY) n 0 for some
y > 0, then, since each g, is non-increasing and non-negative, we ha‘,ve
@n(7) — 0 for all z>y. Also, for any a with 0 < a <1, we have, using
the log-convexity of each @, and the fact that loge,(0) < 0 for all =,
that

(218)  logg,(ay) < aloge,(y)+(L—a)loge,(0) < aloge,(¥).

But loge,(y) - — oo, Whence (2.15) implies that loge,(ey) — —oo or
@ulay)—>0forall0 <a<l. Therefore ¢, (2) — 0 for all 0 < # < y, yielding
(ii) and completing the proof.

Note that if T is Archimedean but not strict, then, by Corollary 1.1,
h(0) > 0. Thus, for any ¢ € g, ¢(?) > h(0)> 0 for all > 0. Hence,
for any sequence {g,} in <, it is impossible for @, (2) > 0 for any 2= 0.
Thus, part (ii) of Lemma 2.3 is only of use when T is striet.

Combining Lemma 2.3 with Theorem 2.7 yields:

THEoREM 2.8. Let T be an Archimedean t-norm and let {F,} be a se-
quence in AT, Then

(i) If, for somey > 0, OpF,(y) -1, then F, 5 gpin AT,
(ii) If, for some y > 0, CpF,(y) — O, then F, 5 e, in A%,
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‘We conclude this section by pointing out that the space of T-con-
jugate transforms, &/, can be endowed with the structure of a topological
semigroup. For any Archimedean #-norm 7T, define the operation pg,
for ¢, 0e Ay, by

(2.16) Pr(p, 6)(2) = max{li(0), p(2)6(2)} for all 2>0.

‘We then have:

THEOREM 2.9. For any Archimedean t-norm T, (S p, Pgy L*) is a com-
mutative topological sem'lgroup, with zero O, where 6p(2) = h(0) for oll
220, and unit 0y, where 0,(2) = 1 for all z = 0.

Proof. To show & is closed under the operation p, we first note
by (P2) that, for any ¢, 0 € oy, there exist F, G € 4} so that C,F =¢
and Op@ = 6. But then, by (2.16) and (P1),

(2.17)  pple, 6) = max{h(0), OpF-CpG} = Op(tr(F, §)) & op.

The remainder of the proof is easily verified.

If T is an Archimedean t-norm which is not strict, then (4%, 7, &)
is not a topological semigroup because, as shown in [6], 45 is not closed
under 7y. But by [6] if T is strict, then 47 is closed under =, so that
(4%, Ty, £) is a sub-topological semigroup of (4%, 75, £). Also, from
(2.17), for any F, G e 4%, we have Oy (vp(F, ) = pp(CpF, Or@), ie., Cp
preserves the operations v, and p,. Combined with Theorem 2.9 these
facts yield:

THEOREM 2.10. For any strict t-norm T, (4%, tp, Z) is topologically
isomorphic to (Ap, Py, £L*), via Cp.

3. Convergence of 7, Products. To introduce this topic we begin with:

DEFINITION 3.1. For any #norm and any sequence {F,} in 4%, leb
the sequence {vy(Fy, Fy, ..., F,)} be defined recursively by w5 (F;) = Fy
and for n>2

Tp(Fyy ony By) == ’51’("72‘(17'1: R D Fn)"
Since 7, is an associative operation on 4%, vp(Fy, ..., F,) is well-
defined.
Note, since each 7, operation is non-decreasing, that for any n > 1,
o (Fry ey By) = 7 (TT(FH---:Fn), So)
= Tp (TT(Fl)"‘apn),Fn+1) = Tp(F1yeey Frys)-

Thus {7p(Fy,...,F,)} I8 & non-increasing sequence in A* and, hence,
has a weak limit in A*. Our primary interest is in determining when this
limit is non-trivial, i.e., # &,.
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The following extension of (P1) is useful in this respect.
THEOREM 3.1. Let T be Archimedean and let Fy € A fori =1,2,..., 2
Then, for any 2> 0,

Onlen(Fsy -y F) () = max {2(0), [ | O Fu()}-

Proof. The result is easily established using (P1) by induction on 7.
For our main result we will need some more notation.

DeEmNITION 3.2. For any t-norm T and any sequence of points {w,,}
in [0, 1], define, recursively; _T o, = 2y, T z; = T'(@,, @), and T @,
=T (ni’l @y, By).

Smce T is assoclatlve, we may also denote T w by T (01, --ey By)-
Alsolet T @; = lim T ;. Note that the sequence{ T @;} is non-negative

n—oo =1

and non-mcx-ea,smg, so that 11 z; is well-defined.
i=

s 3.1, Let T be an Archimedean t-norm and let {w,} be any se-
quence in [0,1]. Then

(1) For any positive inieger m _’l’ @y = h( H h(z)); and

i=1

(2) T @, > 0 if and only if H h(x;) >h(0

Proof (i) For n = 1, using (1 5) we have T ¥ =0 = BY (R ().
Also, for n =2, ig'l z; = T(@y, ¥s) = h[‘”{h(ml) h(mz)) by (1.4).

(ii) In [6] we showed, for any @, b € [0, 1], that

B (BB (a) +B) = AV (@-D).

Thus assume (1) holds for #n = 1,2, ..., k. Then we have that

41

k
To =T, T PR ] (1 A RIC )

k
— Bl (hh[‘” ( n h() -h(m,,+1)) = hi~u (( I1 h) 'h(wk+1))
i=1 i=1
k41

= piu (n h(wi)),

=1

completing the induction and the proof of (1).
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Next, by (1) and the continuity of A1 we haNe T w; = h=1( [7 h(x)),
2

from which (2) then follows since, by (1.5), =Y (z) > 0 if

o y ), F ( ) and only if
THEOREM 3.2. Let T be an Arahzmedeom t-norm and let {F,} be a se-

quence in A*. Let G, = vp (¥4, .. )y for m =1,2,... Then {@,} does

not converge weakly to ¢, i.c., has a mn—mmal lwmt @f and only if there

8 a sequence of positive numbers {a} such that

Z 4, < oo
qe=]

P'ro of. Agsumes that {@,} does not converge to ¢,. Then by Theorem 2.7
there is @ w > 0 such that {C,@,(w)} does not converge to %(0). But by
the remark after Definition 3.1 fmd (B5), {0zG,(w)} is a non-increasing
sequence of real numbers, each of whleh 1s greater than or equal to %(0),

he];xce the limit of the sequence exists and, from the above remarks, necess-
arily,

and 1?1 Fa) >0

lim C, @,

N~+00
whence, in particular, 0z, (w) > h(0) for all n.
Thus, using Theorem 3.1, we have

1(0) < nﬁ_{xxoman(w) =m0y (vp(Fy, ..., F,)) (w)

(w) > R(0),

= limmax{1(0), H OpFi(w)} = lim ﬁ O Fy(w)
= QOT.F,;(’UJ ﬂi‘;?e hE, ().

Next, select a sequence {p,} with 0 < p; < 1 for all 5 so that

p; > h(0)/ supe~hRl,(x)).
ﬂ 4 ) ( !__II x>lo) 1 ))
Now, for each integer 4, there is an @, > 0 such that

e~ F (a) >

(3.1)

p,(sup "R, (w)) .
For these a,, using (3.1), we have

ne YUORE (@) /np, sup e~ hE, (x))
=0

i=1 i=1

(ﬁ pz)(]_[ SUp &~ 4 (a)) > 1(0).

] iml &0

(3.2)

icm
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It follows from (3.2) that H 6% =exp[—( > a)w]> 0, whence
o B=1 i=1

2 a; < co. Moreover, since [] e7%% <1, (8.2) also unphes that H LF (@)

=1 =1

> h(0) which combined with Lemma 3.1 yields that T F(a;) > 0.

Conversely, assume there exists a sequence of positive numbers {a;}

satistying > a; < oo and ,Tl F,(a;) > 0. We will show by induction that
i=1 i=

for each positive integer u,

n n
Go(@) > T Fy(a) for all o> D .
k=1

(3.3)

(i) For n =1, (3.3) just states that F,(z) >
which is clearly true gince ¥, is non-decreasing.

F. (a,) for all x> a,,

n+l
.., n. For any z > 2 ay,, ehoose

(ii) Suppose (3.3) holds for &k =1,
points s,  with s+t = so that s > 2 a, and 1> ay,,. Then, by (1.3)
and the induction hypotheses,

Fyp1)(@) = n+1(t))

T(kgle(ak)r Fn+1(“n+x)) = kf_l_lek(a’k)’

Qi1 (®) = T7(Gy, (G (3)

completing the induetion
In particular if z > 2 ay, then by (3.3), G, (%) =

> 0 for all n, whence {G } does not converge weakly to €0
the proof.
Note that the second half of the above proof holds for any t-norm 7'
that induces an associative operation 7y on 4+. Thus we have:
COROLLARY 3.1. Let T be amy left-continuous t-norm and let {F,} be
a sequence in’ At. Suppose there ewists a sequence of positive numbers, {a;}s

such that
o0
Dla;< oo
=1

T Fk(ak) = k’;’; Filar)

. This completes.

and 1; F(a;)> 0.
i

Then the sequence {TT(FI, ey F)} has o mon-trivial weak Umit, i.e., it

does not converge 10 &y,
Remark. The condition T F,(a;) > 0 takes various forms, dependmg

on the ¢-norm 7. For example, for T = product the condition ig H Fy(ay)
i=1
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o} > 0; and for T
=max{e+b—1,0}, it is 3 (1—TF(a,)) <L
i=1

‘We close with two congequences of the preceding results. First:

COROLLARY 38.2. Let T' be Archimedeoan and let {F,} be a sequence in A™.
f for some number M < 1 there ewists & sequenoe of non-negative numbers {a;}
such that

> 0; for T' = Min it is inf {F;(a, =T, where T, (a, b)
U oo

and

s

(8.4) @; = o0 I (e < M for oll k,

-,
H
it

then
Tp(Fyy ey Fo) 5 6.
Proof. Let {a} sa,tisfy (3.4) and let {b;} bo a sequence of positive
numbers such that 5’ b; < co. Then clearly by (3.4) the set J = {k|

=1
by < a3} is infinite. Hence

bt |
[ 120 < [] 185,00 < [ ] 0@ < [ ] 02y =

Je=1 keJ ke ked
since h(M) < 1. Therefore, by Lemma 3.1, kll F,(b;) =0, whence by

Theorem 3.2 7p(Fy, ..., F,) > e,, completing the proof.
Remark. Corollary 3.2 gives a sufficient, but not necessary, con-

dition for 7, (#y, ..., F,) > 6. Consider the following example. Let
<0,

3.5 7 =1,2 5

(3:5) a) = {1 16+1), 0<uam; 15

and let T = Product. Then by (3.5), for any M < 1 and any sequence
e

of non-negative numbers {a,} such that 3 a;, = oo, there are only a finite
Ge]

number of indices ¢ with a;, > 0 such that F,(a,) < M. Thus the second
half of (3.4) is not satistied. Yet for any sequence of positive numbers {b;}

we have that [] (b)) = ['[ (L—1/(G-1)) =0 since 21/ (i--1) = oco.
i=1 dom
Hence by Theorem 3.2, rpmd(I’l, R L - P Note, since JF; 5 ey

for any ¢, that "Prod(Flv ey
is a strict f-norm.

OoROLLARY 3.3. Let T be an Archimedean t-norm and let {F,} be a se-

quence in A*. Then either t4(Fy, ...
both.

F,) # &, for any integer # because Prod

v F) S e, or BB 5y, and possibly

icm
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Proof. Suppose {vp(¥,, ..., F,)} does not converge weakly to ¢.
Let y > 0 be fixed and ¢ > 0 arbitrary. For each integer 4, let

a; ={0’
Y,

By Corollary 3.2 we must have Z @; < o0,i.e.,theset J = {i| F,(y

I Fi(y)>1—e,
it Fiy)<l—e.

1—g}
must be finite. But then, for some integer N, we must have that ¢ > N

implies #;(y) > 1—e¢ 8o that F,(y) -1 and hence Fn—> &9

The “possibly both” part of the Corollary is demonstrated by the {7}
defined in (3.5), where we have F; > &,, even though 7,(#y, ...,
Thus our proof is complete. »

Remark. If T is a continuous non-Archimedean ¢-norm, then T'(c, ¢)

F)5e..

=¢ for some ¢e&(0,1). Then, letting ¥; = F for i =1, 2, ..., where
0, =<0,
F
@) {07 0 <w;
it can easily be shown that 7,(¥,F) = F. Hence t5(F,, ..., F,) =F

for all # so that =, (¥, ..., F,) -4 &, and F, 2> &), i.e., Corollary 3.3
does not hold for non-Archimedean #-norms.
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‘Weighted inequalities for vector-valued
maximal functions and singular integrals

by

EKENNETH F. ANDERSEN (Edmonton, Alta) and RUSSEL T. JOHEN
(Holmdel, N. J.)

Abstract. Weighted weak and strong type norm inequalities are derived for
a vector-valued analogue of the Hardy-Littlewood maximal function operator and
these in turn are used to obtain weighted inequalities for the classical Marein-
kiewicz integral and a wide class of singular integral operators defined on R”,

§1. Introduction. The Hardy-Littlewood mawimal fumotion f*(x)
is defined for locally integrable functions f on R"™ by

NS .
(@) = sup lmqfif(y)l dy (seR",

the supremum being taken over all cubes @ of Lebesgue measure |Q],
centered at x with sides parallel to the co-ordinate axis. The operator

M: f—f* and its variants have been widely studied, in particular, the
well-known inequalities

(11) JIFf@Pri<0, [Iforde (1<p< o),
RN RN
(1.2) {z e R [*(2) > a}| < Ca™* [|f(a)lde  (Va> 0),
R"
(1.3) ess supf*(z) < ess sup |f(@)|
zeR™ 2eRM

have been generalized and extended in various directions.
Let o(x) be non-negative, locally integrable on R®and for measur-
able B < R" put o(H) = [w(z)ds. We say that wed, (L<p< o)
B

if there is a constant K such that

(1.4) (Tléi_ Qf m(m)dm) (ile Of w(m)“‘/""‘l)dm)p~l<K
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