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‘Weighted inequalities for vector-valued
maximal functions and singular integrals
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EKENNETH F. ANDERSEN (Edmonton, Alta) and RUSSEL T. JOHEN
(Holmdel, N. J.)

Abstract. Weighted weak and strong type norm inequalities are derived for
a vector-valued analogue of the Hardy-Littlewood maximal function operator and
these in turn are used to obtain weighted inequalities for the classical Marein-
kiewicz integral and a wide class of singular integral operators defined on R”,

§1. Introduction. The Hardy-Littlewood mawimal fumotion f*(x)
is defined for locally integrable functions f on R"™ by

NS .
(@) = sup lmqfif(y)l dy (seR",

the supremum being taken over all cubes @ of Lebesgue measure |Q],
centered at x with sides parallel to the co-ordinate axis. The operator

M: f—f* and its variants have been widely studied, in particular, the
well-known inequalities

(11) JIFf@Pri<0, [Iforde (1<p< o),
RN RN
(1.2) {z e R [*(2) > a}| < Ca™* [|f(a)lde  (Va> 0),
R"
(1.3) ess supf*(z) < ess sup |f(@)|
zeR™ 2eRM

have been generalized and extended in various directions.
Let o(x) be non-negative, locally integrable on R®and for measur-
able B < R" put o(H) = [w(z)ds. We say that wed, (L<p< o)
B

if there is a constant K such that

(1.4) (Tléi_ Qf m(m)dm) (ile Of w(m)“‘/""‘l)dm)p~l<K
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for all cubes @ — R" In (1.4), products of the form 0-oco are taken to
be zero, and for p = 1 the second factor on the left is understood to be
ess sup o (x)"*. In [13] B. Muckenhoupt proved that w e 4, is both necess-

2eQ
ary and sufficient in order that the following weighted analogues of (1.1)
and (1.2) should hold:
(1.5) [ 1f*@Po(@)de
"

<0, [If@Po@de  (1<p< o),
R

(1.6) o({weR": f*(@)> a}) P < o).

<o [If@Po@dn (1<
n’n

These results were used later by R. Hunt, B. Muckenhoupt and. R. Wheeden
[9] and by R. Coifman and C. Fefferman [5] to obtain weighted norm
inequalities for Hilbert transforms in R' and singular integrals in R",
respectively.

In a different direction C. Fefferman and E. Stein [7] obtained
vector-valued analogues of (1.1)—(1.3) and applied these to obtain certain
estimates for the Marcinkiewicz mtegml I f = {fu)y, I8 & Qequenee of

= {fi}?, and [f(2)|, = (Zlfk (@)},

1 < 7 < oo, their main result may be stated as follows:

(L.7) f f* (@

locally integrable functions on R", f

a)Pdo < 0,y f If(@Pde  (1<p< o),

(1.8) Kz eR™ |f2),> a}| < 0,077 [If(2)Pdo
nn
(1.9) If |EB| < oo and |f(®)], is bounded and supported on F, then

If*(@)[; € exp L(H).

(1<p< ).

The purpose of this paper is to obtain the weighted analogues of
(1.7)~(1.9), the corresponding weighted estimates for the Marcinkiewicz
integral and weighted norm inequalities for a wide class of vector-valued
singular integral operators. Section 3 iy devoted to the statement and
proof of results for the vector-valued maximal function operator; the
application to the Marcinkicwicz integral iy given in Section 4 while
Section B containg the results for vector-valued singular integrals. Section 2
containg the statement of two interpolation lemmas as well as several
facts about the A, condition which are required in the sequel.

As usual 0p, ... will denote an absolute constant, not necessarily

the same at each occurrence, depending only on %, w and the parameters
indicated by subseripts.

§ 2. Preliminaries. In addition to the 4, condition already defined
for 1< p < oo we shall require also the 4, condition, namely w e A,

icm
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if there are positive constants K, é such that
o(B) ( 1B}y’
< rl=L
w(@ ~ el

for every cube @ and measurable B < @.

The following properties, used frequently in the sequel, are stated
here for easy reference. For proofs, see [13], [5], [9] and [14].

(2.1) o@ed,o@ Ped,, 1<p<eo,ljp+ljp’ =1,
w(z)ed, >o@ed, Ve>p,

(2.2) w(@) ed,, (p>1) = n(z)ed, for some ¢<p,
o(z) e A, < o(x) e A, for some p=1,
(2.3) wo(®)ed, = w(@) >0 ac. and o(@)? is locally integrable for
some ¢ > 1,
(24) o(r)ed, = o(@) <Co(@) for all cubes @ where @ is the cube

concentric with @ and diameter (§) = 2 diameter (@).

The following interpolation results will be required. The first is essen-
tially the Marcinkiewicz interpolation Theorem, see [1]. The second is
a vector-valued analogue of the Riesz convexity Theorem; for linear
operators it is proved in [2] while the extension to the sublinear case
may be patterned along the line of proof given in [4] for the scalar-valued
case.

Let S denote the linear space of sequences f = {f;} of the form:
fe(@) is a simple function on R" and f;(x) = 0 for all sufficiently large k.
8 is dense in ZE(I"), 1< p, r < oo, see [2].

Levva 2.1. Let o(z)>0 be locally integrable on R", 1< r < oo,
1< p; < ¢; < oo and suppose T is a sublinear operator defined on 8 satisfying

o({w e R": [Tf(2)],> a}) < _Mqia—qi( flf(W)Ifiw(w)dw)""”"

for i = 0,1 and fe 8. Then T extends uniquely to a sublinear operator on
LA () and there i8 a constant M, such that

( [1IF @) o @a) "< 2, [ 1f @ o@do)”
R R®
where

(1/p,1lg) = (L — 0)(1/po, 1/go) +6(1[p1, L/00),

LeMMA 2.2. Let o(x) > 0 be locally integrable on R, 1 <7, 8; << oo,
1< p;y §; < oo and suppose T is a sublinear operator defined on 8 satisfying

( Jm@ial (w) da) < 21, Jis@r, o (0) da)

<<,
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Jor i = 0,1 and felS. Then T ewtends uniquely to a sublinear operator
on LE(I") such that

( [ 1zf(@ 8o @da)< M- ml( [ 1f(@)2o(o)d)®
where * ¥

(Lfp,1/g, /s, 1[r) = (L —6)(1/po, 1/g0; 1[50, 1/re)-+
+O0(1/p1, L/ga, 181, 1fry), 0O,

§ 3. Maximal function jnequalities. In this scction we prove the
following theorem.

THEOREM 3.1. Let L<r < oo and suppose H < R™ with [E| < co.
(8) If 1L < p < oo, there is a constant C, , such that
o({we R |f* (@), > o)) < Ogpa? [|f(@)w(a)de
nn

if and only if w e A,.
(b) If 1 < p < oo, there is a constant C, , such thai

[P @Ee@de< 0,, [If@)Eo@)ds

R

R"

(3.1)

(3.2)

if and only if we A4,.

(¢) If w(w)? is integrable on B for some ¢ > 1, in particular if o e 4,
and B is a oube, then |f*(x)|" e exp L, (B) whenever |f(w)|, is bounded and
supported on H.

H. Heinig [8] has recently obtained (a) in the case p = 1 and has
also given some results for p in the range 0 < p < 1. The weights con-
sidered there satisfy the condition o*(z)< Kw(®) a.e. which is readily
seen to be equivalent to the 4, condition.

For the proof of Theorem 3.1 we require the following duality result
of C. Fefferman and E. Stein [7], Lemma 1.

LevvA 1. Let f, 9 be non-negative real-valued functions on R™ and
suppose r > L. There ewists a constant C, independent of f, ¢ such that

(3.3) [ @)re@do< 0, [|f(@)e*(@)d.
" yixg

Proof of Theorem 3.1. We ghall prove (a) and (b) first, then (c).

Ooncerning the necessity of w & 4, there is nothing to show since
o €4, is already necessary in the scalar-valued case, f = {fi}, fr(2) = 0,
k =2,3,... according to Muckenhoupt’s results (1.5) and (1.6).

- The sufficiency of w € 4, for (a) and (b) will be achieved as follows.
We first obtain (3.2) for p = r as an easy consequence of (1.5); then (3.1)
is derived for r> p and (3.2) is then obtained for r > P by an appeal
to Lemma 2.1. A duality argument then yields (3.2) for » < p and r suf-

* ©
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ficiently small; finally (3.2) follows for all » <p by an application f’f
Temma 2.2. Since (3.2) always implies (3.1), the proof of (a) and (b) will
be complete.

Observe first that (3.2) for the case » = p is an easy consequence of
(1.5) since

34 [If@fe@d = > f{f;(m)['w(w)dmngkf [ful@) o (@)
RN R" n

=0, [If@)o@)ds.
R"

Now suppose » > p, o € A, and « > 0. Asusual, we can assume without
loss of generality that f € 8, for then the general case follows by a standard
limiting argument. The Calderén—Zygmund decomposition [15], pp. 17-18,
yields a sequence of non-overlapping cubes {g;} such that

(3.5) f@),<e, ¢ = LIJQ,-,

1 .
= n =1,2,...
(3.6) “< ij if(@),do < 2"a, j ,

Let f =f +f" where f' = {fi}y fu(®) = fi(®) Zgn_,(®). Minkowski’s in-
equality shows that ‘
If* @)1, < If™* @)+ 1F ™ @)1,
80 that (3.1) will follow if we show that

(3.7) wl@e R |f*(@),> a}) < Oppa™® [If(@)Fo(@)ds
R"

and

(3.8) o({e e R |f™*@)l,> o)) < 0,07 [If(@)Fol)ds.

Rﬂ-
Since o € 4, by (2.2), (8.4) holds with f in place of f, and hence the Cheby-
shev inequality yields

o({e e R |f*@),> a}) < C,a™ [If (@)o()de
B
and since, by (3.5), I (z)L < &P |f ()}, we obtain (8.7). To prove (3.8),
define f = {fi} by
[ifldy, 2eQi=1,2,...,
“ otherwise

1
Fol) =1 1051
0

and let §; denote the cube with the same center as @; but with diameter

(@;) = (2n) diameter (§;). It is shown in [7] that i (@) < OF (=) for
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@ ¢ 2 = J§;. Thus (3.8) will follow if we show
1

(3.9) 0@ < 0a” [|f(@)f o) ds
and o
(3.10) o({owe R |f*@), > a}) < 0,07 [|f(@)Fo(2)d

"
If p > 1, Holder’s inequality applied to (3.6) shows

=Q!w(w>dw< Ile(flf(av)lrdw) fww)dw

el foor el oo

and since w €.4, we obtain
(8.11) (@) < 0™ [If(a)? o(e)do
Qj

A gimilar argument shows that (3.11) holds also if p = 1. Using (2.4)
we see that (@) < Cw(@,) and hence (3.9) follows from (3.11) upon
summing over j. Now Minkowski’s inequality shows, by virtue of (3.6),
that |f(2)|, < 2", and since |f(@)], is supported in 2 wo obtain in 2 manner
similar to the proof of (3.7)
<0, [
Q

wlfzeR: |f*(@), > a}) <
which together with (3.11) yields (3.10) as required. This completes the
proof of (3.1) in the case r = p. If r > p > 1, (2.2) shows that for w € 4,,
(3.1) holds with p replaced by p; and p, where p, <p < p, <7, hence
Lemma 2.1 yields (3.2) for » > p > 1.

Suppose now that p > r and w € .4,,. By (2.2) thereis anry, 1 < ry<p
such that w € 4,, ¢ p/r,. In particular, (2.1) and (2.3) yield w(z) >0
a.e. and w(m)““ €4, so that by (1.5), if ¢ > 0 belongs to the unit ball
of ILL(R™), then

[ lgo)* @)% o
Rr

a f If(@)re( o () do

@) Tdo< 0, [lp@) o(2)d

nn

:::Cq’

and hence Lemma 3.1 and Holder's inequality shows

(3:12) f If* (@)l (2) 0 (2)dw < C, f If @) [(p)* (@) /o (@)] (@) do

<0,,q( J f@)f (@) da)".
nn
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Taking the supremum in (3.12) over such ¢ then yields (3.2) for 1 <r<r,
upon taking ¢ = p/r, and this together with the case p = r proved in
(3.4) yields (3.2) for 7, <7 < p by an application of Lemma 2.2. The
proof of (b) and with it also (a), is complete.

Finally we prove (c). Observe first that the hypothesis on o and
Holder’s inequality shows

[ enotao [ evera (| wara”
E E B

so that |[Yllexpr, < Oligllexpr- Henee

(318)  lpolmz = sup | [ lp(@)p(@) 0 @)do: [Pleps <1}
E
< lolz, 0259 (Wlexpz,? ¥lersz < 13 < Clipllz mz -
Now if () >0, |f(=)], are supported on ¥ and |f(«)|, is bounded, Lemma 3.1
yields

[1f* @lp@) 0 (@) ds < C, [ If (@) (pw)* (@)d
B E

< 0,(esssup |f(a)[}) [ (go)" (@)de,
el E

and by a well-known result ([15], [17]) this last integral is bounded by
Olpwlrnr, and hence from (3.13)

[ 17 (@)
pi

Taking the supremum in (3.14) over ¢ in the unit ball of L,In L we obtain
UF* (@) Fllexpz,, < Oy (esssup | £ (2)(7)

which gives (¢). The Theorem is proved.

§ 4. Application to Marcinkiewicz integrals. Following C. Fefferman
and B. Stein [7] we can apply Theorem 3.1 to obtain new results for the
Marcinkiewicz integral Hj corresponding to a disjoint collection of cubes
{Q;}. 1f d; is the diameter of @; and y; its center, then H} is equivalent to 8;:

(3.14) p(@) o (@) de < O, (esssup |f (@) ) iplz o

n+ﬂ

8(2) = Z z—y; ln—u dn-{-/l ’

see [16], §§4, 5. On the otherhand, if 4> n(r—1) and f = {f;} with f;
the characteristic function of @, then §;(x) is bounded by 2 multiple
of |f*(x)[.. Thus we have the following theorem.
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THEOREM 4.1. Let 1 <7< oo, Az n(r—1) and suppose B is a set
oo
of fiwite measure with | JQ; < B.
1
(@) If ¢ =

a>0

1jr and w e A,,, there is o constant C,, , such that for all

o({r e R": 8,(x) > o}) < 0,67 %0

(LiJQj)-
(b) If ¢ >> 1/r and w € A,,, there is a constant Oy,

J18x@) o (@)de <
nn

(e) If w(x)? 18 integrable on B for some q > 1, in particular if wed,
and B is a cube, then S, eexpl,(H).

For related results, sce A. P. Oalderén [3], M. Kancko and S. Yano [11].

»1 Such that

Ga.r.lw(clj Qi) M

§5. Singular integrals. Let K(x) be a convolution kernel satisfying
the conditions

(5.1) \E ()| < Blo|™", |K(»)|<B
and
(5.2) | K (2 —y)— K@) < 0|yl /|o]) 1o|™™ for |o]|=2]y|

where B ig a congtant and 0(?) is non-decreasing for ¢ > 0,
and satisfies the Dini condition

1 '

. ~ 6(1)
(5.3) Sl @< oo
J t

0(2t) < 00(%)

In particular, we may take K(z) = Q2(x)/|z|® a Calderén-Zygmund
kernel, i.c. 2(2) homogencous of degree zero, of mean value zero on the
unit sphere in R” and satisfying the Dini condition

13
[ (8t /t)dt < oo
0

where
() = sup{|R(@)— Q(y)l:
Define T and T* by
If(@) =P.V. [K(z—y)f(y)dy,
"

f K(z—y)f(y) dj‘ @, a cube centered at aﬂ}

o] = ly| =1, lw—y|<t}.

T*f(w) = sup

Qp  pnl

icm
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M. Kaneko and 8. Yano [11] have shown that w € 4, implies the in-
equalities

(6.4  [IIf@fe@d<0, [If@Fo@ds (1<p< )
R RM

and

(5.5) o({zeR: I'f() > a}) < Ca™ f If(2)| o (@ (p=1.

BEarlier, R. Coifman and C. Fefferman [5] proved (5.4) for a more restricted
clasg of kernels, namely when 6(f) = Bt in (5.2). Of course (5.4) and (5.5)
yield the corresponding inequalities for 7' in place of 7. Unweighted vector
analogues of (5.4) for T have been given by A. Cordoba and C. Fefferman [6],
see also A. Benedek, A. Oalderén and R. Panzone [1], J. Marcinkiewicz
and A. Zygmund [12].

Suppose now that {K,(z)} is a sequence of convolution kernels satis-
fying (5.1)-(5.3) with a uniform constant B and fixed 6 independent of k.
E f ={f}, let Tf = {T.f}, T'f — {T%f,} where of course T, and Tj
are the operators defined above corresponding to the kernel K;. We shall
prove the following vector-valued analogues of (5.4) and (5.5):

THEOREM 5.1. Let 1 < r < oo and suppose w € A,. There ewists a con-
stant C, such that for all « > 0
{5.6)

o {{w € B*: |T*f(x)|, >a}) < 0,0 flf(w)b x)dw

THEOREM 5.2, Let 1 <7 < o0, L < p < oo and suppose w € A,. There
is a constant C, , such that
(8.7) [IT*f (@R o @) i <

nn

Crp f If (@) o (2)d

Again (5.6) and (5.7) imply the corresponding results for 7' in place
of T*, however, it is possible to give an alternate proof of those results in
the special case 6(f) = Bt by following thelineof proof used for Theorem 3.1.
In the courge of such a proof, the Calderén—Zygmund decomposition
is used to write f = g+ b (as in the proof of Theorem 5.1 below); the
contribution of Ty is handled in the same way that f'* was while that of Tb
is estimated as in [157], p. 32 by the Marcinkiewicz integral and an appeal
to Theorem 4.1. The required duality relation is provided in A. Cordoba
and C. Fefferman [6].

The proof of Theorem 5.2 requires the following result which is a con-
sequence of Theorem 5.1.
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LemmA B.1. Let 1 < r < oo and suppose w € A_,. There are constants
C,, 6 > 0 such that
(5.8) o({zeR": [T*f(@)l, > 2¢, If()[} (@) < ya, |f* (@), < ya})

< 0,0 w({zw e R |T*f(a)|, > a})
for all a> 0, y>0.

Proof of Theorem 5.1. Suppose fe S and a> 0. As in the proof
of T.heorem 3.1 the Calder6n~Zygmund decomposition yields a sequence
of disjoint cubes {Q,} and we write f = g--b where g = {g},

Jul)

i 2é0=UJQ,
g (@) = !

1
il d i s
|leg'[fk(y) y i ze@;j=1,2,...

Since w € 4,, we have

g 1
QJ ‘“””"f“"”’”’””ﬁ"@f lf(y)lrdyef w(a)do
i 7

g(Tél}T [ lf(y)lrw(y)dy)(eszssg;m —;(la)ojf o (0)dw

<
<K [ Ifw)e)dy
9y

go that

(6.9) f g(@),0@de<0 [|f(@)o0)d.
Thus, it suffices toRprove -

(610)  w({weR": |T"g(@),> a}) < 0,0 [lg(@)|, o (@)do
and "

(5.11)!

o({o e B |T*b(0)l, > a}) < O, [ If(2),0(x)do.
RN

Since o € 4, by (2.2), the Chebyshev inequality, (5.4) and the fact that
1g(®)], < 2"a yields (5.10) immediately. Let Q;" be the cube concentric

with @, with diameter 3Vn times as large. The same proof ag that given
in [15], pp. 43-44, shows that for @ ¢ Q* = L)@}
1

Tibu(a) < j}j Qf Ew(a—y) — Ky —y,)] [0uly)|dy +0i(@)
=1 @

icm
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where y;is the center of @;. Now for such  and y €Q; we have [z —y| =21y —¥;!
50 that the hypothesis (5.2) followed by Minkowski’s inequality shows that

N ly—91\ 16(®)]
5.12 T*b()], < E 9(————’ )w—'—»d 40 p*(w
( ) l ()lr\j=1 Q_jf lm_‘yl lw—yl" Y l ()lr
for » ¢ 2%, Denoting the sum of ferms on the right of (5.12) by Z(),

is suffices to show

{5.13) o({we B~ Q*: Z(@)> a}) <0 [ 1b(@)|, (@) do

R

in view of Theorem 3.1 and the estimate, as in (3.9),

o(2%) < Oo(Q) < 0o [ |f(@)],0@)ds.
RBR"

Now if d; = diameter (Q;), then

@ (%)

= ly — 9,
Z(@)o(@)dr < 1b(y), 9y 0( . )—*‘—r. dz
m_fm / | oGe=st) o=

§=1 Q; RA—QF

IR eel

= lz—y| >dj

and Theorem 2 of [15], pp. 62—63, shows that the inner integral is bounded
by Co*(y), and since w € 4, implies w*(y) < Co(y) a.e. we have
[ Z@)o@d<C [ b))y
RBR"—Q* Q
which yields, by the Chebyshev inequality, (5.13) as required. The proof
of Theorem 5.1 is complete.

Proof of Lemma 5.1. We follow as closely as possible the proofs
givenin [5]and [11]for the scalar valued case. By the Whitney Lemma 157,
p. 16, the open set 2 = {z € R": |T*f(x)|, > a} is the union of non-over-
lapping cubes |@;| with the property that the distance from @; to R"— Q
is comparable to d; = diameter (Q,). Thus there are pointi; x; € R* — 0o
such that the distance from a; to @; is less than 4d,. Let @; be the cube
concentric with @; but of diameter say, (21Vn)d;. Note that @; = Q;.

The main step in the proof is the inequality

@ e Q;: IT*f(@)l, > 2a, If()* (@) < 7a, IF* (@), < ya}| < Cry 1@yl

for then (5.8) follows by applying the definition of € 4, and summing
over j.

(5.14)
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To prove (5.14) we may assume that there are poi

points & and #; in
su.ch that | feonr (&)< ya, | F*(m)l, < ya and also that y is jsma,ll jothe%
wise the inequality is trivial. Write f = w49 where % = {u}z Uy, ()
= fi(®)1g;(#). Since & €@, = §; we have o

1 1
'—QFR{ I (@), do =r@—laf [f (@)l do < 1F(-)17 (&) < ya
7

and since the weight i = igfi
o ght function w(®) = 1 satisties 4,, Theorem 5.1 ghows

(8.15) Ho e R™: [T*u(2)], > a/2}] < 0,7 1@y
Now it is shown in [11], pp. 579-580, that for x e @y we have
Trvr() < Tifu(®y) -+ Ot (ny)
and hence also
, IT*v (@), < 1T ()], + O 1F*(n)], < o+ Opa
since a; ¢ Q. Hence (5.15) yields
o € Qp: |T%f()l, > a/2+ a+ COya}| < C,p19,]

which implies (5.14) for small y as required. The lemma is proved.
Proof of Theorem B5.2. It is sufficient to  § i
) . prove the inequalit;
for f = {f} with f, = 0 for all sufficiently large %, say % > XN, , f«;lr thei
the g'en.eraJl.ca;se follows by the monotone convergenee theorem. Since
o € A, implies » € 4,,, Lemma 5.1 shows that
o (foe R |T*f(2)l, > a}) < 0,90 ({w e R*: |T*f(a)], > a/2}) +
+o({z e B () (@) > ya})+o (& e R*: |f*(@)], > ya}).
Multiplying this by p a?~* and integrating over a & (0, co) yields
1T @) 0@ do < 0,9 [ IT*f(@)Fw(@)do+
¥ 13

"

+0,p [ IfOF @0 (@) do+0,, [If*@)Ew@)d.
BR" »n
By our assumption on f and (5.4) we see that

N
Mn{ lT*f(w)lfw(m)dw;gOI,(Z( f’fk(w)l”w(w)dm)’/")”< w,

k=1 gn

so that upon choosing y such that C, _»° i
g : oY <1/2 we obtain th i
inequality from (1.5) and Theorem 3.1. rﬂ;,he proof is completliz. o desired

icm
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