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On inverse-closed algebras of infinitely
differentiable functions

by
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Abstract. In this paper we are concerned with algebras Hy of infinitely differ-
entiable funetions with growth restrictions on their derivatives. These are similar
to the classical Denjoy—Carleman clagses. The main aim of the paper is to give a charac-
terization of those Hyr which are inverse closed. This question had been considered
by Rudin for the Denjoy-Carleman clagses and a similar result has been obtained by
him for the non-quasianalytic case. The proof goes through a description of the charac-
ter spectrum and a characterization of local m-convexity. Also, a problem considered
by Ehrenpreis about local images is partially solyed.

1. Introduction and hackground.

NOTATIONS. The letter I stands for a closed interval of the real line
and I = [—L, L]. B(I) is the vector space of all C-valued, 0*-functions
defined in I; we write B for B(R). |lgl; means sup{lg(e)|: @ €I} and
when I = I, we write ||g|; instead of |lgl;. B will denote the vector space
of all entire functions with its usual topology. We suppose that M = (M,,)
is a sequence of positive real numbers so that M, = expg(n) where
g: [0, co] — R* is convex, ¢g(0) =0 and t"'g(f) tends to oo a8 ¢ tends
to oo ([B]).

1.1. DErINITION. For an interval I, H, (I) iz defined as

(L) = {fe B(I)| Ye>030(e) > 0 s.t. |f®; < O(e) e" M}
and By, as the projective limit of these: By = Hm Hy(I).
&

In order that these spaces be closed under derivation we will assume
as well that there exist constants 4., B > 0 such that

(1.1) M, < AB'M, Vn.
The topology of By, (I) is defined by the norms

()
Pr.(f) =sup I,

(or, what is the same, by the norms gr.(f) = 3 (If™ly/e"M,)). By i8

»
given the projective topology, i.e. the one defined by the system of norms
(Pr.oz,.- When I = I, we denote Py, by Pr,,. )

>0
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It is clear that Hy(I) and H,, are Fréchet spaces; also (1.1) implies
fore< B

Prof) < AP p-1.(f),

Le. derivation iy a continuous operation in B, (I), B,,.

All definitions are motivated by the fact that when M, = al, the
space I, (and also all the H, (1)) is the space H of all entire functions.
We remind, though wo will not wuse it explicitly, that H, is not
quasianalytic, i.c. containg a function with compact support, if and only
i3 (M, M) < o0 ([L], [3]). '

Oonvexity of g implies MM, , < M, for 0< %< n. Then, if fe
€ Hy(I), the inequalities

@< Y (2] 1191l @)

k=0

<PLNPL(0)e Y (3) Midl s < Pr($)Prulo) ey,
k=0
prove that

-PI,za(fg) < PI,a(f)-PI,s(g)
and s0 By (1), By ave Fréchet algebras under pointwise multiplication.
Tn this context, the results we prove about the algebra B, are the following:
TemorEM A. SpecHly;, = R, SpecHy(I) =TI if and only if the se-
quence A, = (M,/n)" is not bounded above, Otherwise, SpecE, (I)
= SpecHy = C.

TemoREM B. Hyp, By (I) are locolly m-conves: algebras if and only if
the sequence (4,) is almost increasing, i.c. there emists K > 0 such that
A, < KA, forn<m.

THROREM O. The algebra By, is inverse closed, that is, f e By, and (@)

# 0 Vo imply £ € By if and only if the sequence (d,) is not bounded and
almost increasing.

Now some background. Let H;, stand for the dual space to By
the following definitions are then standard:

1.2. DErINIiox. For z € € and T e By, lot
i’(z) = T'(expize).

The function # i1 (2) is called the Fourier transform of T.

The function e,(¢) = exp(iws) belongs to B 'y 80 that the definition of T
malkes sense. As w aproaches z, (o —=2)" (e, — ¢,) aproaches in H, the

funection @  iwe,(x); this is to say that T'is an entire function and 1" (2)
= T (iwe, (x)).
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1.3. DerFINITION. For 2 € C, let

Ay (2) = sup lel”
M " Mn

1.4. DEFINITION. Let H (M) denote the vector space of all entire
functions F such that

(P61 e[ exp (5 s

for some 4, &, L > 0. The family H (M, L, ) of those I' gatisfying this
inequality with fixed e, L is a Banach space. H (M) is the union of these
Banach spaces and may therefore be given a topology as the inductive
limit of these spaces.

Theorem 2.8 of [5] says in our case the following

1.5. TaEOREM. The Fourier transform T +— Tis a topological isomor-
phism between the sirong dual of Hy and H(M).

Looking carefully at the proof of Theorem 2.8 of [5] one finds that
the same result is true for the space Hy(I) (compare with Theorem 13.13
of [2]). It H(M, L) = limH (M, L, &), we have

T

1.6. TuroreM. The Fourier transform T T is a topological isomor-
phism between the sirong dual of By (1) and H (M, L).

Remark. Observe that the fact that T T is one to one implies
in particular that the e, form a total set.

2. The problem of equivalent classes. It is clear that if there exist
constants 4, B> 0 such that

(2.1) M, < AB*N,,

then Hy(I) « By(l) and By < By. Wo are going to prove that (2.1)
is also a necessary condition for the relation ¥y, = Hy to hold.
2.1. Lmmwma. The relation (2.1) 48 equivalent to

(2.2) An() < Ady(BY), 1> 0.

Proof. That (2.1) implies (2.2) is trivial. For the converse, we remind
([1]) that the sequence M can be reobtained from Ay by means of the

formula
ul

15
(23) M,n = jup m‘- -]
2.2. TEEOREM. By (1) « Hy(I) and By < Hy if and only if (2.1)-(2.2)
hold.
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Proof. If H, — Hy, the inclugion ma i i

4 P Hy—>H, is cont
by the closed graph theorem because convergence in thel\;pa,ces B mi:;?uls’
pu‘nctual convergence. In particular, given the norm P,. of EM thpy
exist 4 > 0 and J, B go that o e

(2.4) Pri(f) < AP;y5(f), feBy.

It we write (2.4) for f = ¢, where ¢(«) = exp (ixt), ¢ > 0, we find (2.2). @

2.3, OOROLLARY. By = Ty if and only if (M, [N, )i» ;
by positive numbers a, b: v VAT (A remaing boundod

a, \i
&< .
(7) <o m
3. Proof of Theorem A. We will use Theorem

v ) s L6 and 1.6 to find
the eharageter spectrum of Hy (1), B,,. First of all, we must express, in
?;erms of 7, that T' is a character. As the e, form a total set, T is a character
;‘ﬁ _’i'.(e,a}; =t1.‘geﬁ,)1’(;};y), ie. iff T(z-+2") =_’2’(z)i’(z’). Now, an entire
unction # gatistying F(z+2') = F(2)F(2') is of th == ioc)
for some o e . : (®)F(E) s of the fom 1(z) = exp (ias)

Thus, to find Spec.H,,, we have to look for « such th i
) g ! at the f
¢, (#) = exp(izw) belongs to H (M), ie., P Hunetion

(8.1) lexp (iew)| < Ay (%) exp(L|Imz|), 2eC,
for some A4, ¢, L. Now, (3.1) with ¢ =t and @ = g~ bi, give
1
exp (bt) < A}.M(J;l), teR,

or, what is the same

(3.2) exp(lb]t)gAlM(—t-), > 0.
&

Algo, (3.1) may be obtained from (3.2) for

lexp (iwz)| = |exp(— almz)exp (be)|
< exp [a| [Imz|exp [b] |2} < A 2y, (ﬂ) exp |a| |[Tme|.
€

8o, (3.1) and (3.2) are equivalent, and thus, for i
) ) '@ = @—bi
if and on'ly.lf (‘3.2) bolds for some 4, &. But, l’f b satisties (3 é)en%]fef;lg)
other. satisfies it. Therefore, Spec H,, is R or € and Spec.t - C it H
only if (3.2) holds for some 4, s and b = 1. If N, = nl, thenM N wnd

i A n
Ao(d) = sUD — _ N1 1 (2t)
() =5 <o Z ~ "ZF”Tx < 24y (21).

icm
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Hence (3.2) is equivalent to
t
Z‘N(t)g-A-ZM(’;)’ >0,

which in turn is equivalent, by Lemma 2.1 to
(3.3) M, < Ac ™!

and to the inclugion B, < H. Thus we have proved. the following

3.1. TEEOREM. SpecBy is R or C. SpecBy = C if and only if A,
= (M, [n])" is bounded above, or equivalently, Hy = H. B

Since H,, containg @, it is clear that the Gelfand topology in SpecHy,
is the ugual one. In case Spec Hy, = C, it iy also clear how w e C acts a
character: every f e B, extends uniquely to an entire function, its Gel-
fand transform, which we continue to denote by f, and w(f) = f(o).

We turn now to the problem of finding SpecHy (I;). The discussion
is similax. We look for o such that (3.1) holds with L fixed; if w ¢ B
satisfies it, we obtain (8.3) as before, By (I) = Hy(I) =H (N,=n!)
and SpecHy(I) = O. If » = a e R satisties it and |a| > L, we write it
for z = —4t and find

oxp(at) < Ay ([t]/e)exp (L)), teR,
or
exp(la]t) < Ady(t/e)exp (L2), >0,
or
exp ((|“|_L)t) < Ay (tle)

and we continue as before. Hence we have

3.2 TEEorREM. SpecHy(I) és I or C. SpecHy(I) = C if and only
if A, = (M, is bounded above, or equivalenily, By (I) « H. B

Collecting 3.1 and 3.2, we have

3.3. TamoREM. If A, is bounded above, then Hy (I) and By are ncluded
in H and SpecHy(I) = SpecHy = C. Otherwise,

SpecHy = R. @

Fhrenprois [2] congiders the problem of characterizing when the
restriction map

and

re EM fomi EM(I)

is onto. Flere wo are able to give a partial result (sce also [1], [2]}
3.4. Prorosrrion. If A4, is not bounded and

n—1

(.6, By 18 quasianalytic but not analytic), then r is not onto.
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Proof. Note that (3.4) says that Wy, B, (I) are quasianalytic,
and go 7 is one to one. The fact that 4,, is not bounded yiclds Spec By, (1) = I
and Spec#y = R. If r were onto, it would be a topological isomorphism

and we would have 8peeliy (I) = R, which is contradictory. mH
4. Proof of Theorem B. We are going to give a characterization of

those sequences M = (M,) such that By (I), B, are locally m-convex
algebras ([3], [6]).

4.1. TunorsM. The following statements are equivalont:
(a) By (I) s locally m-convew, VI.

(b) By, i8 locally m~-convex.

(c) There ewists constants A, B, > 0 such that

(4.1) Anr(mt) << AB™ Ay (o)™,

(d) The sequence B, = MY n is almost increasing.
(e) The sequence A, is almost Tnoreasing.

f) If f e By (I) and @ is entire, Bof e B, (I).
Proof. (a) = (b) is clear because By, = Lim B, (I).

t>0, meN,

(b) = (c): Let (g,) be a system of selll.inalns defining the topology

of B, and such that ¢,(f9) < 9.(f)g.(9) Vf, g€ By. Given P, ,, there
exigt n, 4 > 0 such that

Pr(f)<Aq.(f), felly.
For that n, there exist B, P, such that
9 () < BPgs(f), fe By
Then
Pro(fy e fun)
S AG(fi - f) S AGu(f) oo Qalfi) S AB" P s(fy) o Prs(fon)-
In particular,
Py (f") < AB™ Py, (f)".
For f = ¢, and ¢ = 1, this gives
Aag(mi) < AB™ Ay (1/8)"
which is (e).
(¢) = (d): By (2.3) we have
1 1
(4.2) B, = §>o W’ neN.

Fix m and take n > m; suppose first that m|n, ie., n = ms. Sincet = si/s,

icm
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we have, by (4.1) assuming B > 1, and using » > s,

8

e 1
Aar(t) < AB Ay (K—:-) < AB"iy (zc-s-) ;

taking wth roots we find
1/m

i 1/m i
dar (O < AYPB Ay (K?) < OBy (K?)

Now
1 1 t
Bo = s 8 Tor 0" = me 58 OB ha Koy
1 Ktls 1 B
= WOBE Y T (Kijsy™  OBE ™

Hence, B,, < OBK B, if m|n. In the gencral case, we put sm < n < (s+1)m;
formula (4.2) shows that nB, = MY is increasing. Then

1 B ms B,
0BK "™ m(s-+1) © 20BEK

and Bm < 20BKB,, for m <.

(d) =>(e): It is sufficient to observe that B,/d, = (n!) Y" In has
finite limit different from zero (by Stirling’s formula) and so it remains
bounded above and below by positive numbers.

e) = (£): We start from the formula of Faa di Bruno ([1]) about
the derivatives of a composition.

Zk @(H

Here, » runs over all the r-tuples » = (v, ..
vy 20,4 .. Hry, =n and uis defined as vy .
depending just on .

Suppose fe B, (I) and ¢ e H, Fix ¢> 0. We have

F™ (@) < Prao(f) 6" My,
Since f(I) is compact, to every 8 > 0 there corvesponds C(8) > 0.such that
(4.5) |8 (f())] < 0(8)6® ul,
Putting (4.4) and (4.5) into (4.3) and changing M, by 4nn!,

< 3 1,0(0)0“u PR(f) &1 . Pl (f) e My

8)e" D'k, (8Pyu(f)

5 — Studla Mathematica LIXIX, 1

ms
B, >Bma n =

(4.3) (Bof)™ (@) = ) O (@)1 ... £ (@)

a%), v, r €N, such that
. +9,. k, are constants

(4.4) wel, nelN.

wel.

(Do f)™ (a)]

“ul(AMLLYL L (ATt
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Now we use the hypothesis 4,, < K4, for m <

obtaining
[(Dof)™ (@) < O

n and chooge 6 = Py ,(f)™

sK) A% 3 hpl (LY. ()7, wel, meX.

We are going to see how

Dlhpl (L. ()

(4.6)

increages with # ([1]). Specializing (4.3) to f(#) = a/(l—2), @ = f and
@ == 0, we obtain that (4.6) equals 2" 'n!. Then
M
(Pof)™ (5)] < O(K)" — 27 1g ! == —g— (2eK)" M,

forexel, n e M, ie., Pof ey (I ).
(f) = (a): By Theorem:13.8 of Zelazko [6], a Fréchet algebra 4 is
locally m-~convex if and only if for every a € A and every entire function
D(2) = 2, 0,7", the series ) c,a" converges in 4 to an element of 4,
n=0
sy di(a) In our case, given f e By, (I), the mapping
H — By (I)
P > Pof

is linear and has & closed graph, for if &, - @ in H and Pof - ¢ in H,, (1),

theng = ®Pof. Hence it is continuous and convergence of ' o,2" towards ¢
B Ngs0
is mapped into convergence of 3 ¢,f" towards Pof.

20
Thus the proof of Theorem 4.1 is completed. Bl

5. Proof of Theorem C. If H,, is locally m-convex and Spec H, = R,
by the general theory of locally m-convex algebras ([3], [6]), Fy is inverse
closed. Here we will prove that the converse is also true.

5.1. PropogsrxioN. If By, is inverse closed, then SpecHy = R.

Proof. The proof is standard: take y e SpecH,, and define 2, = x(x).
If 2, were not real, we would have » —z, invertible whereas y(@—z2,) = 0,
which is contradictory. So #,is real. We claim that x(f) == f(=,). We put

f@)—~f@) = (0 —2) f Flea+t(@—20) dt.

The function g¢(») = f S/ (@o+1w —120)df elongs to H, because

9™ (@) = f FOD (g0t — teg) thdt,
[

Il < I et = () priey  a0d f € By

icm
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Applying 7 to f—f(z0) = (@ —20)-g, one tinds z(f)
lishes the claim.

5.2. PROPOSITION. If H,, is inverse closed, then Ey, is locally m-convesx.

Proof. We will prove that (4.1) holds for some 4, B, K > 0. We
consider the subalgebra BH,, of H,, consisting of the bounded functions
of By ([3]). We endow BE, with the topology defined by the P;, and
the single norm ||fllp = sup{(f(»)), @ € R}. It is routine to check that BHy,
is & Fréchet algebra. Now, the fact that Ej, is inverse closed means that
the invertible functions of BH,, are exactly the ones bounded below. But,
if f is bounded below, i.e., |f(@)| = m > 0,z € R, and ||f—glz < m/2, then
lg(#) 3= m[2 > 0 and g i invertible. Thus the set of invertible elements
of BH, is open and, following Theorem 13.17 of Zelazko [68], BE,, i8
m-convex. Following the same argument as in (b) = (¢) of Theorem 4.1,
we conclude that for each I, & there exist a seminorm ¢ (which is one of
the Py o1 || |lp) such that

Pr.(f") <

= f(#,), which estab-

(5.1) AB™(f)".
But for f = ¢, (f) = 1< Py4(g) and so, when applying (5.1) to f = e
we way suppose that g = Pp,. Therefore

Py (6]") < AB™Pp s(6)"

which is (4.1). B

6.3. THEOREM. Hy, is inverse closed if and only if Spec By = R and By,
is Tooally m-convew, or what 48 the same, if and only if A, is almost increasing
and not bounded above. B

Remark. The same is true for Hy(I).
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Invariant measures on the shift space
by
J. KWIATKOWSKI (TORUN)

Abstract. In this paper we investigate invariant measures on. the space of se-

+00
quences from a finite set 8. Let p be an invariant meagure on X = JT8 and let p, be the
-0
joint distributions of p fox m =1,2,... If p runs over all invariant measures on X,
then the points py, form a polygon X, . We decsribe the set of all extremal points of K,
and we give & decompesition of Bernoulli measures by extremal points of K, . Next,
we study & class £, of those measures which may be described by extremal points
used in & decompogition of the Bernoulli measures. Further, we construct a complete
system of invariants of the dynamioal gystems induced by the measures belon ging to .

1. Notations and definitions. Tet 8 =={0,1,...,8—1}, 8> 2, be
00
a finite alphabet and let X = [T 8. It @ = {..., &1, By, @1, ...} I8 & point

of X, then we define I'(#); = @4y, ¢ 0, £1, £2,..., that is, T' shifts

every sequence. Let & be a o-field of borelian subsets of X. A Borel pro-

bability measure p on % is called T-invariant (or shortly invariont)
1

if p(T~'A) = p(4), for any A € . For n =1 we put X, = [:IS An el-

[

ement B = (ig0y ... t,-;) of X, will be called a block. We shall identify B
with the cylinder {& € X; @y = Gg, @5 = 1y + vy Tpey = Gpy}. Lieb us denote
by M (X) the set of all T-invariant measures on %. For a given p € M (X)
we define a measure p, on X, as p,(B) = p(B), B e€X,, n>1. The mea-
gure p, may be considered as a point of the space R in the senge that
the coordinates of p, are indexed by the blocks B eX,, and the Bth
coordinate of p, is equal to p, (B). Fix n > 1 and denote by K, the set
of all vectors of the form <p,(B)>pex,, Where p runs over all invariant
measures on X. It iz well known that the set K, may be described by the
following conditions : :

(n) S'pa(B) =1,
BeXy,
Lty a—1
(b) Z Pa(00) = 2 p,(40), forevery Oe X,_,,
Awal {0

() 2.(B)>0, BeX,.
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