

STUDIA MATHEMATICA, T. LXIX. (1980)

On inverse-closed algebras of infinitely differentiable functions

bу

JOAQUIM BRUNA (Barcelona)

Abstract. In this paper we are concerned with algebras \mathcal{B}_{M} of infinitely differentiable functions with growth restrictions on their derivatives. These are similar to the classical Denjoy-Carleman classes. The main aim of the paper is to give a characterization of those \mathcal{B}_{M} which are inverse closed. This question had been considered by Rudin for the Denjoy-Carleman classes and a similar result has been obtained by him for the non-quasianalytic case. The proof goes through a description of the character spectrum and a characterization of local m-convexity. Also, a problem considered by Ehrenpreis about local images is partially solved.

1. Introduction and background.

NOTATIONS. The letter I stands for a closed interval of the real line and $I_L = [-L, L]$. E(I) is the vector space of all C-valued, C^{∞} -functions defined in I; we write E for E(R). $\|g\|_I$ means $\sup\{|g(x)|: x \in I\}$ and when $I = I_L$ we write $\|g\|_L$ instead of $\|g\|_I$. H will denote the vector space of all entire functions with its usual topology. We suppose that $M = (M_n)$ is a sequence of positive real numbers so that $M_n = \exp g(n)$ where $g \colon [0, \infty] \to \mathbb{R}^+$ is convex, g(0) = 0 and $t^{-1}g(t)$ tends to ∞ as t tends to ∞ ([5]).

1.1. DEFINITION. For an interval I, $E_M(I)$ is defined as

$$E_M(I) = \{ f \in E(I) | \forall \varepsilon > 0 \ \exists C(\varepsilon) > 0 \ \text{s.t.} \ \|f^{(n)}\|_I \leqslant C(\varepsilon) \, \varepsilon^n M_n \}$$

and E_M as the projective limit of these: $E_M = \lim_{\longleftarrow} E_M(I)$.

In order that these spaces be closed under derivation we will assume as well that there exist constants A, B>0 such that

$$(1.1) M_{n+1} \leqslant AB^n M_n \quad \forall n.$$

The topology of $E_{\mathcal{M}}(I)$ is defined by the norms

$$P_{I,s}(f) = \sup_{n} \frac{\|f^{(n)}\|_{I}}{\varepsilon^{n} M_{n}}, \quad \varepsilon > 0$$

(or, what is the same, by the norms $q_{I,s}(f) = \sum_{n} (\|f^{(n)}\|_{I}/e^{n}M_{n}))$. E_{M} is given the projective topology, i.e. the one defined by the system of norms $(P_{I,s})_{I,s}$. When $I = I_{L}$, we denote $P_{I,s}$ by $P_{L,s}$.

It is clear that $E_M(I)$ and E_M are Fréchet spaces; also (1.1) implies for $\varepsilon\leqslant B$

$$P_{I,s}(f') \leqslant AP_{I,B^{-1}s}(f),$$

i.e. derivation is a continuous operation in $E_M(I)$, E_M .

All definitions are motivated by the fact that when $M_n = n!$, the space E_M (and also all the $E_M(I)$) is the space H of all entire functions. We remind, though we will not use it explicitly, that E_M is not quasianalytic, i.e. contains a function with compact support, if and only if $\sum (M_n/M_{n+1}) < \infty$ ([1], [3]).

Convexity of g implies $M_k M_{n-k} \leqslant M_n$ for $0 \leqslant k \leqslant n$. Then, if $f, g \in E_M(I)$, the inequalities

$$|(fg)^{(n)}(x)| \le \sum_{k=0}^{n} {n \choose k} |f^{(k)}(x)| |g^{(n-k)}(x)|$$

$$\leqslant P_{I,s}(f)P_{I,s}(g)\,\varepsilon^n\,\sum_{k=0}^n \binom{n}{k}\,M_kM_{n-k} \leqslant P_{I,s}(f)P_{I,s}(g)(2\varepsilon)^nM_n$$

prove that

$$P_{I,\mathbf{2}s}(fg)\leqslant P_{I,s}(f)P_{I,s}(g)$$

and so $E_M(I)$, E_M are Fréchet algebras under pointwise multiplication. In this context, the results we prove about the algebra E_M are the following:

THEOREM A. Spec $E_M=\mathbf{R}$, Spec $E_M(I)=I$ if and only if the sequence $A_n=(M_n/n!)^{1/n}$ is not bounded above. Otherwise, Spec $E_M(I)=\operatorname{Spec} E_M=C$.

THEOREM B. E_M , $E_M(I)$ are locally m-convex algebras if and only if the sequence (A_n) is almost increasing, i.e. there exists K>0 such that $A_n\leqslant KA_m$ for $n\leqslant m$.

THEOREM C. The algebra E_M is inverse closed, that is, $f \in E_M$ and $f(x) \neq 0 \ \forall x \ imply \ f^{-1} \in E_M \ if \ and \ only \ if \ the \ sequence \ (A_n) \ is \ not \ bounded \ and \ almost \ increasing.$

Now some background. Let E_M' stand for the dual space to E_M ; the following definitions are then standard:

1.2. DEFINITION. For $z \in C$ and $T \in E'_M$, let

$$\hat{T}(z) = T(\exp ixz).$$

The function $z \mapsto \hat{T}(z)$ is called the Fourier transform of T.

The function $e_z(x) = \exp(ixz)$ belongs to E_M so that the definition of \hat{T} makes sense. As ω approaches z, $(\omega - z)^{-1}(e_\omega - e_z)$ approaches in E_M the function $x \mapsto ixe_z(x)$; this is to say that \hat{T} is an entire function and $\hat{T}'(z) = T(ixe_z(x))$.

1.3. DEFINITION. For $z \in C$, let

$$\lambda_M(z) = \sup_n \frac{|z|^n}{M_n}.$$

1.4. Definition. Let $H(\mathcal{M})$ denote the vector space of all entire functions F such that

$$|F(z)| \leqslant A \lambda_M \left(rac{|z|}{arepsilon}
ight) \exp\left(L\left|{
m Im}\,z
ight|
ight)$$

for some A, ε , L > 0. The family $H(M, L, \varepsilon)$ of those F satisfying this inequality with fixed ε , L is a Banach space. H(M) is the union of these Banach spaces and may therefore be given a topology as the inductive limit of these spaces.

Theorem 2.8 of [5] says in our case the following

1.5. THEOREM. The Fourier transform $T\mapsto \hat{T}$ is a topological isomorphism between the strong dual of E_M and H(M).

Looking carefully at the proof of Theorem 2.8 of [5] one finds that the same result is true for the space $E_M(I)$ (compare with Theorem 13.13 of [2]). If $H(M,L) = \lim_{\longrightarrow} H(M,L,\varepsilon)$, we have

1.6. THEOREM. The Fourier transform $T\mapsto \hat{T}$ is a topological isomorphism between the strong dual of $E_M(I_L)$ and H(M,L).

Remark. Observe that the fact that $T \mapsto \hat{T}$ is one to one implies in particular that the e_x form a total set.

2. The problem of equivalent classes. It is clear that if there exist constants A, B>0 such that

$$(2.1) M_n \leqslant AB^n N_n,$$

then $E_M(I) \subset E_N(I)$ and $E_M \subset E_N$. We are going to prove that (2.1) is also a necessary condition for the relation $E_M \subset E_N$ to hold.

2.1. LEMMA. The relation (2.1) is equivalent to

(2.2)
$$\lambda_N(t) \leqslant A\lambda_M(Bt), \quad t > 0.$$

Proof. That (2.1) implies (2.2) is trivial. For the converse, we remind ([1]) that the sequence M can be reobtained from λ_M by means of the formula

$$(2.3) M_n = \sup \frac{t^n}{\lambda_M(t)} \cdot \blacksquare$$

2.2. THEOREM. $E_M(I)\subset E_N(I)$ and $E_M\subset E_N$ if and only if (2.1)–(2.2) hold.

Proof. If $E_M \subset E_N$, the inclusion map $E_M \to E_N$ is continuous, by the closed graph theorem because convergence in the spaces E_M imply punctual convergence. In particular, given the norm $P_{I,1}$ of E_M there exist A > 0 and A, B so that

$$(2.4) P_{I,1}(f) < AP_{J,R}(f), f \in E_M.$$

If we write (2.4) for $f = e_t$, where $e_t(x) = \exp(ixt)$, t > 0, we find (2.2).

2.3. COROLLARY. $E_M = E_N$ if and only if $(M_n/N_n)^{1/n}$ remains bounded by positive numbers a, b:

$$a < \left(\frac{M_n}{N_n}\right)^{1/n} < b$$
.

3. Proof of Theorem A. We will use Theorems 1.5 and 1.6 to find the character spectrum of $E_M(I)$, E_M . First of all, we must express, in terms of \hat{T} , that T is a character. As the e_z' form a total set, T is a character iff $T(e_ze_z') = T(e_z)T(e_z')$, i.e. iff $\hat{T}(z+z') = \hat{T}(z)\hat{T}(z')$. Now, an entire function F satisfying F(z+z') = F(z)F(z') is of the form $F(z) = \exp(i\omega z)$ for some $\omega \in C$.

Thus, to find Spec E_M , we have to look for ω such that the function $e_{\omega}(z) = \exp(iz\omega)$ belongs to H(M), i.e.,

$$(3.1) \qquad |\exp{(iz\omega)}| \leqslant A \lambda_M \left(\frac{|z|}{\varepsilon}\right) \exp{(L|\mathrm{Im}\,z|)}, \quad z \in C,$$

for some A, ε , L. Now, (3.1) with $\varepsilon = t$ and $\omega = a - bi$, give

$$\exp(bt) \leqslant A \lambda_M \left(\frac{|t|}{\varepsilon}\right), \quad t \in I\!\!R,$$

or, what is the same

(3.2)
$$\exp(|b|t) \leqslant A \lambda_M \left(\frac{t}{\varepsilon}\right), \quad t > 0.$$

Also, (3.1) may be obtained from (3.2) for

$$\begin{split} |\exp{(iwz)}| &= |\exp{(-a\operatorname{Im}z)}\exp{(bz)}| \\ &\leqslant \exp{|a|}|\operatorname{Im}z|\exp{|b|}|z| \leqslant A\lambda_M\left(\frac{|z|}{\varepsilon}\right)\exp{|a|}|\operatorname{Im}z|\,. \end{split}$$

So, (3.1) and (3.2) are equivalent, and thus, for $\omega = a - bi$, $e_{\omega} \in H(M)$ if and only if (3.2) holds for some A, ε . But, if b satisfies (3.2) then any other satisfies it. Therefore, Spec E_M is R or C and Spec $E_M = C$ if and only if (3.2) holds for some A, ε and b = 1. If $N_n = n!$, then

$$\lambda_N(t) = \sup_n \frac{t^n}{n!} \leqslant e^t = \sum_n \frac{t^n}{n!} = \sum_n \frac{1}{2^n} \frac{(2t)^n}{n!} \leqslant 2\lambda_N(2t).$$

Hence (3.2) is equivalent to

$$\lambda_N(t) \leqslant A \, \lambda_M \left(rac{t}{arepsilon}
ight), \,\,\,\,\,\,\,\, t>0 \, ,$$

which in turn is equivalent, by Lemma 2.1 to

$$(3.3) M_n \leqslant A \, \varepsilon^{-n} n!$$

and to the inclusion $E_M \subset H$. Thus we have proved the following

3.1. THEOREM. Spec E_M is R or C. Spec $E_M = C$ if and only if $A_n = (M_n/n!)^{1/n}$ is bounded above, or equivalently, $E_M \subset H$.

Since E_M contains x, it is clear that the Gelfand topology in $\operatorname{Spec} E_M$ is the usual one. In case $\operatorname{Spec} E_M = C$, it is also clear how $\omega \in C$ acts a character: every $f \in E_M$ extends uniquely to an entire function, its Gelfand transform, which we continue to denote by f, and $\omega(f) = f(\omega)$.

We turn now to the problem of finding $\operatorname{Spec} E_M(I_L)$. The discussion is similar. We look for ω such that (3.1) holds with L fixed; if $\omega \notin \mathbf{R}$ satisfies it, we obtain (3.3) as before, $E_M(I) \subset E_N(I) = H$ $(N_n = n!)$ and $\operatorname{Spec} E_M(I) = C$. If $\omega = a \in \mathbf{R}$ satisfies it and |a| > L, we write it for z = -it and find

$$\exp(\alpha t) \leqslant A \lambda_M(|t|/\varepsilon) \exp(L|t|), \quad t \in \mathbf{R}$$

 \mathbf{or}

$$\exp(|a|t) \leq A \lambda_{\mathcal{M}}(t/\varepsilon) \exp(Lt), \quad t > 0,$$

or

$$\exp\left((|a|-L)t\right) \leqslant A \lambda_M(t/\varepsilon)$$

and we continue as before. Hence we have

3.2 Theorem. Spec $E_M(I)$ is I or C. Spec $E_M(I)=C$ if and only if $A_n=(M_n/n!)^{1/n}$ is bounded above, or equivalently, $E_M(I)\subset H$.

Collecting 3.1 and 3.2, we have

3.3. THEOREM. If A_n is bounded above, then $E_M(I)$ and E_M are included in H and $\operatorname{Spec} E_M(I) = \operatorname{Spec} E_M = C$. Otherwise,

$$\operatorname{Spec} E_M(I) = I$$
 and $\operatorname{Spec} E_M = R$.

Ehrenpreis [2] considers the problem of characterizing when the restriction map

$$r: E_M \mapsto E_M(I)$$

is onto. Here we are able to give a partial result (see also [1], [2]):

3.4. Proposition. If A_n is not bounded and

$$(3.4) \sum \frac{M_n}{M_{n-1}} = \infty$$

(i.e. E_M is quasianalytic but not analytic), then r is not onto.

Proof. Note that (3.4) says that E_M , $E_M(I)$ are quasianalytic, and so r is one to one. The fact that A_n is not bounded yields Spec $E_M(I) = I$ and Spec $E_M = R$. If r were onto, it would be a topological isomorphism and we would have Spec $E_M(I) = R$, which is contradictory.

- **4. Proof of Theorem B.** We are going to give a characterization of those sequences $M=(M_n)$ such that $E_M(I)$, E_M are locally m-convex algebras ([3], [6]).
 - 4.1. THEOREM. The following statements are equivalent:
 - (a) $E_M(I)$ is locally m-convex, $\forall I$.
 - (b) E_M is locally m-convex.
 - (c) There exists constants A, B, K > 0 such that

(4.1)
$$\lambda_M(mt) \leqslant AB^m \lambda_M(Kt)^m, \quad t > 0, \ m \in \mathbb{N}.$$

- (d) The sequence $B_n = M_n^{1/n}/n$ is almost increasing.
- (e) The sequence A_n is almost increasing.
- (f) If $f \in E_M(I)$ and Φ is entire, $\Phi \circ f \in E_M(I)$.

Proof. (a) \Rightarrow (b) is clear because $E_M = \lim E_M(I)$.

(b) \Rightarrow (c): Let (q_n) be a system of seminorms defining the topology of E_M and such that $q_n(fg) \leqslant q_n(f) \, q_n(g) \, \, \forall f,g \in E_M$. Given $P_{L,s}$, there exist n,A>0 such that

$$P_{L,s}(f) \leqslant A q_n(f), \quad f \in E_M.$$

For that n, there exist $B, P_{R,\delta}$ such that

$$q_n(f) \leqslant BP_{R,\delta}(f), \quad f \in E_M.$$

Then

$$P_{L,s}(f_1 \dots f_m)$$

$$\leqslant Aq_n(f_1 \dots f_m) \leqslant Aq_n(f_1) \dots q_n(f_m) \leqslant AB^m P_{R,\delta}(f_1) \dots P_{R,\delta}(f_m).$$

In particular,

$$P_{L,s}(f^m) \leqslant AB^m P_{R,\delta}(f)^m$$

For $f = e_t$ and $\varepsilon = 1$, this gives

$$\lambda_M(mt) \leqslant AB^m \lambda_M(t/\delta)^m$$

which is (c).

(c) \Rightarrow (d): By (2.3) we have

(4.2)
$$B_n = \frac{1}{n} \sup_{t>0} \frac{1}{\lambda_{M}(t)^{1/n}}, \quad n \in N.$$

Fix m and take n > m; suppose first that m|n, i.e., n = ms. Since t = st/s,

we have, by (4.1) assuming B > 1, and using $n \ge s$,

$$\lambda_{M}(t) \leqslant AB^{s} \lambda_{M} \left(K \frac{t}{s}\right)^{s} \leqslant AB^{n} \lambda_{M} \left(K \frac{t}{s}\right)^{s};$$

taking nth roots we find

$$\lambda_M(t)^{1/n} \leqslant A^{1/n} B \, \lambda_M \left(K \, \frac{t}{s} \right)^{1/m} \leqslant C B \, \lambda_M \left(K \, \frac{t}{s} \right)^{1/m}.$$

Now

$$\begin{split} B_n &= \frac{1}{ms} \sup_{t>0} \frac{t}{\lambda_M(t)^{1/n}} \geqslant \frac{1}{ms} \sup_{t>0} \frac{t}{CB \lambda_M(Kt/s)^{1/m}} \\ &= \frac{1}{mCBK} \sup_{t>0} \frac{Kt/s}{\lambda_M(Kt/s)^{1/m}} = \frac{1}{CBK} B_m. \end{split}$$

Hence, $B_m \leq CBKB_n$ if m|n. In the general case, we put sm < n < (s+1)m; formula (4.2) shows that $nB_n = M_n^{1/n}$ is increasing. Then

$$B_n \geqslant B_{ms} \frac{ms}{n} \geqslant \frac{1}{CBK} B_m \frac{ms}{m(s+1)} \geqslant \frac{B_m}{2CBK}$$

and $B_m \leq 2CBKB_n$ for m < n.

- (d) \Rightarrow (e): It is sufficient to observe that $B_n/A_n = (n!)^{1/n}/n$ has finite limit different from zero (by Stirling's formula) and so it remains bounded above and below by positive numbers.
- (e) \Rightarrow (f): We start from the formula of Faa di Bruno ([1]) about the derivatives of a composition.

$$(4.3) (\Phi \circ f)^{(n)}(x) = \sum_{\mathbf{r}} k_{\mathbf{r}} \Phi^{(\mu)}(f(x)) f^{(1)}(x)^{\nu_1} \dots f^{(\nu)}(x)^{\nu_{\mathbf{r}}}.$$

Here, ν runs over all the r-tuples $\nu = (\nu_1, \ldots, \nu_r)$, ν_i , $r \in N$, such that $\nu_1 + 2\nu_2 + \ldots + r\nu_r = n$ and μ is defined as $\nu_1 + \ldots + \nu_r$. k_r are constants depending just on ν .

Suppose $f \in E_M(I)$ and $\Phi \in H$. Fix $\varepsilon > 0$. We have

$$(4.4) |f^{(n)}(x)| \leq P_{I,s}(f) \varepsilon^n M_n, \quad x \in I, \ n \in N.$$

Since f(I) is compact, to every $\delta > 0$ there corresponds $C(\delta) > 0$ such that

$$|\Phi^{(\mu)}(f(x))| \leqslant C(\delta) \, \delta^{(\mu)} \mu!, \quad x \in I.$$

Putting (4.4) and (4.5) into (4.3) and changing M_n by $A_n^n n!$,

$$\begin{split} |(\varPhi \circ f)^{(n)}(x)| \leqslant & \sum_{r} k_{r} C(\delta) \, \delta^{\mu} \mu! P_{I,s}^{\nu_{I}}(f) \, \varepsilon^{\nu_{I}} M^{\nu_{I}} \dots P_{I,s}^{\nu_{I}}(f) \, \varepsilon^{\tau \nu_{I}} M_{r}^{\nu_{I}} \\ & = C(\delta) \varepsilon^{n} \sum_{r} k_{r} (\delta P_{I,s}(f))^{\mu} \mu! (A_{1}^{1} 1!)^{\nu_{I}} \dots (A_{r}^{\tau} r!)^{\nu_{I}}. \end{split}$$

5 - Studia Mathematica LIXIX. 1

Now we use the hypothesis $A_m \leqslant KA_n$ for $m \leqslant n$ and choose $\delta = P_{I,s}(f)^{-1}$ obtaining

$$|(\varPhi \circ f)^{(n)}(x)| \leqslant C(\varepsilon K)^n A_n^n \sum_r k_r \mu! (1!)^{r_1} \dots (r!)^{r_r}, \quad x \in I, \ n \in N.$$

We are going to see how

(4.6)
$$\sum_{r} k_{r} \mu! (1!)^{\nu_{1}} \dots (r!)^{\nu_{r}}$$

increases with n ([1]). Specializing (4.3) to f(x) = x/(1-x), $\Phi = f$ and x = 0, we obtain that (4.6) equals $2^{n-1}n!$. Then

$$|(\varPhi \circ f)^{(n)}(x)| \leqslant C(\varepsilon K)^n \frac{M_n}{n!} 2^{n-1} n! = \frac{C}{2} (2\varepsilon K)^n M_n$$

for $x \in I$, $n \in M$, i.e., $\Phi \circ f \in E_M(I)$.

(f) \Rightarrow (a): By Theorem 13.8 of Zelazko [6], a Fréchet algebra A is locally m-convex if and only if for every $a \in A$ and every entire function $\Phi(z) = \sum_{n \geqslant 0} c_n z^n$, the series $\sum_{n \geqslant 0} c_n a^n$ converges in A to an element of A, say $\Phi(a)$. In our case, given $f \in E_M(I)$, the mapping

$$egin{aligned} H &
ightarrow E_M(I) \ arPhi &
ightarrow arPhi \circ f \end{aligned}$$

is linear and has a closed graph, for if $\Phi_n \to \Phi$ in H and $\Phi \circ f \to g$ in $E_M(I)$, then $g = \Phi \circ f$. Hence it is continuous and convergence of $\sum\limits_{n \geqslant 0} c_n z^n$ towards Φ is mapped into convergence of $\sum\limits_{n \geqslant 0} c_n f^n$ towards $\Phi \circ f$.

Thus the proof of Theorem 4.1 is completed.

- 5. Proof of Theorem C. If E_M is locally m-convex and Spec $E_M = R$, by the general theory of locally m-convex algebras ([3], [6]), E_M is inverse closed. Here we will prove that the converse is also true.
 - 5.1. Proposition. If E_M is inverse closed, then Spec $E_M = R$.

Proof. The proof is standard: take $\chi \in \operatorname{Spec} E_M$ and define $z_0 = \chi(x)$. If z_0 were not real, we would have $x - z_0$ invertible whereas $\chi(x - z_0) = 0$, which is contradictory. So z_0 is real. We claim that $\chi(f) = f(z_0)$. We put

$$f(x)-f(z_0) = (x-z_0)\int_0^1 f'(z_0+t(x-z_0)) dt.$$

The function $g(x) = \int\limits_0^1 f'(z_0 + tx - tz_0) dt$ belongs to E_M because

$$\begin{split} g^{(n)}(x) &= \int\limits_0^1 f^{(n+1)}(z_0 + tx - tz_0) \, t^n \, dt \,, \\ \|g^{(n)}\|_L \leqslant \|f^{(n+1)}\|_{L+|z|} &= \|(f')^{(n)}\|_{L+|z_0|} \quad \text{and} \quad f' \in E_M. \end{split}$$

5.2. Proposition. If E_M is inverse closed, then E_M is locally m-convex.

Proof. We will prove that (4.1) holds for some A, B, K>0. We consider the subalgebra BE_M of E_M consisting of the bounded functions of E_M ([3]). We endow BE_M with the topology defined by the $P_{I,s}$ and the single norm $\|f\|_B = \sup\{|f(x)|, x \in R\}$. It is routine to check that BE_M is a Fréchet algebra. Now, the fact that E_M is inverse closed means that the invertible functions of BE_M are exactly the ones bounded below. But, if f is bounded below, i.e., $|f(x)| \ge m > 0$, $x \in R$, and $\|f-y\|_B < m/2$, then $|g(x)| \ge m/2 > 0$ and g is invertible. Thus the set of invertible elements of BE_M is open and, following Theorem 13.17 of Zelazko [6], BE_M is m-convex. Following the same argument as in (b) \Rightarrow (c) of Theorem 4.1, we conclude that for each E, E there exist a seminorm E0 (which is one of the E1, E2 or E3 such that

$$(5.1) P_{L,s}(f^m) \leqslant AB^m q(f)^m.$$

But for $f = e_t$, $q(f) = 1 \le P_{R,\delta}(e_t)$ and so, when applying (5.1) to $f = e^t$ we way suppose that $q = P_{R,\delta}$. Therefore

$$P_{T_{t,\delta}}(e_t^m) \leqslant AB^m P_{R,\delta}(e_t)^m$$

which is (4.1).

6.3. THEOREM. E_M is inverse closed if and only if $\operatorname{Spec} E_M = \mathbf{R}$ and E_M is locally m-convex, or what is the same, if and only if A_n is almost increasing and not bounded above.

Remark. The same is true for $E_M(I)$.

Acknowledgement. I am grateful to Professors J. L. Cerdà and J. Cufí for their valuable advice and encouragement.

References

- T. Bang, On quasi-analytiske funktioner, Nyt Norclisk Forlag, Copenhaguen 1946.
- [2] L. Ehrenpreis, Fourier analysis in several complex variables, Wiley-Interscience, New York 1970.
- [3] J. Ortega, J. Muñoz, Sobre las algebras localmente convexas, Collectanea Mathematica XX. 2 (1969).

[4] W. Rudin, Division in algebras of infinitely differentiable functions, J. Math. and Mech. 2.5 (1962), pp. 797-809.

[5] B. A. Taylor, Analytically uniform space of differentiable functions, Comm. Pure Appl. Math. 24 (1971), pp. 39-51.

[6] W. Zelazko, Metric generalizations of Banach algebras, Rozprawy Matematyczne 47. PWN-Polish. Sci. Publ., Warszawa 1965.

UNIVERSITAT AUTÓNOMA DE BARCELONA DEPARTAMENT DE MATÉMATIQUES Bellaterra (Barcelona), Spain

Received March 28, 1978

(1415)

Invariant measures on the shift space

by

J. KWIATKOWSKI (TORUŃ)

Abstract. In this paper we investigate invariant measures on the space of sequences from a finite set S. Let p be an invariant measure on $X = \prod_{n=0}^{+\infty} S$ and let p_n be the joint distributions of p for $n = 1, 2, \ldots$ If p runs over all invariant measures on X, then the points p_n form a polygon K_n . We describe the set of all extremal points of K_n and we give a decomposition of Bernoulli measures by extremal points of K_n . Next, we study a class \mathcal{M}_0 of those measures which may be described by extremal points used in a decomposition of the Bernoulli measures. Further, we construct a complete system of invariants of the dynamical systems induced by the measures belonging to \mathcal{M}_0 .

1. Notations and definitions. Let $S = \{0, 1, ..., s-1\}, s \ge 2$, be a finite alphabet and let $X = \prod_{i=0}^{+\infty} S_i$. If $x = \{..., x_{-1}, x_0, x_1, ...\}$ is a point of X, then we define $T(x)_i = x_{i+1}$, $i = 0, \pm 1, \pm 2, ...$, that is, T shifts every sequence. Let # be a o-field of borelian subsets of X. A Borel probability measure p on B is called T-invariant (or shortly invariant) if $p(T^{-1}A) = p(A)$, for any $A \in \mathcal{B}$. For $n \ge 1$ we put $X_n = \prod_{i=1}^n S_i$. An element $B = (i_0 i_1 \dots i_{n-1})$ of X_n will be called a block. We shall identify Bwith the cylinder $\{x \in X; x_0 = i_0, x_1 = i_1, \ldots, x_{n-1} = i_{n-1}\}$. Let us denote by M(X) the set of all T-invariant measures on \mathcal{B} . For a given $p \in M(X)$ we define a measure p_n on X_n as $p_n(B) = p(B)$, $B \in X_n$, $n \ge 1$. The measure sure p_n may be considered as a point of the space R^{s^n} in the sense that the coordinates of p_n are indexed by the blocks $B \in X_n$, and the Bth coordinate of p_n is equal to $p_n(B)$. Fix $n \ge 1$ and denote by K_n the set of all vectors of the form $\langle p_n(B) \rangle_{B \in X_n}$, where p runs over all invariant measures on X. It is well known that the set K_n may be described by the following conditions:

$$\sum_{B\in X_n} p_n(B) = 1,$$

$$(b) \qquad \qquad \sum_{i=0}^{s-1} \, p_n(\mathit{C}i) = \sum_{i=0}^{s-1} \, p_n(i\mathit{C}), \quad \text{ for every } \mathit{C} \in \mathit{X}_{n-1},$$

$$(c) p_n(B) \geqslant 0, B \in X_n.$$