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Invariant measures on the shift space
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Abstract. In this paper we investigate invariant measures on. the space of se-

+00
quences from a finite set 8. Let p be an invariant meagure on X = JT8 and let p, be the
-0
joint distributions of p fox m =1,2,... If p runs over all invariant measures on X,
then the points py, form a polygon X, . We decsribe the set of all extremal points of K,
and we give & decompesition of Bernoulli measures by extremal points of K, . Next,
we study & class £, of those measures which may be described by extremal points
used in & decompogition of the Bernoulli measures. Further, we construct a complete
system of invariants of the dynamioal gystems induced by the measures belon ging to .

1. Notations and definitions. Tet 8 =={0,1,...,8—1}, 8> 2, be
00
a finite alphabet and let X = [T 8. It @ = {..., &1, By, @1, ...} I8 & point

of X, then we define I'(#); = @4y, ¢ 0, £1, £2,..., that is, T' shifts

every sequence. Let & be a o-field of borelian subsets of X. A Borel pro-

bability measure p on % is called T-invariant (or shortly invariont)
1

if p(T~'A) = p(4), for any A € . For n =1 we put X, = [:IS An el-

[

ement B = (ig0y ... t,-;) of X, will be called a block. We shall identify B
with the cylinder {& € X; @y = Gg, @5 = 1y + vy Tpey = Gpy}. Lieb us denote
by M (X) the set of all T-invariant measures on %. For a given p € M (X)
we define a measure p, on X, as p,(B) = p(B), B e€X,, n>1. The mea-
gure p, may be considered as a point of the space R in the senge that
the coordinates of p, are indexed by the blocks B eX,, and the Bth
coordinate of p, is equal to p, (B). Fix n > 1 and denote by K, the set
of all vectors of the form <p,(B)>pex,, Where p runs over all invariant
measures on X. It iz well known that the set K, may be described by the
following conditions : :

(n) S'pa(B) =1,
BeXy,
Lty a—1
(b) Z Pa(00) = 2 p,(40), forevery Oe X,_,,
Awal {0

() 2.(B)>0, BeX,.
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Further, if the measures p,, n =1,2,..., are appointed by the
invariant measure p, then the conditions of consistency are satisfied, i.e.

8—1

@) D) Pua(Bi) = p,(B),

1m0

BeX,, n=1,2,...

Condition (d) may be regarded as a definition of & mapping f, from
XK, ., onto K,. We remark that the sets K,, n > 1, are polygons in R*™
and it is casy to check that dim K, = ¢""'(s—1). We obtain a sequence
of the polygons K, and the functions f,,

N oo .. T
K &K, & K< ...,

In view of the above remarks the set M(X) may be identified with
LimK,. If peK,, geK,,, and P =f,(g), then we shall say that the
£

vector 7 is an extension of 7.

2. Extremal points of K, . Now, we shall describe the sct of all extremal
points of K, . In order to do this we use a graph ¥, n =2,3,...Hfn =1,
then K, may be identified with the simplex T, = {(®y, @1, ..., T_,);
2@ =1, ¢, > 0}, the extremal points of which are (1,0, ..., 0),
(0,1,0,...,0),...,(0,...,0,1). The vertices of ¥, form the blocks
O e X, ,and two blocks O = (i) ... %,_,) and Oy = (Jp ... ju—s) aTe joined
by an oriented edge (write (0y,0y) e o) iff (44 ... éyy) = (Jo -+ Jps)-
This means that the end of C, agrees with the beginnig of ¢,. In the case
of n =2 each two block-symbols are joined by edges. For example, if
8 = {1, 0} then Y,, ¥;, ¥, have the following form:
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Observe that the edges of Y, may be identified with the blocks of
length # in the following sense: each edge (0, U,) determines a block
B = ('50, fayeeey ’in~—25 jn—z)-

Let y = {By, Bay ..oy By)y B;eX,, 6=1,2,...,1, 1<I<s", be
a closed path in ¥, not having any loop. Define a vector B, = {p,(B)) pex,
ag follows:

i, Bey,

BEB=1 0 By

Tt is easy to see that P, € K,. Now we can prove

Tamormy 1. .4 veclor e K, is an ewtremal point of K, iff ? = B,,
where v is & closed path in ¥, which doecs not contain any loop.

Proof. Sufficiency. Suppose that y = {By,..., B}, 1<I< Y,
is a closed path without loops. Let B; = (b%, bf, ..., b_,), 0; = (B, ..., Bh_2),
i=1,2,...,1. The blocks Oy, O, ..., C; are the vertices of y and they
are pairwise distinet since y does not contain any loop. Further, the con-
dition that B, By,...,B;, B, are the successive edges of y implies
By = b0y, = 1,2,...,1—1, and B = b 0,. Agsume P, = ¢-P+
+(L—1) G, where 0 <?< 1 and P, §e K,. Then p(B)>0 1mp11e§ B ey.
Hence p(0,j)>0 implies j == bi_, for ¢ =1,2,...,1 and p(jC) >.0
mplies j = b5 ¢ =2, ...,1, and j = b} for ¢ = 1. In this way we obtain

8=1 8—1

P(B) =p(B30y) = D p(j0:) = D' p(0af) = p(0abys) =2 (Ba).

F=0 Je=0

Similarly we can establish p(B,) = p(B;) = ... = p(B;). Therefore the
! A
condition 3 p(B;) =1 implies p(B,) =1/, i =1,2,..., l, ie. B=P,.
dual

Tn the same ménner we obtain 7, = g, so that P, is an extremal point
of K,,.

Necessity. The polygon K, is desoribed by conditions (.a,), (b), (e)-
It is easy to remark that the order of the system of equations (a), (b)
is equal to "% Take an extremal point 7 & K,. It i well known tl_m.t r
(r = 8" — "%} of the s" coordinates of P are equal to zero and the remaining
§"! coordinates satisty a regular subsystem of (a), (b). So p(B), B € X:,,,
are rational numbers, sy p(B) = r(B)/N, where r(B) are non-negam%ve
integers with 3 #(B) = N. In order to find a closed path y for which

BeX

P =P, wo romark that condition (b) implies the following properties:

(1)  for any B € X, with p(B) > 0 there ewisis a B e X, such that p(B) > 0
and (B, B) e oy,
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Let BoeX, be a block such that p(B,) = min{p(B); p(B)> 0}.
Btarting with B, and. using (1), we may find a finite sequence of blocks
By, By, ... of X, such that (By, B;y,) € #,,,;. Denote by 0, the block
of length n -1 which forms the beginning of B;,, and the end of B,.
It is clear that the sequence of blocks 0y, 0,, ... containg pairwise differelit
blocks Oyy1y Ogray--- Oy where s <m and (0, 0,.,) € o,. Then the
blocks Bgyy, ..., By form a closed path of ¥, without loops. Moreover
we have p(B) > 0 if B ey. ,
Let my > 1 be the length of y. Assume P, % . Then m, < N and

A £ X oP 7 % Mo N 3
therefore the vector § -~ (p-———ﬁ”— py)--ﬁ:-”-—%—; is an element of XK,.
o1 — N“Mo _ Moy . .

once P == e g+ N Py, which means that 7 is not an extremal

point of K, . This leads us to a contradiction, so that the theorem is proved.

. TumormM 2. If P is an extremal point of K,, n = 1,2, ..., then there
exists exaoily one g € K, ., such that 7 = f,(7). Moreover, § is an ewiremal
point of K, ;.

Proof. First we assume # = 1. In this case the set of all extremal
pointy of K, iy identical with the set

1, 'i'_*j’

{Boy By -ovy Po—aty Where  p(j) = ‘ L
0, ¢#j,

i,5€8.
It is easy to check that the vectors

. _ 1
Toy ooy Jo—r € Ky,  G(B) =‘ ’ ,
0, B (i)

are the only vectors of K, such that f,(g,) = 7,.
Now, let » > 2 and take a path y = {B;, ..., B;} of ¥, not having

loops.. .'I.‘hen the vector §e K,,, is an extension of P, iff the following
‘conditions are satisfied [2]

8—1 .
gg(w” =p,005); §=0,1,...,8—1,
(2)
; q(i0)) = p,(80), ©=0,1,...,8—1,
=0

“where O is any bl?ck of the length # —1. Therefore, in order to solyve the
rgys.tems of equations. (2) it suffices to find matrices Q(0) = {g(i05)>,
2, =0,1,...,8~1, satisfying (2) for every ¢ ¢ X

n—-1*
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The following cases are possible:

(i) 2,(30) = 0, p,(0f) =0 for every i,je8;

(ii) there exists exactly one 4y, j, €8 with p,(4,0) = p,(0j) =1/
and p,(iC) = 0 = p,(0j) for the remaining 4,7 e 8.

So the only solution of the system of equations (2) is a vector § € I,
defined ag follows: q(iCj) =0, 4,je 8, if (i) holds and ¢q(i,Cf,) = 1[I,
q(30)) == 0, (4, 5) 7 (b0, Jo) if (ii) holds. It is easy to check that the vector g
is an extremal point of I,., appointed by the vertices By, By, ..., B;.
This completes the proof of the theorem.

Remark 1. Let 8 = {0, 1} and let I, denote the number of all extremal
points of I,. We can immediately check that Iy =2, I, =3, I, =6,
1, =19. At the same time the dimension of the sets K, K,, K, K, is
equal to 1,2, 4, 8, respectively, This means that the polygons X, cannot
be simplexes for n == 3, 4.

§ 3. Decomposition of the Bernoulli measures. In this section we
present a decomporition of Bernoulli measures by extremal points of
Kyyn=1,2,...

In order to do thiz we define a relation of g-equivalence between
the elements of X,. The relation ¢ is defined as follows: two blocks
B, B e X, ave g-equivalent itf B o= (g o0 ity o . s 4my) for some 1<t 0,
where B == (... %)

Denote by %, the set of all classes of the p-equivalence. Observe that
each elemont of %, contains at most n blocks of X,,. We shall show that
if y € 4,, then the edges of y form a closed path of Y, not having loops.
Tt twrns out that, for any Bernoulli measure p, the measures p, may be
described by the extremal points p,, y € By, n = 1,2, ...

Suppose .y == {By, By, ..., B}, I<n We may assume that if
By = (485 4,) thon By = (igfs... Gyéy), Bs = (s ... fyhta), and 50 oD.
Let B, = ;di, 0; & X,_,, ¢, 8. In order to show that y forms a closed
path of ¥, without loops it remains to prove that the blocks Oy, Ogy +vvy O
are pairwise distinet. First we observe that all blocks of y have the same
numbers of gymbols. Now, if Oy ==y then ¢k # ¢& because B 7 B,
and therefore tho frequoeneies of the symbols in B, and B, are different.
Thus 0, 5% 0y, and similarly we obtain 0, # O; for 4 5 §. This means that ¢
forms a closed path of ¥, not having any loop.

Lot fg, Ty, vy Mg be non-nogative integers with 2,4 ... +N_q =7
and 1ot % (g, fg, v, Mey) b0 the set of all blocks of X, containing the
symbol 0 m, times, the symbol 1 =, times, and so on. Denote by b, the
length of y, y € &,. It is clear that :

- !
b"nﬂg'nll...% L
ye @ (mgrooritty —1) -
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Take a Bernoulli measure p on X given by a probability vector
7 = (o 1y +++5 Qo). Tt is not difficult to check that for » = 2,3, ...
we have
P = o gt ...
ngtotng g =n

el S 2
ye@(ng,...sng-.1)

Remark 2. For any block B e X, there exists a unique class yea,
such that B ey. Accordingly the vectors 7,, y €%, are linearly inde-
pendent and therefore they form a simplex I, in K,. In general, the
dimension of L, is smaller than dim.K,.

In the sequel we denote by .#, the set of all invariant measures P
on X for which p, e L, for n = 1,2, ...

§ 4. Description of the class .7,. First we introduce tho notation.
B = (iy... %), 0 = (fi ... ju) are two blocks, then we shall denote by B0
the block (3 ... iyf, -.. j,). We start with the following

Levora 1. A measure p on X belongs to M, iff for any two blocks B, ¢
the condition

{3)

48 salisfied.

Proof. Necessity. The condition p e .4, implies that if i € § and B, (0
are two blocks then p(BiC) = p(0Bi) and further

8—1
D) p(BiC) = p(CB)

==

&8—1 8~—1
Zp(Bw) = Zp(om) = p(0B).
=0 im0

Sufficiency. Taking B or 0 ag empty blocks, we find that pis an in-
'variant meagure on X. In order to prove that p & .4, it suffices to show
the equality p(iB) = p(Bi) for any symbol i € § and any block B. Using
{(8) we have

8—1 8—1 8—~1
P(iB) = D p(Bji) = 3 p(ikBj) = ¥ p(ikB) = p(Bi),
. IO 1, k=0 la==0
‘which completes the proof of the lemma.

DEFINITION 1. We say that an invariant measure p on X is gym-
metrie it p(B) = p(0) for any blocks B, 0 e & (ny, ny, ..., Ny-1), Where
Moy Nyy <0y Ny T NOD-negative integers.

THEOREM 3. An invariant measure p on X belongs to M, iff p is sym-
“‘metric.

Proof. Sufficiency. If p is symmetric then p is constant on each

class y € &, for n=1, 2, ... But this means that for n = 1,2,...,p,eL,,
ie.pe,.
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Necessity. Lot I' be the shift on X and let % > 1. Take blocks B, € By,
B,eXy,..., B, e Xy, where Io, b, ..., |, are positive integers and let
oy > gy Mg > Titty ooy My > My 41, ;. Then we have

2 p(Body By 4, ... 4,B,)
A]_:-AZH'”AIC
= (BT ™™ (B) NI (By)N ... nT‘"k(Bk)),

where 4,6 X,y Ag€ Xy g, 4y € Xypony1,y 20d 50 on. Further,
from the definition of .#, and (3) follows

' p(By4yByA, ... 4,B,) = p(B,B, ... B,).

Apdyyndy

Thus for sufficiently large n; > ny; > ... > 0, we have
(4) P(BoBy ... By) = p(BenT™™(B)) N ... nT"%(By)).

Now, take a partition { of X on ergodic components with respect
to T, Let M = X[l, (Dm}mens Pe conditional measures of ¢ and let p; be
the quotient measure on M induced by p. Then we have

P(BonT™™(B)N ... nT~"(B,)

= [ Da(BonT™(B) N ... 0T="(By))p,(dm).
M

By the above equality and by (4) we obtain
(6)  2(BoBi...By) = [pn(BnI ™(BYN ...0T~"(By)) p(dm).
b7

Now, fix 7., > Ny > ... > ny. Applying the ergodic theorem to
the dynamical systems (X, 4, 9, T), m € M, we have
g1
lim =3 2 P (BoNT™"(By) A .o AT =1(By_ )N (By))

ngroo Mg o

= pm(Bla)pm(Bn NI™™(By) N ... ﬂT—"""l(Bk—ﬂ)

(6)

for a.e. me M.

Ngpm=L

Sinece ,.:.L_“.Z P (B oo NIHBY) <1, k=1, we can integrate both
Ny ]

sides of (6) and we obtain
figy=1

(M lim = 3 f DB ... AT (By_) NI~ (By)
M

trad)

= [ Bn(BOBa(Bon .. LB ) peldm).
M


GUEST


76 J. Kwiatkowski

Further, (5) and (7) imply
(8) P (BrBp—y..- B1By)
= [ Pn(Bi) P (BoNT™™(By) ... NI7"=1(B,_ 1)) p, (dm),
M

for any sufficiently large integers 7y, > ;> ...> n;. Repeating
the above arguments for fixed 7, > 7y > ... > 5y and for ny,_, - oo
we obtain ’

2(ByBy_; ... B, By)
= ff’m(Bh)pm(Bk—l)pm (BonT*ﬂ‘ (B)n... hT‘”’c%(Bk_z))pc(dm) .
B

Proceeding in the same manner, we have

(9) 2 (ByBy; .. B1By) ==].{ P (Br) P (Bre—y) -+ (Pm) B1Dp (Bo) pe(dm),

for any blocks By, By, ..., By. Therefore,if B is a block having n, 0,
#n, 1’8, and so on, then (9) gives

(10) P(B) = [po(m)py(m) ... pey(m)p(dm),
M
where p;(m) = p,,({t}), ¢ € §. Thus (10) implies the theorem.

Remark 3. If p € #, and p is an ergodic measure, then p, is a o-
measure concentrated at a point m, € M. Therefore p is a Bernoulli measure
given by the probability vector {po(my), ... ; Pe_i(m)>.

ExAnvern 1, Take a simplex T, of the space R*~' defined in the fol-

. _ ) 8—1
lowing waiy: & = (®q, @1, ..., @) € Toiff 3o, = Landw, 20,4 = 0,1, ...
=0

..y 8—1. Assume that 7 is a normalized, borelian measure on 7. Then
we can define a measure p on X as follows:

(11) P(B) = [alal ... 47 p(dm),

Ts

where B € #(ng, By, ..., Ny). It is easy to verify that p is an invariant
measure on X and p e #,.

Now, using the well-known theorem of de Tinetti [6] we have the
following

THEROREM 4. For every p € M, there ewists a unique measure P on T,
such that (11) holds. :

§ 5. Isomorphism theorems. Consider a probability meagure ?on T,
an.d let p = w(ﬁ). be a measure on X defined by (11). The measure 7 deter-
mines a dynamical system Z(F) = (X, 4, w(p), T). In this section we
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give a necessary and sufficient condition for two dynamical systems Z(7.)
and Z(B,) to be isomorphic. First we describe a decomposition of Z (%)
on ergodic components.

Let 4, be the set of all invariant ergodic measures on X. On .#,
we can define a topology [1] illlduced by neighbourhoods of the following

form: M(e, po, C'17 sery Gk) =iq {/‘ € M,; W(Ci)"ﬁ‘o(ot)l < 8}7 where g,

e My, e8>0 and Oy, O, ..., 0, are cylinders. Denote by %, the o-field
of borelian. subsets of #,. Now, for a given probability measure » on 4,,
we can. define a T-invariant measure & on X by

A0 = [ pO)w(ap),

o,

(12)

where O ig a block. It is well known [4] that any invariant measure ji
on X has the form (12). Moreover, the correspondence » — i is one-to-one.
The measure » is called the decomposition of & on ergodic components.

Now, we remark that the meagure 7 on T, may be identified with
a decomposition of ¢(B) on ergodic components. In fact, the set T, may
be identified with the set .4, of all Bernoulli measures on X. Moreover,
the natural topology of T, is identical with the restriction of the topology
of M, to My(M, i 2 closed subset of 4Z,). Therefore, the measure p may
bo regarded as a measure on 4, and on 4#,, too. For this measure equation
(12) reduces to (11).

Having a decomposition of »(p) on ergodic components, we can
construct a complete system of invariants of Z(p). To do this we consider
a function H on T, defined by

8—1
H (%) = — 2 o logw,.
fe=l)
Let I, == <0, logs) and let ¢ be a partition of T; on the sets 0, =1{Fel,;
H(7) = a}, ael,. The measure 7 determines the quotient measure P
on I, = T,/¢ and conditional measures {p,}, a € I;. Leb {m,(a)} be the
type of 7,, that ig, let {m,} be & sequence of measurable functions defined
on I, such. that

Zm,,,(a) €L, My (6) <m(a), my(a)>0 for = =1,2,..,
Nowa,
and for almost all @el, with respeet to H. We obtain a pair
0(p) = (ﬁ’ {'m’n(“)}aaf,)'
TEHEOREM 5. Given lwo probability measures By, Py on Ty, the dynamical
systems Z(P,), Z(P) are isomorphic iff 6(By) == 0(Pa)-
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The proof of the theorem can be obtained by using Ornstein’s Igomor-
phism Theorem [3] and Roklin’s decomposition theorem [6], which can
be formulated in the following form:

TEEOREM 6. Let fiy, iz be two invariant measures on X and let V1 Vg
be the decomposition on ergodic components of fj, and iy, respectively. The
dynamical systems (X, #,T,f,) and (X » B, Ty iky) are isomorphic iff
there ewists an invertible measure-preserving tramsformation 8: (M gy »y)
= (Myy v;) such that for a.e. (modw,) ue .M, the ergodic dynamical systems
(X, 8,7, n) and (X,B,T,8,) are isomorphic.

Remark 4. If s =2 then m,(log2) =1, m,(log2) = 0 for n=2
and for a € <0, log2) we must have m,(a) = 0 for n = 3,4,... fs>2
then m,(logs) =1, m,(logs) =0, n =2,3,..., and the remaining
meagures may have arbitrary types.
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Abstract. Lot a = (a,) denote & stable nuclear exponent sequence of finite
type. It is shown that a subspace X of 4, (e) with a basis is either isomorphic to a sub-
gpace of A (a) or X has a complemented subspace which is isomorphic to a power
geries space of finite type. Also applications of this result to spaces of analytic functions
are discussed. :

Introduction. Throughout, we let a= (e,) denote a nuclear exponent
sequence of finite type which is assumed to be stable [6] (i.e. (ay,/a,)
it bounded). By subspace we mean a closed, infinite-dimensional subspace.
Recently, Dubingky [§] characterized Xothe spaces which are isororphic
to subspaces of a power series space A;{a) of finite type. In particular,
the power series space A, (a) of infinite type is isomorphic to a subspace
of A,(a) ([81). The main result of this note is the following.

THBOREM 1. A subspace X of A,(a) with a basis is either isomorphic
to & subspace of A, («) or X has a complemented subspace which is isomorphic
10 a power series space of finite type.

We note that a subspace of 4, (a) cannot have a subspace isomorphic
to a power series space of finito type ([20]). For the special case of a, = n'/?,
the corresponding power series space of infinite type is isomorphic to the
space O(C% of entire functions in d variagbles and the corresponding power
geries gpaces of finito type is isomorphic to the space 0(4% of funct{ona
analytic in the d-dimengional unit polycylinder ([15]). In the final section,
we apply Theorom 1 to spaces of analytic functions and obtain the fol-
lowing result.

Temorem 2. Let M be a Stein manifold of dimension d and asswme that
O(M) has a basis. Then O(M) is either isomorphic to 0(C% or Q(_M ) has
a complemented subspace isomorphic o a power serics space of finite type.

Wo introduce some terminology in the following section, which leads
to the proof of Theorem 1. For any undefined terminology_ we refer to EQ],
[12], and [6]. This research was supported by the Scientific and Technical
Research Council of Turkey.
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