

[5] B. A. Taylor, Analytically uniform space of differentiable functions, Comm. Pure Appl. Math. 24 (1971), pp. 39-51.

[6] W. Zelazko, Metric generalizations of Banach algebras, Rozprawy Matematyczne 47. PWN-Polish. Sci. Publ., Warszawa 1965.

UNIVERSITAT AUTÓNOMA DE BARCELONA DEPARTAMENT DE MATÉMATIQUES Bellaterra (Barcelona), Spain

Received March 28, 1978

(1415)

Invariant measures on the shift space

by

J. KWIATKOWSKI (TORUŃ)

Abstract. In this paper we investigate invariant measures on the space of sequences from a finite set S. Let p be an invariant measure on $X = \prod_{n=0}^{+\infty} S$ and let p_n be the joint distributions of p for $n = 1, 2, \ldots$ If p runs over all invariant measures on X, then the points p_n form a polygon K_n . We describe the set of all extremal points of K_n and we give a decomposition of Bernoulli measures by extremal points of K_n . Next, we study a class \mathcal{M}_0 of those measures which may be described by extremal points used in a decomposition of the Bernoulli measures. Further, we construct a complete system of invariants of the dynamical systems induced by the measures belonging to \mathcal{M}_0 .

1. Notations and definitions. Let $S = \{0, 1, ..., s-1\}, s \ge 2$, be a finite alphabet and let $X = \prod_{i=0}^{+\infty} S_i$. If $x = \{..., x_{-1}, x_0, x_1, ...\}$ is a point of X, then we define $T(x)_i = x_{i+1}$, $i = 0, \pm 1, \pm 2, ...$, that is, T shifts every sequence. Let # be a o-field of borelian subsets of X. A Borel probability measure p on B is called T-invariant (or shortly invariant) if $p(T^{-1}A) = p(A)$, for any $A \in \mathcal{B}$. For $n \ge 1$ we put $X_n = \prod_{i=1}^n S_i$. An element $B = (i_0 i_1 \dots i_{n-1})$ of X_n will be called a block. We shall identify Bwith the cylinder $\{x \in X; x_0 = i_0, x_1 = i_1, \ldots, x_{n-1} = i_{n-1}\}$. Let us denote by M(X) the set of all T-invariant measures on \mathcal{B} . For a given $p \in M(X)$ we define a measure p_n on X_n as $p_n(B) = p(B)$, $B \in X_n$, $n \ge 1$. The measure sure p_n may be considered as a point of the space R^{s^n} in the sense that the coordinates of p_n are indexed by the blocks $B \in X_n$, and the Bth coordinate of p_n is equal to $p_n(B)$. Fix $n \ge 1$ and denote by K_n the set of all vectors of the form $\langle p_n(B) \rangle_{B \in X_n}$, where p runs over all invariant measures on X. It is well known that the set K_n may be described by the following conditions:

$$\sum_{B\in X_n} p_n(B) = 1,$$

$$(b) \qquad \qquad \sum_{i=0}^{s-1} \, p_n(\mathit{C}i) = \sum_{i=0}^{s-1} \, p_n(i\mathit{C}), \quad \text{ for every } \mathit{C} \in \mathit{X}_{n-1},$$

$$(c) p_n(B) \geqslant 0, B \in X_n.$$

Further, if the measures p_n , n=1,2,..., are appointed by the invariant measure p, then the conditions of consistency are satisfied, i.e.

(d)
$$\sum_{i=0}^{s-1} p_{n+1}(Bi) = p_n(B), \quad B \in X_n, \ n = 1, 2, \dots$$

Condition (d) may be regarded as a definition of a mapping f_n from K_{n+1} onto K_n . We remark that the sets K_n , $n \ge 1$, are polygons in R^{s^n} and it is easy to check that $\dim K_n = s^{n-1}(s-1)$. We obtain a sequence of the polygons K_n and the functions f_n ,

$$K_1 \stackrel{f_1}{\leftarrow} K_2 \stackrel{f_2}{\leftarrow} K_3 \stackrel{f_3}{\leftarrow} \dots$$

In view of the above remarks the set M(X) may be identified with $\lim_{n \to \infty} K_n$. If $\overline{p} \in K_n$, $\overline{q} \in K_{n+1}$ and $\overline{p} = f_n(\overline{q})$, then we shall say that the vector \overline{q} is an extension of \overline{p} .

2. Extremal points of K_n . Now, we shall describe the set of all extremal points of K_n . In order to do this we use a graph Y_n , $n=2,3,\ldots$ If n=1, then K_1 may be identified with the simplex $T_s=\{(x_0,x_1,\ldots,x_{s-1}); \sum x_i=1, x_i \geq 0\}$, the extremal points of which are $(1,0,\ldots,0)$, $(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1)$. The vertices of Y_n form the blocks $C \in X_{n-1}$ and two blocks $C_1=(i_0\ldots i_{n-2})$ and $C_2=(j_0\ldots j_{n-2})$ are joined by an oriented edge (write $(C_1,C_2)\in \mathscr{A}_n$) iff $(i_1\ldots i_{n-2})=(j_0\ldots j_{n-3})$. This means that the end of C_1 agrees with the beginning of C_2 . In the case of n=2 each two block-symbols are joined by edges. For example, if $S=\{1,0\}$ then Y_2,Y_3,Y_4 have the following form:

Observe that the edges of Y_n may be identified with the blocks of length n in the following sense: each edge (C_1, C_2) determines a block $B = (i_0, i_1, \dots, i_{n-2}, j_{n-2})$.

Let $\gamma = \{B_1, B_2, \ldots, B_l\}$, $B_i \in X_n$, $i = 1, 2, \ldots, l$, $1 \le l \le s^{n-1}$, be a closed path in Y_n not having any loop. Define a vector $\overline{p}_{\gamma} = \langle p_{\gamma}(B) \rangle_{B \in X_n}$ as follows:

$$p_{\gamma}(B) = \begin{cases} 1/l, & B \in \gamma, \\ 0, & B \notin \gamma. \end{cases}$$

It is easy to see that $\overline{p}_{\nu} \in K_n$. Now we can prove

THEOREM 1. A vector $\overline{p} \in K_n$ is an extremal point of K_n iff $\overline{p} = \overline{p}_{\gamma}$, where γ is a closed path in Y_n which does not contain any loop.

Proof. Sufficiency. Suppose that $\gamma = \{B_1, \ldots, B_l\}, \ 1 \leqslant l \leqslant s^{n-1},$ is a closed path without loops. Let $B_i = (b_0^i, b_1^i, \ldots, b_{n-1}^i), C_i = (b_0^i, \ldots, b_{n-2}^i),$ $i = 1, 2, \ldots, l$. The blocks C_1, C_2, \ldots, C_l are the vertices of γ and they are pairwise distinct since γ does not contain any loop. Further, the condition that $B_1, B_2, \ldots, B_l, B_1$ are the successive edges of γ implies $B_i = b_0^i C_{i+1}, \ i = 1, 2, \ldots, l-1, \ \text{and} \ B_l = b_0^l C_l.$ Assume $\overline{p}_{\gamma} = t \cdot \overline{p} + (1-t) \cdot \overline{q}$, where 0 < t < 1 and $\overline{p}, \overline{q} \in K_n$. Then p(B) > 0 implies $B \in \gamma$. Hence $p(C_l j) > 0$ implies $j = b_{n-1}^i$ for $i = 1, 2, \ldots, l$ and $p(j C_i) > 0$ mplies $j = b_0^{i-1}, i = 2, \ldots, l$, and $j = b_0^l$ for i = 1. In this way we obtain

$$p(B_1) = p(b_0^1 C_2) = \sum_{j=0}^{s-1} p(jC_2) = \sum_{j=0}^{s-1} p(C_2 j) = p(C_2 b_{n-1}^2) = p(B_2).$$

Similarly we can establish $p(B_2) = p(B_3) = \ldots = p(B_l)$. Therefore the condition $\sum_{i=1}^{l} p(B_i) = 1$ implies $p(B_i) = 1/l$, $i = 1, 2, \ldots, l$, i.e. $\overline{p} = \overline{P}_{\gamma}$. In the same manner we obtain $\overline{p}_{\gamma} = \overline{q}$, so that \overline{p}_{γ} is an extremal point of K_n .

Necessity. The polygon K_n is described by conditions (a), (b), (c). It is easy to remark that the order of the system of equations (a), (b) is equal to s^{n-1} . Take an extremal point $\overline{p} \in K_n$. It is well known that r $(r=s^n-s^{n-1})$ of the s^n coordinates of \overline{p} are equal to zero and the remaining s^{n-1} coordinates satisfy a regular subsystem of (a), (b). So p(B), $B \in X_n$, are rational numbers, say p(B) = r(B)/N, where r(B) are non-negative integers with $\sum_{B \in X_n} r(B) = N$. In order to find a closed path γ for which $\overline{p} = \overline{p}_{\gamma}$ we remark that condition (b) implies the following properties:

(1) for any $B \in X_n$ with p(B) > 0 there exists a $\overline{B} \in X_n$ such that $p(\overline{B}) > 0$ and $(B, \overline{B}) \in \mathscr{A}_{n+1}$.

73

Let $B_0 \in X_n$ be a block such that $p(B_0) = \min\{p(B): p(B) > 0\}$ Starting with B_0 and using (1), we may find a finite sequence of blocks B_0, B_1, \ldots of X_n such that $(B_i, B_{i+1}) \in \mathcal{A}_{n+1}$. Denote by C_i the block of length n-1 which forms the beginning of B_{i+1} and the end of B_i . It is clear that the sequence of blocks C_0, C_1, \ldots contains pairwise different blocks $C_{s+1}, C_{s+2}, \ldots C_m$, where s < m and $(C_m, C_{s+1}) \in \mathscr{A}_n$. Then the blocks B_{s+1}, \ldots, B_m form a closed path of Y_n without loops. Moreover, we have p(B) > 0 if $B \in \gamma$.

Let $m_0 \ge 1$ be the length of γ . Assume $\overline{p}_{\gamma} \ne \overline{p}$. Then $m_0 < N$ and therefore the vector $\bar{q} = \left(\bar{p} - \frac{m_0}{N} \; \bar{p}_{\gamma}\right) \cdot \frac{N}{N - m_0}$ is an element of K_n . Hence $\overline{p} = \frac{N - m_0}{N} \cdot \overline{q} + \frac{m_0}{N} \overline{p}_{\nu}$, which means that \overline{p} is not an extremal point of K_n . This leads us to a contradiction, so that the theorem is proved.

THEOREM 2. If \bar{p} is an extremal point of K_n , $n=1,2,\ldots$, then there exists exactly one $\overline{q} \in K_{n+1}$ such that $\overline{p} = f_n(\overline{q})$. Moreover, \overline{q} is an extremal point of K_{n+1} .

Proof. First we assume n=1. In this case the set of all extremal points of K_1 is identical with the set

$$\{\overline{p}_0,\,\overline{p}_1,\,\ldots,\,\overline{p}_{s-1}\}, \quad ext{where} \quad p_i(j) = egin{cases} 1, & i=j, \ 0, & i
eq j, \end{cases} \quad i,j \in S\,.$$

It is easy to check that the vectors

$$\overline{q}_0,\ldots,\overline{q}_{s-1}\in K_2, \quad \overline{q}_i(B)=egin{cases} 1, & B=(ii) \ 0, & B
eq (ii) \end{cases},$$

are the only vectors of K_2 such that $f_1(\bar{q}_i) = \bar{p}_i$.

Now, let $n \ge 2$ and take a path $\gamma = \{B_1, \ldots, B_l\}$ of Y_n not having loops. Then the vector $\overline{q} \in K_{n+1}$ is an extension of \overline{p}_n , iff the following conditions are satisfied [2]

(2)
$$\sum_{i=0}^{s-1} q(iCj) = p_{\gamma}(Cj), \quad j = 0, 1, ..., s-1, \\ \sum_{j=0}^{s-1} q(iCj) = p_{\gamma}(iC), \quad i = 0, 1, ..., s-1,$$

where C is any block of the length n-1. Therefore, in order to solve the systems of equations (2) it suffices to find matrices $Q(O) = \langle q(iOj) \rangle$, i, j = 0, 1, ..., s-1, satisfying (2) for every $C \in X_{n-1}$.

The following cases are possible:

- (i) $p_{\alpha}(iC) = 0$, $p_{\alpha}(Cj) = 0$ for every $i, j \in S$;
- (ii) there exists exactly one $i_0, j_0 \in S$ with $p_{\nu}(i_0C) = p_{\nu}(Cj_0) = 1/l$ and $p_{\nu}(iC) = 0 = p_{\nu}(Cj)$ for the remaining $i, j \in S$.

So the only solution of the system of equations (2) is a vector $\bar{q} \in K_{n+1}$ defined as follows: q(iCj) = 0, $i, j \in S$, if (i) holds and $q(i_0Cj_0) = 1/l$, $q(iCi) = 0, (i,j) \neq (i_0,j_0)$ if (ii) holds. It is easy to check that the vector \overline{q} is an extremal point of K_{n+1} appointed by the vertices $B_1, B_2, ..., B_l$. This completes the proof of the theorem.

Remark 1. Let $S = \{0, 1\}$ and let l_n denote the number of all extremal points of K_n . We can immediately check that $l_1 = 2$, $l_2 = 3$, $l_3 = 6$, $l_{*}=19$. At the same time the dimension of the sets $K_{1}, K_{2}, K_{3}, K_{4}$ is equal to 1, 2, 4, 8, respectively. This means that the polygons K_n cannot be simplexes for n=3,4.

§ 3. Decomposition of the Bernoulli measures. In this section we present a decomposition of Bernoulli measures by extremal points of $K_n, n = 1, 2, ...$

In order to do this we define a relation of φ -equivalence between the elements of X_n . The relation φ is defined as follows: two blocks $B, \overline{B} \in X_n \text{ are } q\text{-equivalent iff } \overline{B} = (i_t i_{t+1} \dots i_n i_1 \dots i_{t-1}) \text{ for some } 1 \leqslant t \leqslant n,$ where $B = (i_1 \dots i_n)$.

Denote by \mathcal{A}_n the set of all classes of the φ -equivalence. Observe that each element of \mathcal{B}_n contains at most n blocks of X_n . We shall show that if $\gamma \in \mathcal{B}_n$, then the edges of γ form a closed path of Y_n not having loops. It turns out that, for any Bernoulli measure p, the measures p_n may be described by the extremal points \overline{p}_{γ} , $\gamma \in \mathcal{B}_n$, n = 1, 2, ...

Suppose $\gamma = \{B_1, B_2, ..., B_l\}, l \leq n$. We may assume that if $B_1 = (i_1 i_2 \dots i_n)$ then $B_2 = (i_2 i_3 \dots i_n i_1)$, $B_3 = (i_3 \dots i_n i_1 i_2)$, and so on. Let $B_i = C_i c_n^i$, $C_i \in X_{n-1}$, $c_n^i \in S$. In order to show that γ forms a closed path of Y_n without loops it remains to prove that the blocks C_1, C_2, \ldots, C_l are pairwise distinct. First we observe that all blocks of γ have the same numbers of symbols. Now, if $C_1 = C_2$ then $c_n^1 \neq c_n^2$ because $B_1 \neq B_2$, and therefore the frequencies of the symbols in B_1 and B_2 are different. Thus $C_1 \neq C_2$, and similarly we obtain $C_i \neq C_j$ for $i \neq j$. This means that γ forms a closed path of Y_n not having any loop.

Let $n_0, n_1, \ldots, n_{s-1}$ be non-negative integers with $n_0 + \ldots + n_{s-1} = n$ and let $\mathcal{B}(n_0, n_1, \ldots, n_{s-1})$ be the set of all blocks of X_n containing the symbol 0 n_0 times, the symbol 1 n_1 times, and so on. Denote by b, the length of $\gamma, \gamma \in \mathcal{B}_n$. It is clear that

$$\sum_{\gamma \in \mathscr{B}(n_0, \dots, n_{s-1})} b_{\gamma} = \frac{n!}{n_0! \, n_1! \, \dots \, n_{s-1}!}.$$

Take a Bernoulli measure p on X given by a probability vector $\overline{q}=(q_0,q_1,\ldots,q_{s-1})$. It is not difficult to check that for $n=2,3,\ldots$ we have

$$p_n = \sum_{n_0 + \ldots + n_{s-1} = n} q_n^{n_0} \cdot q_1^{n_1} \ldots q_{s-1}^{n_{s-1}} \sum_{\gamma \in \mathscr{B}(n_0, \ldots, n_{s-1})} \overline{p}_{\gamma} \cdot b_{\gamma}.$$

Remark 2. For any block $B\in X_n$ there exists a unique class $\gamma\in \mathscr{Q}_n$ such that $B\in \gamma$. Accordingly the vectors \overline{p}_{γ} , $\gamma\in \mathscr{Q}_n$, are linearly independent and therefore they form a simplex L_n in K_n . In general, the dimension of L_n is smaller than $\dim K_n$.

In the sequel we denote by \mathcal{M}_0 the set of all invariant measures p on X for which $p_n \in L_n$ for n = 1, 2, ...

§ 4. Description of the class \mathcal{M}_0 . First we introduce the notation. If $B = (i_1 \dots i_l)$, $C = (j_1 \dots j_m)$ are two blocks, then we shall denote by BC the block $(i_1 \dots i_l j_1 \dots j_m)$. We start with the following

LEMMA 1. A measure p on X belongs to \mathcal{M}_0 iff for any two blocks B, C the condition

(3)
$$\sum_{i=0}^{s-1} p(BiC) = p(CB)$$

is satisfied.

Proof. Necessity. The condition $p \in \mathcal{M}_0$ implies that if $i \in S$ and B, C are two blocks then p(BiC) = p(CBi) and further

$$\sum_{i=0}^{s-1} p(BiC) = \sum_{i=0}^{s-1} p(CBi) = p(CB).$$

Sufficiency. Taking B or C as empty blocks, we find that p is an invariant measure on X. In order to prove that $p \in \mathcal{M}_0$ it suffices to show the equality p(iB) = p(Bi) for any symbol $i \in S$ and any block B. Using (3) we have

$$p(iB) = \sum_{j=0}^{s-1} p(Bji) = \sum_{j,k=0}^{s-1} p(ikBj) = \sum_{k=0}^{s-1} p(ikB) = p(Bi),$$

which completes the proof of the lemma.

DEFINITION 1. We say that an invariant measure p on X is symmetric if p(B) = p(C) for any blocks $B, C \in \mathcal{B}(n_0, n_1, \ldots, n_{s-1})$, where $n_0, n_1, \ldots, n_{s-1}$ are non-negative integers.

THEOREM 3. An invariant measure p on X belongs to \mathcal{M}_0 iff p is symmetric.

Proof. Sufficiency. If p is symmetric then p is constant on each class $\gamma \in \mathcal{B}_n$ for $n=1,2,\ldots$ But this means that for $n=1,2,\ldots,p_n \in L_n$, i.e. $p \in \mathcal{M}_0$.

Necessity. Let T be the shift on X and let k>1. Take blocks $B_0\in B_{l_0}$, $B_1\in X_{l_1},\ldots,B_k\in X_{l_k}$, where l_0,l_1,\ldots,l_k are positive integers and let $n_1>l_0$, $n_2>l_1+n_1,\ldots,n_k>n_{k-1}+l_{k-1}$. Then we have

$$\sum_{A_1, A_2, \dots, A_k} p(B_0 A_1 B_1 A_2 \dots A_k B_k)$$

$$= p(B_0 \cap T^{-n_1}(B_1) \cap T^{-n_2}(B_2) \cap \dots \cap T^{-n_k}(B_k)),$$

where $A_1 \in X_{n_1-l_0}$, $A_2 \in X_{n_2-n_1-l_1}$, $A_3 \in X_{n_3-n_2-l_2}$, and so on. Further, from the definition of \mathcal{M}_0 and (3) follows

$$\sum_{A_1,A_2,\ldots,A_k} p(B_0A_1B_1A_2\ldots A_kB_k) = p(B_0B_1\ldots B_k).$$

Thus for sufficiently large $n_k > n_{k-1} > \ldots > n_1$ we have

$$(4) p(B_0B_1...B_k) = p(B_0 \cap T^{-n_1}(B_1) \cap ... \cap T^{-n_k}(B_k)).$$

Now, take a partition ζ of X on ergodic components with respect to T. Let $M = X/\zeta$, $(p_m)_{m \in M}$ be conditional measures of ζ and let p_{ζ} be the quotient measure on M induced by p. Then we have

$$p(B_0 \cap T^{-n_1}(B_1) \cap \ldots \cap T^{-n_k}(B_k))$$

$$= \int_M p_m(B_0 \cap T^{-n_1}(B_1) \cap \ldots \cap T^{-n_k}(B_k)) p_{\xi}(dm).$$

By the above equality and by (4) we obtain

(5)
$$p(B_0B_1...B_k) = \int_M p_m(B_0 \cap T^{-n_1}(B_1) \cap ... \cap T^{-n_k}(B_k)) p_{\xi}(dm).$$

Now, fix $n_{k-1} > n_{k-2} > ... > n_1$. Applying the ergodic theorem to the dynamical systems $(X, \mathcal{B}, p_m, T), m \in M$, we have

(6)
$$\lim_{n_k \to \infty} \frac{1}{n_k} \sum_{l=0}^{n_k-1} p_m(B_0 \cap T^{-n_1}(B_1) \cap \dots \cap T^{-n_{k-1}}(B_{k-1}) \cap T^{-l}(B_k))$$

$$= p_m(B_k) p_m(B_0 \cap T^{-n_1}(B_1) \cap \dots \cap T^{-n_{k-1}}(B_{k-1})) \quad \text{for a.e. } m \in M.$$

Since $\frac{1}{n_k} \sum_{i=0}^{n_{k-1}} p_m(B_0 \cap \ldots \cap T^{-t}(B_k)) \leq 1$, $k \geq 1$, we can integrate both sides of (6) and we obtain

(7)
$$\lim_{n_k \to \infty} \frac{1}{n_k} \sum_{t=0}^{n_k-1} \int_{M} p_m(B_0 \cap \dots \cap T^{-n_{k-1}}(B_{k-1}) \cap T^{-t}(B_k)) = \int_{M} p_m(B_k) p_m(B_0 \cap \dots \cap T^{-n_{k-1}}(B_{k-1})) p_t(dm).$$

Further, (5) and (7) imply

(8)
$$p(B_k B_{k-1} \dots B_1 B_0)$$

= $\int_{\mathcal{D}} p_m(B_k) \cdot p_m(B_0 \cap T^{-n_1}(B_1) \cap \dots \cap T^{-n_{k-1}}(B_{k-1})) p_{\xi}(dm),$

for any sufficiently large integers $n_{k-1} > n_{k-2} > \ldots > n_1$. Repeating the above arguments for fixed $n_{k-2} > n_{k-3} > \ldots > n_1$ and for $n_{k-1} \to \infty$, we obtain

$$p(B_k B_{k-1} \dots B_1 B_0)$$

= $\int_{\mathcal{M}} p_m(B_k) p_m(B_{k-1}) p_m(B_0 \cap T^{-n_1}(B_1) \cap \dots \cap T^{-n_{k-2}}(B_{k-2})) p_{\xi}(dm).$

Proceeding in the same manner, we have

$$(9) p(B_k B_{k-1} \dots B_1 B_0) = \int_{\mathcal{M}} p_m(B_k) p_m(B_{k-1}) \dots (p_m) B_1 p_m(B_0) p_{\zeta}(dm),$$

for any blocks B_0, B_1, \ldots, B_k . Therefore, if B is a block having n_0 0's, n_1 1's, and so on, then (9) gives

(10)
$$p(B) = \int_{M} p_0(m) \cdot p_1(m) \dots p_{s-1}(m) p_{\zeta}(dm),$$

where $p_i(m) = p_m(\{i\}), i \in S$. Thus (10) implies the theorem.

Remark 3. If $p \in \mathcal{M}_0$ and p is an ergodic measure, then p_{ζ} is a δ -measure concentrated at a point $m_0 \in M$. Therefore p is a Bernoulli measure given by the probability vector $\langle p_0(m_0), \ldots, p_{s-1}(m_0) \rangle$.

EXAMPLE 1. Take a simplex T_s of the space R^{s-1} defined in the following way: $\overline{x}=(x_0,x_1,\ldots,x_{s-1})\in T_s$ iff $\sum\limits_{i=0}^{s-1}x_i=1$ and $x_i\geqslant 0,\,i=0,1,\ldots\ldots,s-1$. Assume that \overline{p} is a normalized, borelian measure on T_s . Then we can define a measure p on X as follows:

(11)
$$p(B) = \int_{T_s} x_0^{n_0} w_1^{n_1} \dots w_{s-1}^{n_{s-1}} \overline{p}(d\overline{x}),$$

where $B \in \mathcal{B}(n_0, n_1, \ldots, n_{s-1})$. It is easy to verify that p is an invariant measure on X and $p \in \mathcal{M}_0$.

Now, using the well-known theorem of de Finetti [6] we have the following

THEOREM 4. For every $p\in\mathcal{M}_0$ there exists a unique measure \overline{p} on T_s such that (11) holds.

§ 5. Isomorphism theorems. Consider a probability measure \overline{p} on T_s and let $p=\psi(\overline{p})$ be a measure on X defined by (11). The measure \overline{p} determines a dynamical system $Z(\overline{p})=\big(X,\mathscr{B},\psi(\overline{p}),T\big)$. In this section we

give a necessary and sufficient condition for two dynamical systems $Z(\overline{p}_1)$ and $Z(\overline{p}_2)$ to be isomorphic. First we describe a decomposition of $Z(\overline{p})$ on ergodic components.

Let \mathscr{M}_e be the set of all invariant ergodic measures on X. On \mathscr{M}_e we can define a topology [1] induced by neighbourhoods of the following form: $M(\varepsilon, \mu_0, C_1, \ldots, C_k) = \bigcap_{i=1}^k \{\mu \in \mathscr{M}_e; |\mu(C_i) - \mu_0(C_i)| < \varepsilon\}$, where $\mu_0 \in \mathscr{M}_0$, $\varepsilon > 0$ and C_1, C_2, \ldots, C_k are cylinders. Denote by \mathscr{B}_e the σ -field of borelian subsets of \mathscr{M}_e . Now, for a given probability measure r on \mathscr{B}_e , we can define a T-invariant measure $\tilde{\mu}$ on X by

(12)
$$\tilde{\mu}(C) = \int_{\mathcal{A}_{\sigma}} \mu(C) \nu(d\mu),$$

where G is a block. It is well known [4] that any invariant measure $\tilde{\mu}$ on X has the form (12). Moreover, the correspondence $v \to \tilde{\mu}$ is one-to-one. The measure v is called the decomposition of $\tilde{\mu}$ on ergodic components.

Now, we remark that the measure \overline{p} on T_s may be identified with a decomposition of $\psi(\overline{p})$ on ergodic components. In fact, the set T_s may be identified with the set \mathcal{M}_b of all Bernoulli measures on X. Moreover, the natural topology of T_s is identical with the restriction of the topology of \mathcal{M}_c to $\mathcal{M}_b(\mathcal{M}_b)$ is a closed subset of \mathcal{M}_c). Therefore, the measure \overline{p} may be regarded as a measure on \mathcal{M}_b and on \mathcal{M}_c , too. For this measure equation (12) reduces to (11).

Having a decomposition of $\psi(\overline{p})$ on ergodic components, we can construct a complete system of invariants of $Z(\overline{p})$. To do this we consider a function H on T_s defined by

$$H(\overline{x}) = -\sum_{i=0}^{s-1} x_i \log x_i.$$

Let $I_s = \langle 0, \log s \rangle$ and let ζ be a partition of T_s on the sets $C_a = \{\overline{x} \in T_s; H(\overline{x}) = a\}, \ a \in I_s$. The measure \overline{p} determines the quotient measure \hat{p} on $I_s = T_s/\zeta$ and conditional measures $\{p_a\}, \ a \in I_s$. Let $\{m_n(a)\}$ be the type of \overline{p}_a , that is, let $\{m_n\}$ be a sequence of measurable functions defined on I_s such that

$$\sum_{n=1}^{\infty} m_n(a) \leqslant 1, \quad m_{n+1}(a) \leqslant m_n(a), \quad m_n(a) \geqslant 0 \quad \text{ for } \quad n=1,2,\ldots,$$

and for almost all $a \in I_s$ with respect to \hat{p} . We obtain a pair $\theta(\overline{p}) = (\hat{p}, \{m_n(a)\}_{a \in I_s})$.

THEOREM 5. Given two probability measures \overline{p}_1 , \overline{p}_2 on T_s , the dynamical systems $Z(\overline{p}_1)$, $Z(\overline{p}_2)$ are isomorphic iff $\theta(\overline{p}_1) = \theta(\overline{p}_2)$.

The proof of the theorem can be obtained by using Ornstein's Isomorphism Theorem [3] and Roklin's decomposition theorem [5], which can be formulated in the following form:

THEOREM 6. Let $\tilde{\mu}_1, \tilde{\mu}_2$ be two invariant measures on X and let v_1, v_2 be the decomposition on ergodic components of $\tilde{\mu}_1$ and $\tilde{\mu}_2$, respectively. The dynamical systems $(X, \mathcal{B}, T, \tilde{\mu}_1)$ and $(X, \mathcal{B}, T, \tilde{\mu}_2)$ are isomorphic iff there exists an invertible measure-preserving transformation $S: (\mathcal{M}_e, v_1) \rightarrow (\mathcal{M}_e, v_2)$ such that for a.e. $(\text{mod } v_1) \ \mu \in \mathcal{M}_e$ the ergodic dynamical systems (X, \mathcal{B}, T, μ) and $(X, \mathcal{B}, T, S_{\mu})$ are isomorphic.

Remark 4. If s=2 then $m_1(\log 2)=1$, $m_n(\log 2)=0$ for $n\geqslant 2$ and for $a\in (0,\log 2)$ we must have $m_n(a)=0$ for $n=3,4,\ldots$ If s>2 then $m_1(\log s)=1$, $m_n(\log s)=0$, $n=2,3,\ldots$, and the remaining measures may have arbitrary types.

References

- [1] R. P. Phelps, Lectures on Choquet's Theorem, 1966.
- [2] J. C. Kieffer, On the approximation of stationary measures by periodic and ergodic measures, Ann. Probability 2 (1974), pp. 530-534.
- [3] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4. 3 (1970), pp. 337-352.
- [4] J. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), pp. 116-136.
- [5] V. A. Rokhlin, The decomposition of a dynamical system onto transitive components, (in Russian) Mat. Sb. 25 (67) (1949), pp. 235-249.
- [6] L. J. Savage and E. Hewitt, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), pp. 470-501.

INSTITUTE OF MATHEMATICS N. COPERNIOUS UNIVERSITY TORUN

Received November 7, 1977 Revised version May 24, 1978

(1364)

On certain subspaces of a nuclear power series spaces of finite type

Ţ

A. AYTUNA and T. TERZIOĞLU (Ankara)

Dedicated to Professor

Arf on his 70th birthday

Abstract. Let $\alpha=(\alpha_n)$ denote a stable nuclear exponent sequence of finite type. It is shown that a subspace X of $\Lambda_1(a)$ with a basis is either isomorphic to a subspace of $\Lambda_\infty(a)$ or X has a complemented subspace which is isomorphic to a power series space of finite type. Also applications of this result to spaces of analytic functions are discussed.

Introduction. Throughout, we let $\alpha=(\alpha_n)$ denote a nuclear exponent sequence of finite type which is assumed to be stable [6] (i.e. (α_{2n}/α_n) is bounded). By subspace we mean a closed, infinite-dimensional subspace. Recently, Dubinsky [5] characterized Köthe spaces which are isomorphic to subspaces of a power series space $A_1(\alpha)$ of finite type. In particular, the power series space $A_{\infty}(\alpha)$ of infinite type is isomorphic to a subspace of $A_1(\alpha)$ ([3]). The main result of this note is the following.

THEOREM 1. A subspace X of $\Lambda_1(a)$ with a basis is either isomorphic to a subspace of $\Lambda_{\infty}(a)$ or X has a complemented subspace which is isomorphic to a power series space of finite type.

We note that a subspace of $\Lambda_{\infty}(a)$ cannot have a subspace isomorphic to a power series space of finite type ([20]). For the special case of $\alpha_n = n^{1/d}$, the corresponding power series space of infinite type is isomorphic to the space $O(C^d)$ of entire functions in d variables and the corresponding power series spaces of finite type is isomorphic to the space $O(\Delta^d)$ of functions analytic in the d-dimensional unit polycylinder ([15]). In the final section, we apply Theorem 1 to spaces of analytic functions and obtain the following result.

THEOREM 2. Let M be a Stein manifold of dimension d and assume that O(M) has a basis. Then O(M) is either isomorphic to $O(C^d)$ or O(M) has a complemented subspace isomorphic to a power series space of finite type.

We introduce some terminology in the following section, which leads to the proof of Theorem 1. For any undefined terminology we refer to [9], [12], and [6]. This research was supported by the Scientific and Technical Research Council of Turkey.